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Abstract A new guaranteed cost control for asymptotic stability of the neural network with mixed

time-varying delays and feedback control is studied. The considered mixed time-delays are both dis-

crete and distributed time-varying delays. The proposed conditions allow us to design the state feedback

controllers which stabilize the closed-loop system. By constructing an appropriate Lyapunov-Krasovskii

functional includes double integral term and triple integral term, utilizing Writinger-based integral in-

equality, extended reciprocally convex inequality and Jensen integral inequality, new delay-dependent

sufficient conditions for the existence of guaranteed cost control are given in terms of linear matrix in-

equalities (LMIs). Furthermore, we design new quadratic cost functions and minimize their upper bound.

Finally, numerical examples are given to illustrate the effectiveness of the theoretical results.
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1. Introduction

In the past decades, Neural networks (NNs) have been extensively studied due to their
wide applications in various fields, for instance, associative memory, signal processing and
image processing. The stability of the delayed neural networks (DNNs) has attracted a
large number of researchers [1] and some stability criteria have been reported in [2–4].
The stability criteria improved for DNNs can be separated into delay-dependent ones and
delay-independent ones. Compared to the latter, the delay-dependent stability criteria,
which include the information of time delay, usually have less conservative, especially
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when applied to DNNs with small delay. Thus, more attentions have been paid to delay-
dependent stability analysis and its main objective is to reduce the conservatism of the
obtained stability condition. In the language of control variables, we call the disturbance
functions as control variables. During the last decade, the population models with feed-
back controls have been extensively studied in many articles, which see [5–7]. Guaranteed
cost control problem has the advantage of providing an upper bound on a given system
performance index and thus the system performance degradation incurred by the uncer-
tainties or time delays is guaranteed to be less than this bound. The guaranteed cost
control was first put forward by Chang and Peng [8] and introduced by a lot of authors
[9]. Optimal cost controller for linear system with mixed time-varying delays state and
control has been considered in [10]. Novel criteria for finite-time stabilization and guar-
anteed cost control of delayed neural networks is studied in [11].

For Lyapunov functional approach to delay-dependent stability, the conservatism is
related to the selecting of the Lyapunov-Krasovskii functional (LKF) and attending with
its derivative. By constructing a LKF is an effective way to decrease conservatism of sta-
bility result, and various types of LKF have been reported, for example multiple integrals
based LKF [12, 13], activation function based LKF [14], and so on. The conservatism of
the Jensen inequality has been analyzed in [15]. In addition, an alternative inequality re-
ducing the gap of the Jensen inequality has been proposed in [16] based on the Wirtinger
inequality. The Wirtinger-based integral inequality, combined with the reciprocally con-
vex optimization in [17]. The free-weighting-based inequality in [18].

In this paper, we investigate the problems of asymptotic stability of neural networks
via the feedback control. Moreover, we study the optimal cost control problem for a class
of neural network with mixed time-varying delays. By applying the Lyapunov-Krasovskii
functional includes double integral term, triple integral term are employed. Jensen in-
equality, Wirtinger inequality, convex combination idea, Newton-Leibniz formula and zero
equation are used. A performance measure for the system is considered by a new quadratic
cost function. The main contributions of this paper are given as follows:

• A new quadratic cost function

J ≤
∫ ∞

0

[
xT (t)Z1x(t) + xT (t− τ(t))Z2x(t− τ(t)) + uT (t)Z4u(t)

+

(∫ t

t−τ1(t)

xT (s)ds

)
Z3

(∫ t

t−τ1(t)

x(s)ds

)]
dt,

is first proposed to analyze the problem of guaranteed cost control for a class
of neural network with mixed time-varying delays.
• The upper bound of given quadratic cost functions is minimized by guaranteed
cost control technique.

The feedback controllers are designed to satisfy with asymptotically stable. We provide
the sufficient conditions for existence of the feedback guaranteed cost control in terms of
LMIs, which can be determined by utilizing MATLABs LMI control toolbox. Numerical
examples are presented to illustrate the effectiveness of our method.
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2. Preliminaries

We introduce the following neural network with time-varying delays via feedback con-
trol in the following form

ẋ(t) = −Ax(t) +W0f(x(t)) +W1g(x(t− τ(t)))

+W2

∫ t

t−τ1(t)

h(x(s))ds+ u(t), (2.1)

x(t) = ϕ(t), t ∈ [−τ, 0],

where x(t) = [x1(t), x2(t), . . . , xn(t)]
T ∈ Rn is the neuron state vector, f(x(t)), g(x(t)),

h(x(t)) ∈ Rn are the neuron activation functions, A = diag{a1, a2, · · · , an} is a diagonal
matrix with ai > 0, i = 1, 2, · · · , n, W0, W1 andW2 denote the connection weight matrix,
the discretely delayed connection weight matrix, and the distributively delayed connection
weight matrix, respectively, ϕ(t) ∈ C[[−τ, 0],Rn] is the initial function. The state feedback
controller is in the from

u(t) = Kx(t). (2.2)

By substituting equation (2.2) into equation (2.1), we get

ẋ(t) = (K −A)x(t) +W0f(x(t)) +W1g(x(t− τ(t)))

+W2

∫ t

t−τ1(t)

h(x(s))ds, (2.3)

where the time-varying delay functions τ(t) and τ1(t), satisfy the conditions

0 ≤ τ(t) ≤ τ, (2.4)

τ̇(t) ≤ µ, (2.5)

0 ≤ τ1(t) ≤ τ1. (2.6)

Moreover, throughout this research, we define the following new nonlinear quadratic cost
function of the associated system (2.1) as follows:

J ≤
∫ ∞

0

[
xT (t)Z1x(t) + xT (t− τ(t))Z2x(t− τ(t)) + uT (t)Z4u(t)

+

(∫ t

t−τ1(t)

xT (s)ds

)
Z3

(∫ t

t−τ1(t)

x(s)ds

)]
dt, (2.7)

where Z1, Z2, Z3 ∈ Rn×n and Z4 ∈ Rm×m are positive definite matrices.

The guaranteed cost control problem to be addressed in this section is formulated as
follows.

Definition 2.1. Consider the control system (2.1). If there exist a continuous stabilizing
state feedback control law u∗(t) = Kx(t) and a positive number J∗ such that the zero
solution of the closed-loop system (2.3) is asymptotically stable and the value (2.7) satisfies
J(u∗) ≤ J∗ then the cost value J∗ is a guaranteed cost value, u∗(t) is a guaranteed cost
controller of the system.

The following lemmas are introduced for deriving the main result.
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Lemma 2.2. (Cauchy inequality [19]). For any symmetric positive definite matrix N ∈
Mn×n and x, y ∈ Rn we have

±2xT y ≤ xTNx+ yTN−1y.

Lemma 2.3. (Schur complement lemma [19]). Given constant symmetric matrices X,Y
and Z with appropriate dimensions satisfying X = XT , Y = Y T > 0, then X+ZTY −1Z <
0 if and only if [

X ZT

∗ −Y

]
< 0 or

[
−Y Z
∗ X

]
< 0.

Lemma 2.4. [20]. For a positive definite matrix R ∈ Rn×n, for any continuously differ-
entiable function x : [α, β] → Rn, the following inequality holds:∫ β

α

ẋT (s)Rẋ(s)ds ≥ 1

β − α
χT
1 Rχ1 +

3

β − α
χT
2 Rχ2 +

5

β − α
χT
3 Rχ3,

where

χ1 = x(β)− x(α), χ2 = x(β) + x(α)− 2

β − α

∫ β

α

x(s)ds,

χ3 = x(β)− x(α) +
6

β − α

∫ β

α

x(s)ds− 12

(β − α)2

∫ b

α

∫ β

u

x(s)dsdu.

Lemma 2.5. [21]. For a positive definite matrix R ∈ Rn×n, scalars β > α ≥ 0 and vector
x : [α, β] → Rn such that the integration concerned is well-defined, then∫ β

α

(s− α)xT (s)Rx(s)ds ≥ 2

(β − α)2

∫ β

α

(s− α)xT (s)dsR

∫ β

α

(s− α)x(s)ds.

Lemma 2.6. (Wirtinger-based integral inequality [21]). For a positive definite matrix
R ∈ Rn×n and any differentiable function x : [α, β] → Rn, the following inequality holds:∫ β

α

ẋT (s)Rẋ(s)ds ≥ 1

β − α

[
φ1

φ2

]T [
R 0
0 3R

] [
φ1

φ2

]
,

where

φ1 = x(β)− x(α), φ2 = x(β) + x(α)− 2

β − α

∫ β

α

x(s)ds.

Lemma 2.7. (Extended reciprocally convex inequality [21]). For positive matrices R1, R2 ∈
Rn×n, if there exist symmetric matrices X1, X2 ∈ Rn×n and any matrices Y1, Y2 ∈ Rn×n

such that [
R1 −X1 −Y1

∗ R2

]
> 0,

[
R1 −Y2
∗ R2 −X2

]
> 0,

then the following inequality holds for all α ∈ [0, 1][
1
αR1 0
∗ 1

1−αR2

]
≥

[
R1 0
∗ R2

]
+ (1− α)

[
X1 Y2
∗ 0

]
+ α

[
0 Y1
∗ X2

]
.
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Lemma 2.8. [22]. For any constant matrix M > 0, a positive definite matrix R > 0, the
following inequalities hold for all continuously differentiable functions x : [a, b] → Rn, the
following inequality holds:

−(b− a)

∫ −a

−b

xT (s)Mx(s)ds ≤ −
(∫ −a

−b

x(s)ds

)T

M

(∫ −a

−b

x(s)ds

)
− 3ΘTMΘ,

where

Θ =

∫ −a

−b

x(s)ds− 2

b− a

∫ −a

−b

∫ s

−b

x(u)duds.

Lemma 2.9. [22]. For any constant matrix M > 0, a positive definite matrix R > 0, the
following inequality holds for all continuously differentiable functions x : [a, b] → Rn, the
following inequality holds:

− (b− a)2

2

∫ b

a

∫ s

a

xT (u)Mx(u)duds

≤ −
(∫ b

a

∫ s

a

x(u)duds

)T

M

(∫ b

a

∫ s

a

x(u)duds

)
− 2ΘTMΘ,

where

Θ =

∫ b

a

∫ s

a

x(s)duds− 3

b− a

∫ b

a

∫ s

a

∫ u

a

x(u)dudvds.

Lemma 2.10. (Jensen’s Inequality [21]). For a positive definite matrix R ∈ Rn×n, scalars
α < β, and vector x : [α, β] → Rn such that the integration concerned is well defined, then

(β − α)

∫ β

α

xT (s)Rx(s)ds ≥
∫ β

α

xT (s)dsR

∫ β

α

x(s)ds.

3. Main Results

In this section, based on LyapunovKrasovskii stability theory, the guaranteed cost
control of asymptotic stability for a neural network with mixed time-varying delays is
studied. The following theorem presents a sufficient condition for the existence of the
guaranteed cost control laws for the asymptotically stable of the neural network (2.3). To
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simplify the representation, we introduce some notations as follows:

νT1 (t) =
1

τ(t)

∫ t

t−τ(t)

xT (s)ds, νT2 (t) =
1

τ − τ(t)

∫ t−τ(t)

t−τ

xT (s)ds,

ωT
1 (t) =

2

τ2(t)

∫ t

t−τ(t)

∫ s

t−τ(t)

xT (u)duds,

ωT
2 (t) =

2

(τ − τ(t))2

∫ t−τ(t)

t−τ

∫ s

t−τ

xT (u)duds, ηT1 (t) =

∫ t

t−τ

xT (s)ds,

ηT2 (t) =

∫ t

t−τ

∫ t

u

xT (s)dsdu, χ(t) = [xT (t) ηT1 (t) ηT2 (t)]
T ,

ξ(t) =
[
xT (t) xT (t− τ(t)) ẋT (t) xT (t− τ) νT1 (t) νT2 (t) ωT

1 (t) ωT
2 (t)

ηT1 (t) ηT2 (t) fT (x(t)) fT (x(t− τ)) gT (x(t)) gT (x(t− τ(t))) hT (x(t))∫ t

t−τ1(t)

hT (x(s))ds
]T
,

Π1 = [eT1 , e
T
9 , e

T
10]

T ,Π2 = [eT3 , e
T
1 − eT4 , τe

T
1 − eT9 ]

T ,Π3 = e1 − e4,

Π4 = e1 + e4 −
2

τ
e9,Π5 = e1 − e4 +

6

τ
e9 −

12

τ2
e10,Π6 = e1 − e5,Π7 = e2 − e6,

Π8 = [eT1 − eT2 , e
T
1 + eT2 − 2eT5 ]

T ,

Π9 = [eT1 − eT2 , e
T
1 + eT2 − 2eT5 , e

T
2 − eT4 , e

T
2 + eT4 − 2eT6 ]

T ,Π10 = e5 − e7,

Π11 = e6 − e8,Π12 = e5 − e2,Π13 = e6 − e4,Π14 =
1

2
e1 + e5 −

3

2
e7,

Π15 =
1

2
e2 + e6 −

3

2
e8,Π16 = e1 − e5,Π17 = e2 − e6,Π18 = e2 − e4,

Π19 = e1 − e2,Π20 = [eT1 , e
T
11]

T ,Π21 = [eT1 , e
T
14]

T ,Π22 = [eT1 , e
T
15]

T ,

ei = [0n×(i−1)n, In, 0n×(16−i)n] for i = 1, 2, . . . , 16, λ1 = λmin(P ),

λ2 = (1 + τ2 +
τ4

4
)λmax(P ) + τλmax(M) + τλmax(Q) +

τ3

2
λmax(R)

+
τ3

3
λmax(S) +

τ3

2
λmax(U) +

τ2

2
λmax(V )− τ3

6
λmax(Z)−

τ3

6
λmax(W )

−τλmax(F
TL1F ) + τλmax(G

TL2G) +
τ2

2
λmax(H

TL3H).

Theorem 3.1. Consider scalars τ > 0, τ1 > 0 and µ ≥ 0. If there exist symmetric
positive definite matrices P ∈ R3n×3n,M,Q,R, S, U, V, Z,W,L1, L2, L3, N1, N2 ∈ Rn×n

and positive diagonal matrices D1, D2, D3 ∈ Rn×n such that the following LMIs hold:

G̃j > 0, (j = 1, 2),[
G̃1 − J1 −J3

∗ G̃2

]
≥ 0,

[
G̃1 −J4
∗ G̃2 − J2

]
≥ 0,

τΞ2 + Ξ3 < 0, (3.1)

τΞ1 + Ξ3 < 0, (3.2)
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where

G̃1 =

[
2S + U 0

∗ 6S + 3U

]
,

G̃2 =

[
U 0
∗ 3U

]
,

Ξ1 = −1

τ
ΠT

9

[
0 J3
∗ J2

]
Π9 − eT5 V e5 − 3ΠT

10VΠ10 −
1

2τ
ΠT

18ZΠ18,

Ξ2 = −1

τ
ΠT

9

[
J1 J4
∗ 0

]
Π9 − eT6 V e6 − 3ΠT

11VΠ11 −
1

2τ
ΠT

19ZΠ19,

Ξ3 = 2ΠT
1 PΠ2 + eT1Me1 − (1− µ)eT2Me2 + eT1Qe1 − eT4Qe4 + τ2eT3 Re3 −

ΠT
3 RΠ3 − 3ΠT

4 RΠ4 − 5ΠT
5 RΠ5 + τ2eT3 Se3 − 4ΠT

6 SΠ6 − 4ΠT
7 SΠ7

+ΠT
8

[
2S 0
∗ 6S

]
Π8 −ΠT

9

[
G̃1 0

∗ G̃2

]
Π9 + τ2eT3 Ue3 + τeT1 V e1 +

τ2

4
eT3 Ze3

−ΠT
12ZΠ12 −ΠT

13ZΠ13 − 2ΠT
14ZΠ14 − 2ΠT

15ZΠ15 +
τ2

4
eT3We3 −ΠT

16WΠ16

−ΠT
17WΠ17 − 2ΠT

14WΠ14 − 2ΠT
15WΠ15 + eT11L1e11 − eT12L1e12 + eT13L2e13

−(1− µ)eT14L2e14 + τ1e
T
15L3e15 − eT16L3e16 − 2eT1N1e3 − 2eT1N1Ae1

+2eT1N1W0e11 + 2eT1N1W1e14 + 2eT1N1W2e16 + 2eT1N1Ke1 − 2eT3N2e3

−2eT3N2Ae1 + 2eT3N2W0e11 + 2eT3N2W1e14 + 2eT3N2W2e16 + 2eT3N2Ke1

+ΠT
20

[
−F1D1 F2D1

∗ −D1

]
Π20 +ΠT

21

[
−G1D2 G2D2

∗ −D2

]
Π21

+ΠT
22

[
−H1D3 H2D3

∗ −D3

]
Π22.

Then, the system (2.3) is asymptotically stable.
The upper bound of the quadratic cost function (2.7) is as follows:

J∗ = λ2∥ϕ∥2c . (3.3)

Proof. Consider a LyapunovKrasovskii functional candidate

V (t, xt) =

7∑
i=1

Vi(t, xt),
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where

V1(t, xt) = χT (t)Pχ(t),

V2(t, xt) =

∫ t

t−τ(t)

xT (s)Mx(s)ds,

V3(t, xt) =

∫ t

t−τ

xT (s)Qx(s)ds+ τ

∫ t

t−τ

∫ t

u

ẋT (s)Rẋ(s)dsdu,

V4(t, xt) =

∫ t

t−τ

(τ − t+ s)2ẋT (s)Sẋ(s)ds,

V5(t, xt) = τ

∫ t

t−τ

(τ − t+ s)ẋT (s)Uẋ(s)ds,

V6(t, xt) =

∫ 0

−τ

∫ 0

t+s

xT (θ)V x(θ)dθds+
1

2

∫ t

t−τ

∫ u

t−τ

∫ t

θ

ẋT (s)Zẋ(s)dsdθdu

+
1

2

∫ t

t−τ

∫ u

t−τ

∫ t

θ

ẋT (s)Wẋ(s)dsdθdu,

V7(t, xt) =

∫ t

t−τ

fT (x(s))L1f(x(s))ds+

∫ t

t−τ(t)

gT (x(s))L2g(x(s))ds

+

∫ 0

−τ1

∫ t

t+s

hT (x(θ))L3h(x(θ))dθds.

Taking the derivative of Vi(t, xt) along the solution of system (2.3) yields

V̇1(t, xt) = 2χT (t)Pχ̇(t), (3.4)

V̇2(t, xt) = xT (t)Mx(t)− (1− τ̇(t))xT (t− τ(t))Mx(t− τ(t))

≤ xT (t)Mx(t)− (1− µ)xT (t− τ(t))Mx(t− τ(t)), (3.5)

V̇3(t, xt) = xT (t)Qx(t)− xT (t− τ)Qx(t− τ) + τ2ẋT (t)Rẋ(t)

−τ
∫ t

t−τ

ẋT (s)Rẋ(s)ds, (3.6)

V̇4(t, xt) = −2

∫ t

t−τ

(τ − t+ s)ẋT (s)Sẋ(s)ds+ τ2ẋT (t)Sẋ(t)
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= τ2ẋT (t)Sẋ(t)− 2

∫ t−τ(t)

t−τ

(τ − t+ s)ẋT (s)Sẋ(s)ds

−2

∫ t

t−τ(t)

(τ − t+ s)ẋT (s)Sẋ(s)ds+ 2

∫ t

t−τ(t)

τ(t)ẋT (s)Sẋ(s)ds

−2

∫ t

t−τ(t)

τ(t)ẋT (s)Sẋ(s)ds

= τ2ẋT (t)Sẋ(t)− 2

∫ t−τ(t)

t−τ

(τ − t+ s)ẋT (s)Sẋ(s)ds

−2

∫ t

t−τ(t)

(τ − τ(t))ẋT (s)Sẋ(s)ds

−2

∫ t

t−τ(t)

(τ(t)− t+ s)ẋT (s)Sẋ(s)ds, (3.7)

V̇5(t, xt) = −τ
∫ t

t−τ(t)

ẋT (s)Uẋ(s)ds− τ

∫ t−τ(t)

t−τ

ẋT (s)Uẋ(s)ds

+τ2ẋT (t)Uẋ(t), (3.8)

V̇6(t, xt) = τxT (t)V x(t)−
∫ t

t−τ

xT (θ)V x(θ)dθ +
τ2

4
ẋT (t)Zẋ(t)

−1

2

∫ t

t−τ

∫ θ

t−τ

ẋT (s)Zẋ(s)dsdθ +
τ2

4
ẋT (t)Wẋ(t)

−1

2

∫ t

t−τ

∫ t

θ

ẋT (s)Wẋ(s)dsdθ, (3.9)

V̇7(t, xt) = fT (x(t))L1f(x(t))− fT (x(t− τ))L1f(x(t− τ))

+gT (x(t))L2g(x(t))− (1− τ̇(t))gT (x(t− τ(t)))L2g(x(t− τ(t)))

+τ1h
T (x(t))L3h(x(t))−

∫ t

t−τ1

hT (x(s))L3h(x(s))ds. (3.10)

Utilizing Lemma 2.4, we obtain that

−τ
∫ t

t−τ

ẋT (s)Rẋ(s)ds

≤ −[x(t)− x(t− τ)]TR[x(t)− x(t− τ)]− 3

[
x(t) + x(t− τ)− 2

τ
η1(t)

]T
R×[

x(t) + x(t− τ)− 2

τ
η1(t)

]
− 5

[
x(t)− x(t− τ) +

6

τ
η1(t)−

12

τ2
η2(t)

]T
R×[

x(t)− x(t− τ) +
6

τ
η1(t)−

12

τ2
η2(t)

]
. (3.11)

Applying Lemma 2.5, we have

−2

∫ t−τ(t)

t−τ

(τ − t+ s)ẋT (s)Sẋ(s)ds− 2

∫ t

t−τ(t)

(τ(t)− t+ s)ẋT (s)Sẋ(s)ds
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≤ − 4

τ2(t)

[ ∫ t

t−τ(t)

(τ − t+ s)ẋ(s)ds

]T
S

[ ∫ t

t−τ(t)

(τ − t+ s)ẋ(s)ds

]
− 4

(τ − τ(t))2

[ ∫ t−τ(t)

t−τ

(τ − t+ s)ẋ(s)ds

]T
S

[ ∫ t−τ(t)

t−τ

(τ − t+ s)ẋ(s)ds

]
.(3.12)

It follows from Lemma 2.6 that

−2(τ − τ(t))

∫ t

t−τ(t)

ẋT (s)Sẋ(s)ds ≤ −2(τ − τ(t))

τ

[
x(t)− x(t− τ(t))

x(t) + x(t− τ(t))− 2ν1(t)

]T
×[

S 0
0 3S

] [
x(t)− x(t− τ(t))

x(t) + x(t− τ(t))− 2ν1(t)

]
= − τ

τ(t)

[
x(t)− x(t− τ(t))

x(t) + x(t− τ(t))− 2ν1(t)

]T
×[

2S 0
0 6S

] [
x(t)− x(t− τ(t))

x(t) + x(t− τ(t))− 2ν1(t)

]
+

[
x(t)− x(t− τ(t))

x(t) + x(t− τ(t))− 2ν1(t)

]T [
2S 0
0 6S

]
[

x(t)− x(t− τ(t))
x(t) + x(t− τ(t))− 2ν1(t)

]
,

−τ
∫ t

t−τ(t)

ẋT (s)Uẋ(s)ds ≤ − τ

τ(t)

[
x(t)− x(t− τ(t))

x(t) + x(t− τ(t))− 2ν1(t)

]T
×[

U 0
0 3U

] [
x(t)− x(t− τ(t))

x(t) + x(t− τ(t))− 2ν1(t)

]
(3.13)

and

−τ
∫ t−τ(t)

t−τ

ẋT (s)Uẋ(s)ds ≤ − τ

τ − τ(t)

[
x(t− τ(t))− x(t− τ)

x(t− τ(t))− x(t− τ)− 2ν2(t)

]T
×[

U 0
0 3U

] [
x(t− τ(t))− x(t− τ)

x(t− τ(t))− x(t− τ)− 2ν2(t)

]
.

By using Lemma 2.7, we get

− τ

τ(t)

[
x(t)− x(t− τ(t))

x(t) + x(t− τ(t))− 2ν1(t)

]T [
2S + U 0

0 6S + 3U

]
×[

x(t)− x(t− τ(t))
x(t) + x(t− τ(t))− 2ν1(t)

]
− τ

τ − τ(t)

[
x(t− τ(t))− x(t− τ)

x(t− τ(t))− x(t− τ)− 2ν2(t)

]T [
U 0
0 3U

]
×[

x(t− τ(t))− x(t− τ)
x(t− τ(t))− x(t− τ)− 2ν2(t)

]

≤


x(t)− x(t− τ(t))

x(t) + x(t− τ(t))− 2ν1(t)
x(t− τ(t))− x(t− τ)

xt− τ(t)) + x(t− τ)− 2ν2(t)


T [

Ĝ1 0

∗ Ĝ2

]
×
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x(t)− x(t− τ(t))

x(t) + x(t− τ(t))− 2ν1(t)
x(t− τ(t))− x(t− τ)

x(t− τ(t)) + x(t− τ)− 2ν2(t)

− τ − τ(t)

τ


x(t)− x(t− τ(t))

x(t) + x(t− τ(t))− 2ν1(t)
x(t− τ(t))− x(t− τ)

x(t− τ(t)) + x(t− τ)− 2ν2(t)


T

×

[
J1 J4
∗ 0

]
x(t)− x(t− τ(t))

x(t) + x(t− τ(t))− 2ν1(t)
x(t− τ(t))− x(t− τ)

x(t− τ(t)) + x(t− τ)− 2ν2(t)

− τ(t)

τ
×


x(t)− x(t− τ(t))

x(t) + x(t− τ(t))− 2ν1(t)
x(t− τ(t))− x(t− τ)

x(t− τ(t)) + x(t− τ)− 2ν2(t)


T [

0 J3
∗ J2

]
x(t)− x(t− τ(t))

x(t) + x(t− τ(t))− 2ν1(t)
x(t− τ(t))− x(t− τ)

x(t− τ(t)) + x(t− τ)− 2ν2(t)

 .
By Lemma 2.8, we have

∫ t

t−τ

xT (θ)V x(θ)dθ

≤ −(τ − τ(t))νT2 (t)V ν2(t)− 3(τ − τ(t))
[
ν2(t)− ω2(t)

]T
V
[
ν2(t)− ω2(t)

]
−τ(t)νT1 (t)V ν1(t)− 3τ(t)

[
ν1(t)− ω1(t)

]T
V
[
ν1(t)− ω1(t)

]
. (3.14)

Applying Lemma 2.9, we have

−1

2

∫ t

t−τ

∫ θ

t−τ

ẋT (s)Zẋ(s)dsdθ

= −1

2

[ ∫ t

t−τ(t)

∫ t−τ(t)

t−τ

+

∫ t

t−τ(t)

∫ θ

t−τ(t)

+

∫ t−τ(t)

t−τ

∫ θ

t−τ

]
ẋT (s)Zẋ(s)dsdθ

≤ −
[
x(t− τ(t))− x(t− τ)

]T[τ(t)Z
2τ

][
x(t− τ(t))− x(t− τ)

]
−
[
ν1(t)− x(t− τ(t))

]T
Z
[
ν1(t)− x(t− τ(t))

]
−
[
ν2(t)− x(t− τ)

]T
Z
[
ν2(t)− x(t− τ)

]
−
[
1

2
x(t− τ(t)) + ν2(t)−

3

2
ω2(t)

]T
2Z

[
1

2
x(t− τ(t)) + ν2(t)−

3

2
ω2(t)

]
−
[
x(t)

2
+ ν1(t)−

3

2
ω1(t)

]T
2Z

[
x(t)

2
+ ν1(t)−

3

2
ω1(t)

]
(3.15)

and

−1

2

∫ t

t−τ

∫ t

θ

ẋT (s)Wẋ(s)dsdθ

= −1

2

[ ∫ t

t−τ(t)

∫ t

θ

+

∫ t−τ(t)

t−τ

∫ t

t−τ(t)

+

∫ t−τ(t)

t−τ

∫ t−τ(t)

θ

]
ẋT (s)Wẋ(s)dsdθ
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≤ −
[
x(t)− x(t− τ(t))

]T[ (τ − τ(t))W

2τ

][
x(t)− x(t− τ(t))

]
−
[
x(t)− ν1(t)

]T
W

[
x(t)− ν1(t)

]
−
[
x(t− τ(t))− ν2(t)

]T
W

[
x(t− τ(t))− ν2(t)

]
−
[
x(t)

2
+ ν1(t)−

3

2
ω1(t)

]T
2W

[
x(t)

2
+ ν1(t)−

3

2
ω1(t)

]
−
[
1

2
x(t− τ(t)) + ν2(t)−

3

2
ω2(t)

]T
2W

[
1

2
x(t− τ(t)) + ν2(t)−

3

2
ω2(t)

]
. (3.16)

By Lemma 2.10, we get

−
∫ t

t−τ1

hT (x(s))L3h(x(s))ds ≤ −
∫ t

t−τ1(t)

hT (x(s))dsL3

∫ t

t−τ1(t)

h(x(s))ds. (3.17)

It follows from (H1) that
[
fi(xi(t))− F−

i xi(t)
] [
fi(xi(t))− F+

i xi(t)
]
≤ 0 for every i =

1, 2, . . . , n, which are equivalent to

[
x(t)

f(x(t))

]T F−
i F

+
i eie

T
i −F

−
i + F+

i

2
eie

T
i

∗ eie
T
i

[
x(t)

f(x(t))

]
≤ 0

for every i = 1, 2, . . . , n.
Define D1 = diag{d1, d2, . . . , dn} > 0, then

n∑
i=1

yi

[
x(t)

f(x(t))

]T F−
i F

+
i eie

T
i −F

−
i + F+

i

2
eie

T
i

∗ eie
T
i

[
x(t)

f(x(t))

]
≤ 0,

which is equivalent to[
x(t)

f(x(t))

]T [
−F1D1 F2D1

∗ −D1

] [
x(t)

f(x(t))

]
≥ 0. (3.18)

Similarly, from (H2) and (H3), define D2 = diag{d̃1, d̃2, . . . , d̃n} > 0,

D3 = diag{d̂1, d̂2, . . . , d̂n} > 0 we have[
x(t))
g(x(t))

]T [
−G1D2 G2D2

∗ −D2

] [
x(t)
g(x(t))

]
≥ 0, (3.19)

[
x(t)

h(x(t))

]T [
−H1D3 H2D3

∗ −D3

] [
x(t)

h(x(t))

]
≥ 0. (3.20)

Consider the equation

0 = −ẋ(t)−Ax(t) +W0f(x(t)) +W1g(x(t− τ(t)))

+W2

∫ t

t−τ1(t)

h(x(s))ds+BKx(t).
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Multiplying both sides with 2xT (t)N1 and 2ẋT (t)N2, respectively, we obtain

0 = −2xT (t)N1ẋ(t)− 2xT (t)N1Ax(t) + 2xT (t)N1W0f(x(t))

+2xT (t)N1W1g(x(t− τ(t))) + 2xT (t)N1W2

∫ t

t−τ1(t)

h(x(s))ds

+2xT (t)N1Kx(t), (3.21)

0 = −2ẋT (t)N2ẋ(t)− 2ẋT (t)N2Ax(t) + 2ẋT (t)NT
2 W0f(x(t))

+2ẋT (t)N2W1g(x(t− τ(t))) + 2ẋT (t)N2W2

∫ t

t−τ1(t)

h(x(s))ds

+2ẋT (t)N2Kx(t). (3.22)

Adding the right-hand sides of (3.21) - (3.22) to V̇ (t, xt), we get

v̇(t, xt) ≤ ξT (t)ψ(τ(t))ξ(t),

where

ψ(τ(t)) = τ(t)Ξ1 + (τ − τ(t))Ξ2 + Ξ3, (3.23)

where Ξi(i = 1, 2, 3) are given in Theorem 3.1. Noting that the ψ(τ(t)) is convex com-
bination about τ(t), with (3.23), (3.1) and (3.2). Thus system (2.3) with (2.4) - (2.6) is
asymptotically stable. We let

L(t, x(t), x(t−τ(t)),
∫ t

t−τ1(t)

x(s)ds, u(t))

≤ xT (t)Z1x(t) + xT (t− τ(t))Z2x(t− τ(t))

+

(∫ t

t−τ1(t)

xT (s)ds

)
Z3

(∫ t

t−τ1(t)

x(s)ds

)
+ uT (t)Z4u(t). (3.24)

From (3.4) - (3.24), we obtain

V̇ (t, xt) ≤ ξT (t)ψξ(t)− L(t, x(t), x(t− τ(t)),

∫ t

t−τ1(t)

x(s)ds, u(t)). (3.25)

To find the upper bound of the cost function (2.7), we consider the derived condition
(3.25) and V (t, xt) > 0, we have

V̇ (t, xt) ≤ ξT (t)ψξ(t)− L(t, x(t), x(t− τ(t)),

∫ t

t−τ1(t)

x(s)ds, u(t)). (3.26)

Integrating both sides of (3.26) from 0 to t, we obtain∫ t

0

L(t, x(t), x(t− τ(t)),

∫ t

t−τ1(t)

x(s)ds, u(t))dt ≤ V (0, x0)− V (t, xt) ≤ V (0, x0),

because of V (t, xt) > 0. Hence, letting t→ ∞, we finally obtain that

J =

∫ ∞

0

L(t, x(t), x(t− τ(t)),

∫ t

t−τ1(t)

x(s)ds, u(t))dt ≤ V (0, x0) ≤ λ2∥ϕ∥2c = J∗.

This completes the proof of the theorem.

Based on Theorem 3.1, the feedback controller design, ensuring the asymptotic stability
of the neural network with mixed time-varying delays is explained.
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Theorem 3.2. The neural network system (2.3) with the quadratic cost function (2.7) is
asymptotically stabilized if there exist symmetric positive definite matrices P ∈ R3n×3n,M,
Q,R, S, U, V, Z,W,L1, L2, L3, N1, N2 ∈ Rn×n, positive diagonal matrices D1, D2, D3 ∈
Rn×n and B is an appropriately dimensioned matrix such that the following LMIs hold:

G̃j > 0, (j = 1, 2),[
G̃1 − J1 −J3

∗ G̃2

]
≥ 0,

[
G̃1 −J4
∗ G̃2 − J2

]
≥ 0,

τ Ξ̄2 + Ξ̄3 < 0, (3.27)

τ Ξ̄1 + Ξ̄3 < 0, (3.28)

where

G̃1 =

[
2S + U 0

∗ 6S + 3S

]
,

G̃2 =

[
U 0
∗ 3U

]
,

Ξ̄1 = −1

τ
ΠT

9

[
0 J3
∗ J2

]
Π9 − eT5 V e5 − 3ΠT

10VΠ10 −
1

2τ
ΠT

18ZΠ18,

Ξ̄2 = −1

τ
ΠT

9

[
J1 J4
∗ 0

]
Π9 − eT6 V e6 − 3ΠT

11VΠ11 −
1

2τ
ΠT

19ZΠ19,

Ξ̄3 = 2ΠT
1 PΠ2 + eT1Me1 − (1− µ)eT2Me2 + eT1Qe1 − eT4Qe4 + τ2eT3 Re3 −

ΠT
3 RΠ3 − 3ΠT

4 RΠ4 − 5ΠT
5 RΠ5 + τ2eT3 Se3 − 4ΠT

6 SΠ6 − 4ΠT
7 SΠ7

+ΠT
8

[
2S 0
∗ 6S

]
Π8 −ΠT

9

[
G̃1 0

∗ G̃2

]
Π9 + τ2eT3 Ue3 + τeT1 V e1 +

τ2

4
eT3 Ze3

−ΠT
12ZΠ12 −ΠT

13ZΠ13 − 2ΠT
14ZΠ14 − 2ΠT

15ZΠ15 +
τ2

4
eT3We3 −ΠT

16WΠ16

−ΠT
17WΠ17 − 2ΠT

14WΠ14 − 2ΠT
15WΠ15 + eT11L1e11 − eT12L1e12 + eT13L2e13

−(1− µ)eT14L2e14 + τ1e
T
15L3e15 − eT16L3e16 − 2eT1N1e3 − 2eT1N1Ae1

+2eT1N1W0e11 + 2eT1N1W1e14 + 2eT1N1W2e16 + 2β1e
T
1 Be1 − 2eT3N2e3

−2eT3N2Ae1 + 2eT3N2W0e11 + 2eT3N2W1e14 + 2eT3N2W2e16 + 2β2e
T
3 Be1

+ΠT
20

[
−F1D1 F2D1

∗ −D1

]
Π20 +ΠT

21

[
−G1D2 G2D2

∗ −D2

]
Π21

+ΠT
22

[
−H1D3 H2D3

∗ −D3

]
Π22.

Meanwhile, the designed controller gains are given in the following:

K = Q−1B. (3.29)

Proof. Denote

N1 = β1Q, N2 = β2Q. (3.30)

Similarly to Theorem 3.1, the LMIs (3.27)-(3.28) can be achieved. This completes the
proof.
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4. Numerical examples

In this section, we present two examples to illustrate the effectiveness and the reduced
conservatism of our proposed methods.

Example 4.1. We consider the neural networks (2.3) with τ = 1.2, τ1 = 1.3, µ = 0.9,
β1 = 0.9, β2 = 0.7,

A =

[
0.1 0
0 0.1

]
, W0 =

[
2 −0.1
−5 1.5

]
,W1 =

[
−1.5 −0.1
−0.2 −1

]
,W2 =

[
0.6 0.15
−1.8 −0.12

]
,

Z1 =

[
0.2000 0.0003
0.0003 0.1996

]
, Z2 =

[
0.2000 0.0003
0.0003 0.1996

]
, Z3 =

[
0.2000 0.0003
0.0003 0.1996

]
,

Z4 =

[
0.0031 0.0002
0.0002 0.0039

]
, F1 = G1 = H1

[
−1 0
0 −1

]
, F2 = G2 = H2 =

[
0 0
0 0

]
,

τ(t) = 0.2 +
et

1 + et
, τ1(t) = 1.2| cos t|,

ϕ(t) = [−0.2, 0.2]T , and fi(xi) = gi(xi) = hi(xi) = tanh(xi).

LMIs of (3.27), (3.28) in Theorem 3.2 are solved. We obtain

P =


1.5873 −0.0456 −0.0000 −0.0000 −0.0000 −0.0000
−0.0456 1.6638 −0.0000 0.0000 −0.0000 0.0000
−0.0000 −0.0000 0.0340 −0.0003 0.0111 −0.0006
−0.0000 0.0000 −0.0003 0.0313 −0.0007 0.0121
−0.0000 −0.0000 0.0111 −0.0007 0.0067 −0.0016
−0.0000 0.0000 −0.0006 0.0121 −0.0016 0.0113

 ,

M =

[
0.2644 0.0005
0.0005 0.2471

]
, Q =

[
0.2831 0.0022
0.0022 0.3323

]
,

R =

[
0.00000792 −0.00000445
−0.00000445 0.00002151

]
, S =

[
0.000002331 −0.000000858
−0.000000858 0.000004917

]
,

U =

[
0.000002331 −0.000000857
−0.000000857 0.000004917

]
, V =

[
0.0567 −0.0001
−0.0001 0.0600

]
,

Z =

[
0.00001735 −0.00000685
−0.00000685 0.00003802

]
,W =

[
0.00001735 −0.00000685
−0.00000685 0.00003802

]
,

L1 =

[
0.2115 0.0021
0.0021 0.2187

]
, L2 =

[
0.0007607 −0.0000197
−0.0000197 0.0008268

]
,

L3 =

[
0.2886 0.0000
0.0000 0.2880

]
, B =

[
−2.2676 0.0651
0.0651 −2.3770

]
,

D1 =

[
0.4211 0

0 0.4211

]
, D2 =

[
0.0019 0

0 0.0019

]
,

D3 =

[
0.5605 0

0 0.5605

]
, N1 =

[
0.0015 −0.0002
−0.0002 0.0022

]
,

N2 =

[
0.00003768 −0.00001650
−0.00001650 0.00008745

]
.
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The state feedback control is obtained by

u(t) = Q−1Bx(t) =

[
−8.0125 0.2844
0.2477 −7.1542

]
x(t), t ≥ 0. (4.1)

We take the initial condition ϕ(t) =

[
0

cos t

]
, ∥ϕ∥c = 1.

Then, the upper bound on the cost function value is

J∗ = 6.1725.
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Figure 1. The trajectories of x1(t) and x2(t) without feedback control
(4.1) in Example 4.1.
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Figure 2. The trajectories of x1(t) and x2(t) with feedback control (4.1)
in Example 4.1.

Figure 1 demonstrates the trajectories of solution x1(t) and x2(t) of neural networks
with various activation functions and mixed time-varying delays without feedback control
(u(t) = 0). Figure 2 illustrates the trajectories of solution x1(t) and x2(t) of neural
networks with various activation functions and mixed time-varying delays with feedback
control

u(t) =

[
−8.0125 0.2844
0.2477 −7.1542

]
x(t).

Example 4.2. We consider the neural networks (2.3) with τ = 0.8, τ1 = 1.3, µ = 0.9,
β1 = 0.7, β2 = 0.9,

A =

[
0.1 0
0 0.1

]
, W0 =

[
1.188 0.09
0.09 1.188

]
,W1 =

[
0.09 0.14
0.05 0.09

]
,

W2 =

[
1 0.2

−1.8 −0.2

]
, Z1 =

[
0.1561 −0.0005
−0.0005 0.1555

]
, Z2 =

[
0.1561 −0.0005
−0.0005 0.1555

]
,

Z3 =

[
0.1561 −0.0005
−0.0005 0.1555

]
, Z4 =

[
0.0024 −0.0001
−0.0001 0.0028

]
, F1 =

[
−0.04 0

0 −0.04

]
,

G1 =

[
−0.16 0

0 −0.16

]
,H1 =

[
−0.04 0

0 −0.04

]
, F2 = G2 = H2 =

[
0 0
0 0

]
,

τ(t) = 0.2 + 0.2 sin 10t, τ1(t) = 1.2| sin t|, ϕ(t) = [−0.2, 0.2]T ,

fi(xi) = 0.2 tanh(xi), gi(xi) = 0.2(|xi + 1| − |xi − 1|) and hi(xi) = tanh(xi).
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LMIs of (3.27), (3.28) in Theorem 3.2 are solved. We obtain

P =


1.5301 0.0548 −0.0008 0.0021 0.0045 −0.0076
0.0548 1.6175 0.0013 −0.0035 −0.0073 0.0122
−0.0008 0.0013 0.0477 −0.0026 0.0216 0.0008
0.0021 −0.0035 −0.0026 0.0459 0.0003 0.0183
0.0045 −0.0073 0.0216 0.0003 0.1626 −0.0060
−0.0076 0.0122 0.0008 0.0183 −0.0060 0.1689

 ,

M =

[
0.2013 −0.0012
−0.0012 0.1892

]
, Q =

[
0.2097 0.0039
0.0039 0.2428

]
,

R =

[
0.0002278 −0.0000194
−0.0000194 0.0002500

]
, S =

[
0.0046 −0.0070
−0.0070 0.0115

]
,

U =

[
0.0049 −0.0076
−0.0076 0.0125

]
, V =

[
0.0642 0.0113
0.0113 0.0539

]
,

Z =

[
0.0073 −0.0089
−0.0089 0.0162

]
,W =

[
0.0064 −0.0076
−0.0076 0.0140

]
,

L1 =

[
0.2155 0.0127
0.0127 0.1997

]
, L2 =

[
0.0002446 0.0001083
0.0001083 0.0003451

]
,

L3 =

[
0.3541 0.0068
0.0068 0.3039

]
, B =

[
−1.7014 −0.0590
−0.0589 −1.7997

]
,

D1 =

[
0.4634 0

0 0.4634

]
, D2 =

[
0.0009109 0

0 0.0009109

]
,

D3 =

[
0.5885 0

0 0.5885

]
, N1 =

[
0.0170 −0.0137
−0.0137 0.0319

]
,

N2 =

[
0.0145 −0.0212
−0.0212 0.0356

]
.

The state feedback control is obtained by

u(t) = Q−1Bx(t) =

[
−8.1112 −0.1447
−0.1134 −7.4096

]
x(t), t ≥ 0. (4.2)

We take the initial condition ϕ(t) =

[
0

cos t

]
, ∥ϕ∥c = 1.

Then, the upper bound on the cost function value is

J∗ = 3.5152.
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Figure 3. The trajectories of x1(t) and x2(t) without feedback control
(4.2) in Example 4.2.
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Figure 4. The trajectories of x1(t) and x2(t) with feedback control (4.2)
in Example 4.2.

Figure 3 demonstrates the trajectories of solution x1(t) and x2(t) of neural networks
with various activation functions and mixed time-varying delays without feedback control
(u(t) = 0). Figure 4 illustrates the trajectories of solution x1(t) and x2(t) of neural
networks with various activation functions and mixed time-varying delays with feedback
control

u(t) =

[
−8.1112 −0.1447
−0.1134 −7.4096

]
x(t).
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5. Conclusions

In this paper, we have investigated the problem of guaranteed cost control for asymp-
totic stability of neural network with discrete and distributed time-varying delays. A
Lyapunov-Krasovskii functional includes double integral term and triple integral term,
using Wirtinger-based integral inequality, Jensen’s integral inequality and to extended
reciprocally convex inequality, new delay-dependent sufficient conditions for the existence
of guaranteed cost feedback control for the system are given in terms of linear matrix
inequalities. Finally, numerical examples are given to demonstrate the effectiveness of
our results. Our goal in the future is to apply the nonlinear quadratic cost functions to
other systems or networks that arise in other areas of science.

Acknowledgements

The first author was financially supported by Science Achievement Scholarship of Thai-
land (SAST). The second author was supported by Faculty of Science, Khon Kaen Uni-
versity 2020. The third author was financially supported by University of Phayao.

References

[1] J. Cheng, J.H. Park, H.R. Karimi, H. Shen, A flexible terminal approach to sampled-
data exponentially synchronization of Markovian neural networks with time-varying
delayed signals, IEEE Trans. Cybern. 48(8)(2017) 2232–2244.

[2] T. Botmart, W. Weera, Guaranteed cost control for exponential synchronization of
cellular neural networks with mixed time-varying delays via hybrid feedback control,
J. Appl. Math. 2013 (2013), Article ID 175796 12 pages.

[3] J. Cao, J. Wang, Global asymptotic stability of a general class of recurrent neural
networks with time-varying delays, IEEE Trans. Circuits Syst. I 50(1)(2013) 34–44.

[4] W. Cheng, X. Zhu, Y. Deng, A delay composition approach to stability analysis of
neural networks with time-varying delay, ICICTA. 1(2010) 69–72.

[5] L. Chen, J. Sun, Global stability of an SI epidemic model with feedback controls,
Appl. Math. Lett. 28(2014) 53–55.

[6] Y.H. Fan, L.L. Wang, Global asymptotical stability of a Logistic model with feedback
control, Nonlinear Anal. 11(4)(2010) 2686–2697.

[7] Z. Li, M. Han, F. Chen, Influence of feedback controls on an autonomous Lotka-
Volterra competitive system with infinite delays, Nonlinear Anal. 14(1)(2013) 402–
413.

[8] P. Balasubramaniam, V. Vembarasan, Synchronization of recurrent neural networks
with mixed time-delays via output coupling with delayed feedback, Nonlinear Dyn.
70(1)(2012) 677–691.

[9] P. Park, W.I. Lee, S.Y. Lee, Auxiliary function-based integral inequalities for qua-
dratic functions and their applications to time-delay systems, J. Franklin. Inst.
352(14)(2015) 1378–1396.

[10] M.V. Thuan, V.N. Phat, Optimal guaranteed cost control of linear systems with
mixed interval time-varying delayed state and control, J. Optim. Theory. Appl.
152(2)(2012) 394–412.

[11] P. Niamsup, K. Ratchagit, V.N. Phat, Novel criteria for finite-time stabilization
and guaranteed cost control of delayed neural networks, Neurocomputing 160(2015)
281–286.



A NEW GUARANTEED COST CONTROL FOR ASYMPTOTIC STABILIZATION . . . 295

[12] K. Shi, H. Zhu, S. Zhong, Y. Zeng, Y. Zhang, W. Wang, Stability analysis of neutral
type neural networks with mixed time - varying delays using triple-integral and
delay-partitioning methods, ISA Transactions 58(2015) 85–95.

[13] B. Zhang, J. Lam, S. Xu, Stability analysis of distributed delay neural networks based
on relaxed Lyapunov-Krasovskii functionals, IEEE Trans. Neural Netw. Learn. Syst.
26(7)(2015) 1480–1492.

[14] C. Briat, Convergence and equivalence results for the Jensens inequality-Application
to time-delay and sampled-data systems, IEEE Trans. Autom. Control 56(7)(2011)
1660–1665.

[15] A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: Application to time-
delay systems, Automatica 49(9)(2013) 2860–2866.

[16] A. Seuret, F. Gouaisbaut, E. Fridman, Stability of systems with fast-varying delay
using improved Wirtingers inequality, 52nd IEEE CDC. (2013) 946–951.

[17] O.M. Kwon, M.J. Park, J.H. Park, S.M. Lee, E.J. Cha, On less conservative stabil-
ity criteria for neural networks with time-varying delays utilizing Wirtinger-based
integral inequality, Math. Probl. Eng. 5(2014) 1–13.

[18] H.B. Zeng, Y. He, M. Wu, S.P. Xiao, Stability analysis of generalized neural networks
with time-varying delays via a new integral inequality, Neurocomputing 161(2015)
148–54.

[19] K. Gu, V.L. Kharitonov, J. Chen, Stability of time-delay systems, Birkhuser, Berlin,
2003.

[20] N. Zhao, C. Lin, B. Chen, Q.G. Wang, A new double integral inequality and appli-
cation to stability test for time-delay systems, Appl. Math. Lett. 65(2017) 26–31.

[21] H. Shao, H. Li, L. Shao, Improved delay-dependent stability result for neural net-
works with time-varying delays, ISA transactions 80(2018) 35–42.

[22] G. Zhang, T. Wang, T. Li, S. Fei, Multiple integral Lyapunov approach to mixed-
delay-dependent stability of neutral neural networks, Neurocomputing 275(2018)
1782–1792.


	Introduction
	Preliminaries
	Main Results
	Numerical examples
	Conclusions

