Hyperidentities in $(xx)y \approx x(yx)$ Graph Algebras of Type (2; 0)
W. Hemvong, T. Poomsa-ard
Abstract
Graph algebras establish a connection between directed graphs without multiple edges and special universal algebras of type (2,0). A graph G satisfies an identity $s \approx t$ if the corresponding graph algebra A(G) satisfies $s \approx t$. G is called a $(xx)y \approx x(yx)$ graph if A(G) satisfies the equation $(xx)y \approx x(yx)$. An identity $s \approx t$ of terms s and t of any type $\tau$ is called a hyperidentity of an algebra $\underline{A}$ if whenever the operation symbols occurring in s and t are replaced by any term operations of $\underline{A}$ of the appropriate arity, the resulting identities hold in $\underline{A}$.In this paper we characterize $(xx)y \approx x(yx)$ graph algebras, identities and hyperidentities in $(xx)y \approx x(yx)$ graph algebras.Downloads
Published
2007-12-31
How to Cite
Team, S. (2007). Hyperidentities in $(xx)y \approx x(yx)$ Graph Algebras of Type (2; 0): W. Hemvong, T. Poomsa-ard. Thai Journal of Mathematics, 5(3), 101–110. Retrieved from https://thaijmath2.in.cmu.ac.th/index.php/thaijmath/article/view/107
Issue
Section
Articles