On the Diophantine Equations $q^x + p(2q + 1)^y = z^2$ and $q^x + p(4q + 1)^y = z^2$

Authors

  • Piyada Phosri
  • Suton Tadee Thepsatri Rajabhat University

Keywords:

Diophantine equation, Legendre symbol, congruence

Abstract

In this paper, by using basic concepts of number theory, we present some conditions of the non-existence of non-negative integer solutions $(x, y, z)$ for the Diophantine equations $q^x + p(2q + 1)^y = z^2$ and $q^x + p(4q + 1)^y = z^2$, where $p$ and $q$ are prime numbers.

Downloads

Published

2024-06-30

How to Cite

Phosri, P., & Tadee, S. (2024). On the Diophantine Equations $q^x + p(2q + 1)^y = z^2$ and $q^x + p(4q + 1)^y = z^2$. Thai Journal of Mathematics, 22(2), 389–395. Retrieved from https://thaijmath2.in.cmu.ac.th/index.php/thaijmath/article/view/1489

Issue

Section

Articles