Stability of the New Generalized Linear Functional Equation in Normed Spaces via the Fixed Point Method in Generalized Metric Spaces

Laddawan Aiemsomboon, Wutiphol Sintunavarat

Authors

  • Support Team

Keywords:

fixed point method, generalized linear functional equation, stability

Abstract

The aim of this paper is to apply the classical metric fixed point method for proving the Hyers-Ulam stability of the generalized linear functional equation of the form\begin{equation*}    2f(x+y)+f(x-y)+f(y-x)=2f(x)+2f(y), \end{equation*}for all $x,y \in X$, where $f$ maps from a Banach space $X$ into a Banach space $Y$.

Downloads

Published

2018-12-18

How to Cite

Team, S. (2018). Stability of the New Generalized Linear Functional Equation in Normed Spaces via the Fixed Point Method in Generalized Metric Spaces: Laddawan Aiemsomboon, Wutiphol Sintunavarat. Thai Journal of Mathematics, 113–124. Retrieved from https://thaijmath2.in.cmu.ac.th/index.php/thaijmath/article/view/732