Recursion Formulas for Bernoulli Numbers

Aeran Kim

Authors

  • Support Team

Keywords:

Bernoulli numbers, Lucas sequence, recursion theory

Abstract

In this paper we establish simple recursion formulas forBernoulli numbers, for instance,\begin{align*} \sum_{k=1}^{n}\binom{4n+2}{4k}(-1)^k 2^{2k-1}B_{4k} = n\end{align*}and\begin{align*} \sum_{k=0}^{n}\binom{4n+4}{4k+2}(-1)^k 2^{2k}B_{4k+2} = n+1\end{align*}in Theorem 1.1. Furthermore applying a Lucas sequence $V_n$,we obtain\begin{align*} \sum_{k=1}^{n}\binom{8n+4}{8k}(-1)^k 2^{2k-1}B_{8k}V_{4n-4k+2} = nV_{4n+2}\end{align*}and\begin{align*} \sum_{k=0}^{n}\binom{8n+8}{8k+4}(-1)^k 2^{2k}B_{8k+4}V_{4n-4k+2} = -(n+1)V_{4n+3}\end{align*}in Theorem 1.2.

Downloads

Published

2022-03-31

How to Cite

Team, S. (2022). Recursion Formulas for Bernoulli Numbers: Aeran Kim. Thai Journal of Mathematics, 20(1), 55–67. Retrieved from https://thaijmath2.in.cmu.ac.th/index.php/thaijmath/article/view/1309

Issue

Section

Articles