Direct Product of Finite Intuitionistic Fuzzy Normal Subrings Over Non-Associative Rings

Nasreen Kausar, Mohammad Munir, Sajida Kousar, Ali Farajzadeh, Bayram Ali Ersoy

Authors

  • Support Team

Keywords:

Direct product, fuzzy LA-subrings, intuitionistic fuzzy normal LA-subrings

Abstract

Shal et al [21], introduced the concept of intuitionistic fuzzy normal subrings over a non-associative ring. In this note, we extendthe concept of [21]. Spcefically we prove that, $X=A\times B$ and $Y=C\times D$ be two LA-subrings of an LA-ring $R_{1}\times R_{2}.$  Then $X\cap Y $ is an LA-subring of an LA-ring $R_{1}\times R_{2}$ if and only if the intuitionistic characteristic function $\chi _{Z}=\langle \mu _{\chi _{Z}},\gamma _{\chi _{Z}}\rangle $ of $Z=X\cap Y $ is an intuitionistic fuzzy normal LA-subring of an LA-ring $R_{1}\times R_{2}.$

Downloads

Published

2022-09-30

How to Cite

Team, S. (2022). Direct Product of Finite Intuitionistic Fuzzy Normal Subrings Over Non-Associative Rings: Nasreen Kausar, Mohammad Munir, Sajida Kousar, Ali Farajzadeh, Bayram Ali Ersoy. Thai Journal of Mathematics, 20(3), 1041–1064. Retrieved from https://thaijmath2.in.cmu.ac.th/index.php/thaijmath/article/view/1379

Issue

Section

Articles