Equivalence Problem for The Canonical Form of Linear Second Order Parabolic Equations
Ekkarath Thailert
Abstract
The article is devoted to the equivalence problem for the class of linearsecond order parabolic equations, the first\begin{equation}\label{first equ}u_t = u_{xx} + a(x)u,\end{equation}and\begin{equation}\label{second equ}u_t = u_{xx} + \frac{k}{{x^2 }}u\end{equation}$k$ a nonzero constant. Conditions which the parabolic equation\begin{equation}\label{parabolic eq}%u_t + a\left( {t,x} \right)u_{xx} + b\left( {t,x} \right)u_x + c\left( {t,x} \right)u = 0a_1\left( {t,x} \right)u_t + a_2\left( {t,x} \right)u_x + a_3\left( {t,x}\right)u + u_{xx}= 0\end{equation}to be equivalent to (0.1)-(0.2) are obtainedDownloads
Published
2015-08-01
How to Cite
Team, S. (2015). Equivalence Problem for The Canonical Form of Linear Second Order Parabolic Equations: Ekkarath Thailert. Thai Journal of Mathematics, 13(2), 431–447. Retrieved from https://thaijmath2.in.cmu.ac.th/index.php/thaijmath/article/view/521
Issue
Section
Articles