σ-Intertwinings, σ-Cocycles and Automatic Continuity
Hussien Mahdavian Rad, Assadollah Niknam
Keywords:
derivation, σ-derivation, (σ, τ)-derivation, intertwining, cocycleAbstract
Let $\mathcal{A}$ be an algebra, $\mathcal{X}$ an $\mathcal{A}$-bimodule and $\sigma: \mathcal{A} \to \mathcal{A}$ a continuous homomorphism. In this paper, we show a continuous linear one to one correspondence between $Z_{\sigma}^1 (\mathcal{A}, \mathcal{F}) $, the set of all module valued $\sigma$-derivations and $LI_{\sigma}(\mathcal{A}, \mathcal{X})$, the set of all left $\sigma$-intertwining mappings, where $\mathcal{F}=B(\mathcal{A}_{+}, \mathcal{X})$ and that $B(\mathcal{A}_{+}, \mathcal{X})$ is a $\sigma(\mathcal{A})$-bimodule. A similar fact is proved between $Z_{\sigma}^n (\mathcal{A}, \mathcal{F}) $, the set of all $n$-$\sigma$-cocycles, and $LI_{\sigma}^n (\mathcal{A}, \mathcal{X})$, the set of all $\sigma$-intertwining mappings in the last variables. Also there exists a linear homeomorphism between $\mathfrak{Z}_{\sigma}^1 (\mathcal{A}, \mathcal{F}) $, the set of all continuous module valued $\sigma$-derivations, and $B(\mathcal{A}, \mathcal{X})$. Moreove, it is proved that the same relation satisfies between $\mathfrak{Z}_{\sigma}^n (\mathcal{A}, \mathcal{F}) $ and $B^n (\mathcal{A}, \mathcal{X})$.