Regularity of Semihypergroups of Infinite Matrices

S. Chaopraknoi, N. Triphop

Authors

  • Support Team

Abstract

A semigroup is a regular semigroup if for every $x \in S$, x xyx for some $y \in S$, and a semihypergroup $(H,\circ)$ is a regular semihypergroup if for every $x \in H$, $x \in x \circ y \circ x $ for some $y \in H$. If is a semigroup and is a nonempty subset of S, we let (S, P) denote the semihypergroup (S,\circ) where $x \circ y = xPy$ for all $x, y \in S$. Let BM(F) be the multiplicative semigroup of all bounded $N \times N$ matrices over a field where N is the set of natural numbers. It is known that BM(F) is a regular semigroup. Our purpose is to provide necessary and sufficient conditions for a nonempty subset P of BM(F) so that (BM(F);P) is a regular semihypergroup.

Downloads

Published

2006-12-01

How to Cite

Team, S. (2006). Regularity of Semihypergroups of Infinite Matrices: S. Chaopraknoi, N. Triphop. Thai Journal of Mathematics, 4(3), 7–11. Retrieved from https://thaijmath2.in.cmu.ac.th/index.php/thaijmath/article/view/62