TY - JOUR
AU - Team, Support
PY - 2006/12/01
Y2 - 2024/09/15
TI - On the Least (Ordered) Semilattice Congruence in Ordered $\Gamma$-Semigroups: M. Siripitukdet, A. Iampan
JF - Thai Journal of Mathematics
JA - Thai J Math
VL - 4
IS - 2
SE - Articles
DO -
UR - https://thaijmath2.in.cmu.ac.th/index.php/thaijmath/article/view/60
SP - 403 - 415
AB - <p>In this paper, we firstly characterize the relationship between the(ordered) filters, (ordered) <em>s</em>-prime ideals and (ordered) semilattice congruences in ordered $\Gamma$-semigroups. Finally, we give some characterizations of semilattice congruences and ordered semilattice congruences on ordered $\Gamma$-semigroups and prove that</p><p>1. <em>n </em>is the least semilattice congruence,</p><p>2. <em>N </em>is the least ordered semilattice congruence,</p><p>3. <em>N </em>is not the least semilattice congruence in general.</p>
ER -