Multihomomorphisms from Groups into Groups of Real Numbers

P. Youngkhong, K. Savettaraseranee

Authors

  • Support Team

Abstract

By a multihomomorphism from a group into a group G' we mean a multifunction from into G' such that

f(xy) = f(x)f(y) $({st : s \in f(x) and t \in f(y)})$

for all $x, y \in G$. We denote by MHom(G,G') the set of all multihomomorphisms from into G'. It is shown that if $\in$ MHom(G,G') where G' is a subgroup of (R, +), then either is a homomorphism or there is an infinite cardinal number $\eta$ such that $ |f(x)| = \eta $ for all $x \in G$. If $f \in $ MHom(G,G') where G' is a subgroup of $(R*,\cdot )$, then (i) f is a homomorphism, (ii) |f(x)|= 2 for all $ xor (iii) there is an infinite cardinal number $\eta$ such that $ |f(x)| = \eta$ .

Downloads

Published

2006-06-01

How to Cite

Team, S. (2006). Multihomomorphisms from Groups into Groups of Real Numbers: P. Youngkhong, K. Savettaraseranee. Thai Journal of Mathematics, 4(1), 43–48. Retrieved from https://thaijmath2.in.cmu.ac.th/index.php/thaijmath/article/view/35

Issue

Section

Articles