On Generalized Sequence of Functions $B_{qn}^(\alpha, \beta, \gamma, \delta)(x; a, k, s)$

Naresh K. Ajudia, Jyotindra C. Prajapati, Vishnu Narayan Mishra

Authors

  • Support Team

Keywords:

sequence of functions, operational techniques, finite summation formulae, Stirling number

Abstract

Authors defined generalized sequence of function $B_{qn}^(\alpha,\beta,\gamma,\delta)(x;a,k,s)$ and investigated its various properties viz. generating relations, bilinear generating relation, bilateral generating relations, finite summation formulae and generating functions involving Stirling number

Downloads

Published

2021-03-01

How to Cite

Team, S. (2021). On Generalized Sequence of Functions $B_{qn}^(\alpha, \beta, \gamma, \delta)(x; a, k, s)$: Naresh K. Ajudia, Jyotindra C. Prajapati, Vishnu Narayan Mishra. Thai Journal of Mathematics, 19(1), 221–231. Retrieved from https://thaijmath2.in.cmu.ac.th/index.php/thaijmath/article/view/1150

Issue

Section

Articles