On the Recursive Sequence $x_{n+1}=\frac{x_{n-7}}{1+x_{n-1}x_{n-3}x_{n-5}}$

Burak Ogul, Dagistan Simsek, Fahreddin Abdullayev, Ali Farajzadeh

Authors

  • Support Team

Keywords:

difference equation, rational difference equations, recursive sequence

Abstract

In this paper we are going to analyze the followingdifference equation

$$x_{n+1}=\frac{x_{n-7}}{1+x_{n-1}x_{n-3}x_{n-5}} \quad n=0,1,2, \dots,$$

where $x_{-7}, x_{-6}, x_{-5}, x_{-4}, x_{-3}, x_{-2}, x_{-1}, x_{0} \in \left(0,\infty\right)$.

Downloads

Published

2022-03-31

How to Cite

Team, S. (2022). On the Recursive Sequence $x_{n+1}=\frac{x_{n-7}}{1+x_{n-1}x_{n-3}x_{n-5}}$: Burak Ogul, Dagistan Simsek, Fahreddin Abdullayev, Ali Farajzadeh. Thai Journal of Mathematics, 20(1), 111–119. Retrieved from https://thaijmath2.in.cmu.ac.th/index.php/thaijmath/article/view/1313

Issue

Section

Articles