Equivalence Problem for The Canonical Form of Linear Second Order Parabolic Equations

Ekkarath Thailert

Authors

  • Support Team

Abstract

The article is devoted to the equivalence problem for the class of linearsecond order parabolic equations, the first\begin{equation}\label{first equ}u_t = u_{xx} + a(x)u,\end{equation}and\begin{equation}\label{second equ}u_t = u_{xx} + \frac{k}{{x^2 }}u\end{equation}$k$ a nonzero constant. Conditions which the parabolic equation\begin{equation}\label{parabolic eq}%u_t  + a\left( {t,x} \right)u_{xx}  + b\left( {t,x} \right)u_x  + c\left( {t,x} \right)u = 0a_1\left( {t,x} \right)u_t + a_2\left( {t,x} \right)u_x + a_3\left( {t,x}\right)u + u_{xx}= 0\end{equation}to be equivalent to (0.1)-(0.2) are obtained

Downloads

Published

2015-08-01

How to Cite

Team, S. (2015). Equivalence Problem for The Canonical Form of Linear Second Order Parabolic Equations: Ekkarath Thailert. Thai Journal of Mathematics, 13(2), 431–447. Retrieved from https://thaijmath2.in.cmu.ac.th/index.php/thaijmath/article/view/521

Issue

Section

Articles