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1. Introduction

The variational inequality problem (VIP) can mathematically be formulated as the
problem of finding a point x∗ ∈ C such that

⟨A(x∗), x− x∗⟩ ≥ 0,∀x ∈ C (1.1)

where H is a real Hilbert space with the inner product ⟨., .⟩ and the induced norm ∥.∥,
C is a nonempty closed convex subset of H and A : H → H is a nonlinear operator.
The set of solutions of VIP (1.1) is denoted by V I(A,C). The VIP was introduced and
studied by Hartman and Stampacchia in 1996 [1] . Using the projection technigue, it
is well know that VI(C,A) is equivalent to the following fixed point equation (see [2]),
x = PC(x − λAx), λ > 0 and rλ(x) := x − PC(x − λAx) = 0. Many algorithms which
based on projections over closed convex sets have been proposed for solving VIP (1.1).
In 1976, Korelevich [3] proposed the projection method which is called the extragradient
method, for solving saddle point problems. The VIP was solved for Lipschitz continuous
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and monotone (even, pseudomonotone) mappings A. The extragradient method is defined
as follows:{

yn = PC(xn − λA(xn)),
xn+1 = PC(xn − λA(yn)),

(1.2)

where PC is the metric projection onto C and λ is a suitable parameter. In the case
of C has a simple structure, then the projections onto it can be discovered easily, the
extragradient method is computable and very useful. However, we have to solve two
distance optimization problems in the extragradient method to obtain the next approx-
imation xn+1 over each iteration that is we have to use the projection onto C into two
times. Later on, Censor et al. [4] proposed the following algorithm, which is called the
subgradient exttagradient method, for VIP (1.1) in Hilbert spaces,{

yn = PC(xn − λA(xn)),
xn+1 = PTn

(xn − λA(yn)),
(1.3)

where Tn is a half-space whose bounding hyperplane is supported on C at yn, i.e.,

Tn = {v ∈ H : ⟨(xn − λA(xn))− yn, v − yn⟩ ≤ 0}.
Censor et al. [4] proved that the sequence {xn} generated by (1.3) converge weakly to
a solution of the VIP. Moreover, in order to obtain the strong convergence of iterative
sequences, Censor et al. [5] proposed the following algorithm which combines the subgra-
dient extragradient method and hybrid (outer approximation) method,

yn = PC(xn − λA(xn)),
zn = αnxn + (1− αn)PTnxn,
Cn = {z ∈ H : ∥zn − z∥ ≤ ∥xn − z∥},
Qn = {z ∈ H : ⟨xn − z, x0 − xn⟩ ≥ 0},
xn+1 = PCn∩Qn

x0.

(1.4)

In 2015, Gibali [6] introduced a self-adaptive subgradient extragradient method by
adopting Armijo-like searches and obtained convergence result for VI(A,C) in Rn under
the assumption of pseudo-monotonicity and continuity of A (A is pseudo-monotone if for
all x, y ∈ H, we have ⟨Ay, x − y⟩ ≥ 0 ⇒ ⟨Ax, x − y⟩ ≥ 0). Gibali [6] remarked that the
Armijo-like searches can be viewed as a local approximation of the Lipschitz constant of
A. In recent years, the extragradient method has been studied and developed a lot of
attention, see, for example [7–9] and the references therein.

Very recently, Shehu and Iyiola [10] proposed the following modified viscosity approx-
imation with adoption of Armijo-like step size rule which is called viscosity type subgra-
dient extragradient like mothods method for a Lipschitz continuous monotone mapping
that the Lipschitz constant is unknown in an infinite dimensional Hilbert space.

yn = PC(xn − λnAxn), λn = ρln

(ln is the smallest nonnegative integer l
such that λn∥Axn −Ayn∥ ≤ µ∥rρl(xn)∥)

zn = PTn(xn − λnAyn),
xn+1 = αnf(xn) + (1− αn)zn, n ≥ 1

(1.5)

where Tn := {z ∈ H : ⟨xn − λnAxn − yn, z − yn⟩ ≤ 0}, ρ, µ ∈ (0, 1) and {αn} ⊆ (0, 1).
Our interest in this paper is to study the problem of finding common solution to

variational inequality problems (CSVIP). The CSVIP is stated as follows: Let Ki , i = 1
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, . . ., N be a finite family of nonempty closed and convex subsets of H such that K :=
N∩
i=1

Ki ̸= ∅. Let Ai : H → H, i = 1,...,N be mappings. The CSVIP is to find x∗ ∈ K such

that

⟨Ai(x
∗), x− x∗⟩ ≥ 0,∀x ∈ Ki, i = 1, ..., N. (1.6)

If N = 1, CSVIP (1.6) becomes VIP(1.1). The CSVIP is a generalization of many math-
ematical models, in the sense that, it includes many special cases [11] such as: convex
feasibility problems, common linear programing problem, common minimizer problem,
common saddle - point problems, Hierarchical variational inequality problems. These
problems have practical applicable abilities in signal processing, network resource alloca-
tion, image processing and many other fields, for instance, see in [12], [13], [14], [15]. As
a result various techniques and iterative schemes have been developed over the year to
solve the CSVIP, see [16], [17], [18], [19], [20] and the references therein.

In 2012, Censor et al. [11] proposed an algorithm by solving distance optimization
problem of the intersection closed convex subset C1

n, C
2
n, ..., C

N
n and Wn for finding a par-

ticular solution of the CSVIP when Ai,= 1,...,N are multi-valued mapping from H to 2H .
Choose x1 ∈ H and compute



yin = PKi(xn − λi
nAi(xn)),

zin = PKi
(xn − λi

nAi(y
i
n),

Ci
n = {z ∈ H : ⟨xn − zin, z − xn − γi

n(z
i
n − xn)⟩ ≤ 0},

Cn =

N∩
i=1

Ci
n,

Wn = {z ∈ H : ⟨x1 − xn, z − xn⟩ ≤ 0},
xn+1 = PCn∩Wn

x1.

(1.7)

Very recently, Anh and Hieu [21], [22] proposed a parallel monotone hybrid algorithm
for finding a common fixed point of a finite family of quasi ϕ - nonexpansive mappings
{Si}Ni=1 in Banach spaces. This algorithm is respected to Hilbert spaces as follows:

x0 ∈ C,
yin = αnxn + (1− αn)Sixn, i = 1, ..., N,
in = argmax{∥yin − xn∥ : i = 1, ..., N}, ȳn := yinn ,
Cn+1 = {v ∈ Cn : ∥v − ȳn∥ ≤ ∥v − xn∥},
xn+1 = PCn+1

x0,

(1.8)

where 0 < αn < 1, lim sup
n→∞

αn < 1. According to this algorithm, the intermediate ap-

proximations yin can be found simultaneously. Then, among all yin the furthest element
from xn, denoted by ȳn, is chosen. After that, based on this element we construct the
closed convex set Cn+1. Finally, the next approximation xn+1 is defined as the projection
of x0 onto Cn+1.

Inspired by the previous results, we introduce the new algorithm by modifying the
hybrid subgradient extragradient method combining subgradient extra-gradient method
with adoption of Armijo-like step size rule and projection onto the set of intersection
sets of half-spaces. We prove strong convergence theorem under some suitable conditions
in Hilbert spaces to find common solution of variational inequality problems (CSVIP).
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Moreover, we apply our main result to reduce noise in signal processing problems.

2. Preliminaries and lemmas

In order to prove our main result, we recall some basic definitions and lemma
needed for further investigation. In a Hilbert space H, let C be a nonempty closed and
convex subset of H. For every point x ∈ H, there exists a unique nearest point of C,
denoted by PCx, such that ∥x − PCx∥ ≤ ∥x − y∥ for all y ∈ C. Such a PC is called the
metric projection from H onto C.

Definition 2.1. [23] A mapping A : H → H is said to be
(i) monotone if ⟨A(x)−A(y), x− y⟩ ≥ 0 for all x, y ∈ H;
(ii) pseudomonotone if the relation ⟨A(x) − A(y), x − y⟩ ≥ 0 implies that ⟨A(x) −

A(y), x− y⟩ ≤ 0 for all x, y ∈ H;
(iii) α - inverse strongly monotone if there exists a positive constant α such that

⟨A(x)−A(y), x− y⟩ ≥ α∥A(x)−A(y)∥2,∀x, y ∈ H; (2.1)

(iv) maximal monotone if it is monotone and its graph

G(A) := {(x,A(x)) : x ∈ H} (2.2)

is not a proper subset of one of any other monotone mapping;
(v) L - Lipschitz continuous if there exists a positive constant L such that ∥A(x) −

A(y)∥ ≤ L∥x− y∥ for all x, y ∈ H.
Let C be a nonempty, closed and convex subset of a real Hilbert space H. It is

well-known that a monotone mapping A : H → H is maximal iff, for each (x, y) ∈ H ×H
such that ⟨x− u, y − u⟩ ≥ 0 for all (u, v) ∈ G(A), it follows that y = A(x). We have the
following result concerning with the convexity and closedness of the solution set V I(A,C).

Lemma 2.2. [24] Let C be a nonempty, closed convex subset of a Hilbert space H and A
be a monotone, hemicontinuous mapping of C into H. Then

V I(A,C) = {u ∈ C : ⟨v − u,A(v)⟩ ≥ 0,∀v ∈ C}. (2.3)

For every x ∈ H, the projection PCx of x onto C defined by ∥x − PCx∥ ≤ ∥x − y∥
for all x ∈ C. Since C is a nonempty closed and convex subset of H, PCx exists and is
unique. The projection PC : H → C has the following characterization:

Lemma 2.3. [23] Let PC : H → C be the metric projection from H onto the nonempty
closed convex subset C of H. Then

(i) PC is 1 - inverse strongly monotone, i.e., for all x, y ∈ H,

⟨PCx− PCy, x− y⟩ ≥ ∥PCx− PCy∥2. (2.4)

(ii) For all y ∈ H,x ∈ C,

∥x− PCy∥2 + ∥PCy − y∥2 ≤ ∥x− y∥2. (2.5)

(iii) z = PCx if and only if

⟨x− z, z − y⟩ ≥ 0,∀y ∈ C. (2.6)

The normal cone NC to a set C at a point x ∈ C defined by

NC(x) = {x∗ ∈ H : ⟨x− y, x∗⟩ ≥ 0,∀y ∈ C}.
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We have the following result.

Lemma 2.4. [25] Let C be a nonempty closed convex subset of a Hilbert space H and let
A be a monotone and hemi-continuous mapping of C into H with D(A) = C. Let Q be a
mapping defined by:

Q(x) =

{
A(x) +NC(x) ifx ∈ C,
∅ ifx /∈ C.

(2.7)

Then Q is a maximal monotone and Q−10 = V I(A,C).

Lemma 2.5. [26] (Martinez-Yanes and Xu 2006) Let C be a nonempty closed and convex
subset of a real Hilbert space H1. For each x, y ∈ H1 and a ∈ B, the set

D = {v ∈ C : ∥y − v∥2 ≤ ∥x− v∥2 + ⟨z, v⟩+ a},
is closed and convex.

Lemma 2.6. [27] There exists a nonnegative integer ln satisfying (1.5).

3. Main results

In this section, we introduce new parallel hybrid subgradient extragradient
algorithms and prove the convergence theorems of iteration sequences generated by the
algorithms. Let Ai : H → H be a family mappings for all i = 1, . . . , N . We assume
F := ∩N

i=1V I(Ai,Ki) ̸= ϕ. We have the following parallel algorithm.

Algorithm 3.1. (Modified parallel hybrid subgradient extragradient method)

Initialization: Choose x0 ∈ H and take ρ > 0, µ ∈ (0, 1). Set n := 0
Step 1. Find N projections yin on Ki in parallel

yin = PKi
(xn − λi

nAi(xn)), i = 1, . . . , N.

where λi
n = ρl

i
n and lin is the smallest nonegative integer li such that

ρl
i
n∥Aixn −Aiy

i
n∥ ≤ µ∥rρlin(xn)∥. (3.1)

Step 2. Find N projections yin on half-space T i
n in parallel

zin = PT i
n
(xn − λi

nAi(y
i
n)), i = 1, . . . , N,

where T i
n = {v ∈ H : ⟨(xn − λi

nAi(xn))− yin, v − yin⟩ ≤ 0}.
Step 3. Construct half-spaces Ci

n, i = 1, . . . , N ,

Ci
n = {v ∈ H : ∥zin − v∥ ≤ ∥xn − v∥}.

Step 4. Construct two half-spaces Cn and Qn,

Cn =

N∩
i=1

Ci
n,

Qn = {v ∈ H : ⟨v − xn, xn − x0⟩ ≥ 0}.
Step 5. The next approximation xn+1 is defined as the projection of x0 onto the

intersection Cn ∩Qn, i.e.,

xn+1 = PCn∩Qn
(x0).

Step 6. Set n := n+ 1 and back to Step 1.
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Lemma 3.2. Suppose that x∗ ∈ F and the sequences {yin}, {zin} generated by Step 1.
and Step 2. of Algorithm 3.1. Then

∥zin − x∗∥2 ≤ ∥xn − x∗∥2 − c(∥yin − xn∥
2
+ ∥zin − yin∥

2
), (3.2)

where c = 1− µ > 0.

Proof. Since Ai is monotone on Ki and yin ∈ Ki, we obtain

⟨Ai(y
i
n)−Ai(x

∗), yin − x∗⟩ ≥ 0,∀x∗ ∈ F.

This together with x∗ ∈ V I(Ai,Ki) implies that

⟨Ai(y
i
n), y

i
n − x∗⟩ ≥ 0

⟨Ai(y
i
n), y

i
n − zin⟩+ ⟨Ai(y

i
n), z

i
n − x∗⟩ ≥ 0

(3.3)

So,

⟨Ai(y
i
n), z

i
n − x∗⟩ ≥ ⟨Ai(y

i
n), z

i
n − yin⟩. (3.4)

From the characterization of the metric projection onto T i
n, we have

⟨zin − yin, (xn − λi
nAi(xn))− yin⟩ ≤ 0.

Thus

⟨zin − yin, (xn − λi
nAi(xn))− yin⟩

= ⟨zin − yin, (xn − λi
nAi(xn))− yin⟩+ λi

n⟨zin − yin, Ai(xn)−Ai(yn)⟩
≤ λi

n⟨zin − yin, Ai(xn)−Ai(yn)⟩. (3.5)

Let tin = xn − λi
nAi(y

i
n) and write again zin = PT i

n
(tin). From relations (2.5) and (3.4),

we got

∥zin − x∗∥2

≤ ∥tin − x∗∥2 − ∥PT i
n
(tin)− tin∥

2

= ∥xn − λi
nAi(y

i
n)− x∗∥2 − ∥zin − (xn − λi

nAi(y
i
n))∥

2

= ∥xn − x∗∥2 − ∥zin − xn∥
2
+ 2λi

n⟨x∗ − zin, Ai(y
i
n)⟩

≤ ∥xn − x∗∥2 − ∥zin − xn∥
2
+ 2λi

n⟨yin − zin, Ai(y
i
n)⟩. (3.6)

By the same proof of Lemma 2.6 [27] , we know that there exists a nonnegative integer
lin satisfying (1.5) for all i = 1, ..., N and from (3.5) that

∥zin − xn∥
2 − 2λi

n⟨yin − zin, Ai(y
i
n)⟩

= ∥zin − yin + yin − xn∥
2 − 2λi

n⟨yin − zin, Ai(y
i
n)⟩

= ∥zin − yin∥
2
+ ∥yin − xn∥

2 − 2λi
n⟨zin − yin, Ai(xn)−Ai(y

i
n)⟩

≥ ∥zin − yin∥
2
+ ∥yin − xn∥

2 − 2λi
n∥zin − yin∥∥Ai(xn)−Ai(y

i
n)∥

≥ ∥zin − yin∥
2
+ ∥yin − xn∥

2 − 2µ∥zin − yin∥∥xn − yin∥

≥ ∥zin − yin∥
2
+ ∥yin − xn∥

2 − µ(∥zin − yin∥
2
+ ∥xn − yin∥

2
)

≥ (1− µ)(∥zin − yin∥
2
+ ∥xn − yin∥

2
)

≥ c(∥zin − yin∥
2
+ ∥xn − yin∥

2
). (3.7)
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From (3.6) and (3.7), we obtain inequality (3.2). The proof of Lemma 3.2 is complete.

Lemma 3.3. Suppose that {xn}, {yin}, {zin} generated by Algorithm 3.1. Then
(i) F ⊂ Cn ∩Qn and xn+1 is well-defined for all n ≥ 0.
(ii) There hold the following relations for all i = 1, . . . , N .

lim
n→∞

∥xn+1 − xn∥ = lim
n→∞

∥yin − xn∥ = lim
n→∞

∥zin − xn∥ = 0.

Proof. (i) Since Ai is Lipschitz continuous, Ai is continuous. Thus, Lemma 2.1 ensure
that V I(Ai,Ki) is closed and convex for all i = 1, . . . , N . Hence, F is closed and convex.
From the definitions of Qn, we see that Qn is closed and convex for all n ≥ 0. From
Lemma 2.2.

Ci
n = {v ∈ H : ∥zin − v∥ ≤ ∥xn − v∥},

and Lemma 2.5, we see that Ci
n is closed and convex for all i = 1, . . . , N and n ≥ 0. Hence

Cn is closed and convex for all n ≥ 0. From Lemma 3.2, we have ∥zin − p∥ ≤ ∥xn − p∥,
so p ∈ Ci

n, for all i = 1, . . . , N . Thus, F ⊂ Cn for all n ≥ 0. We next show that
F ⊂ Qn,∀n ≥ 0, by the induction. Indeed, F ⊂ Q0 and so F ⊂ C0 ∩ Q0. Assume that
F ⊂ Qn for some n ≥ 0. From xn+1 = PCn∩Qnx0 and the characterization of the metric
projection (2.6), we obtain

⟨v − xn+1, xn+1 − x0⟩ ≥ 0,∀v ∈ Qn.

Since F ⊂ Qn,so ⟨v − xn+1, xn+1 − x0⟩ ≥ 0 for all v ∈ F . This together with the
definition of Qn+1 implies that F ⊂ Qn+1. Thus, by the induction F ⊂ Qn for all n ≥ 0.
Thus F ⊂ Qn ∩ Cn. Since F ̸= ∅,thus PFx0 and xn+1 = PCn∩Qn

x0 are well defined.
(ii) We have xn = PQn

x0 and F ⊂ Qn. For each u ∈ F , we have

∥xn − x0∥ ≤ ∥p− x0∥,∀n ≥ 0. (3.8)

Thus, the sequence {∥xn − x0∥} and so {xn} are bounded. From xn+1 ∈ Qn and
xn = PQnx0, we also obtain

∥xn − x0∥ ≤ ∥xn+1 − x0∥,∀n ≥ 0.

This implies that the sequence {∥xn − x0∥} is nondecreasing. Therefore, there exists the
lim of the sequence {∥xn − x0∥}. Moreover, from xn+1 ∈ Qn and xn = PQn

x0, we get

∥xn − xn+1∥2 ≤ ∥xn+1 − x0∥2 − ∥xn − x0∥2.
From this inequality, letting n → ∞, we find

lim
n→∞

∥xn − xn+1∥ = 0. (3.9)

By the definition of Cn and xn+1 ∈ Cn, we have

∥zin − xn+1∥ ≤ ∥xn − xn+1∥. (3.10)

From (3.10), we got

lim
n→∞

∥zin − xn+1∥ = 0,∀i = 1, . . . , N. (3.11)

From Lemma 3.2 and the triangle inequality, for each p ∈ F , one has

c∥yin − xn∥
2 ≤ ∥xn − p∥2 − ∥zin − p∥2

≤ (∥xn − p∥+ ∥zin − p∥)∥xn − zin∥. (3.12)
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From (3.11), (3.12) and the boundedness of {xn}, {zin}, we get

lim
n→∞

∥yin − xn∥ = 0, i = 1, . . . , N.

The proof of Lemma 3.3 is complete.

Theorem 3.4. Let Ki, i = 1, . . . , N be closed and convex subsets of a real Hilbert space
H such that K = ∩N

i=1Ki ̸= ∅. Suppose that Ai : H → H is a monotone mapping
for all i = 1, . . . , N . In addition, the solution set F is nonempty. Then, the sequences
{xn}, {yin}, {zin} generated by Algorithm 3.1 converge strongly to PFx0.

Proof. By Lemma 3.3, F,Cn, Qn are nonempty closed and convex subsets. Besides, F ⊂
Cn ∩ Qn for all n ≥ 0. Therefore, PFx0, PCn∩Qn

x0 are well-defined. From Lemma 3.2,
{xn} is bounded. Assume that p is a weak cluster point of {xn} and there exists a
subsequence of {xn} converging weakly to p. Without loss of generality, we denote this
subsequence again by {xn} and write xn ⇀ p. Since ∥yin − xn∥ → 0, yin ⇀ p. Now we
prove that p ∈ ∩N

i=1V I(Ai,Ki). Indeed, Lemma 2.3 ensures that the mapping

Qi(x) =

{
Aix+NKi

(x) ifx ∈ Ki,
∅ ifx /∈ Ki.

is maximal monotone, where NKi
(x) is the normal cone to Ki at x ∈ Ki. For all (x, y)

in the graph of Qi, i.e., (x, y) ∈ G(Qi), we have y −Ai(x) ∈ NKi(x). By the definition of
NKi(x), we find that

⟨x− z, y −Ai(x)⟩ ≥ 0

for all z ∈ Ki. Since yin ∈ Ki,

⟨x− yin, y −Ai(x)⟩ ≥ 0,

Therefore,

⟨x− yin, y⟩ ≥ ⟨x− yin, Ai(x)⟩. (3.13)

Taking into account yin = PKi
(xn − λi

nAixn) and Lemma 2.2(iii), we got

⟨x− yin, y
i
n − xn + λi

nAi(xn)⟩ ≥ 0,

or

⟨x− yin, Ai(xn)⟩ ≥ ⟨x− yin,
xn − yin

λi
n

⟩. (3.14)

Therefore, from (3.13), (3.14) and the monotoniccity of Ai, we find that

⟨x− yin, y⟩ ≥ ⟨x− yin, Ai(x)⟩
= ⟨x− yin, Ai(x)−Ai(y

i
n)⟩+ ⟨x− yin, Ai(y

i
n)−Ai(xn)⟩+ ⟨x− yin, Ai(xn)⟩

≥ ⟨x− yin, Ai(y
i
n)−Ai(xn)⟩+ ⟨x− yin,

x− yin
λi
n

⟩. (3.15)

Since ∥xn − yin∥ → 0 and Ai is L-Lipcshitz continuous,

lim
n→∞

∥Ai(y
i
n)−Ai(xn)∥ = 0. (3.16)

Passing the lim in (3.15) as n → ∞ and using (3.16), yin ⇀ p, we obtain ⟨x − p, y⟩ ≥ 0
for all (x, y) ∈ G(Qi). This together with the maximal monotonicity of Qi implies that
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p ∈ Q−1
i 0 = V I(Ai,Ki) for all 1 ≤ i ≤ N . Hence, p ∈ F = ∩N

i=1V I(Ai,Ki).
Finally, we show that xn → p = x† := PFx0. From (16) and x† ∈ F , we have

∥xn − x0∥ ≤ ∥x† − x0∥,∀n ≥ 0.

This relation together with the lower weak semicontinuty of the norm implies that

∥p− x0∥ ≤ lim inf
n→∞

∥xn − x0∥ ≤ lim sup
n→∞

∥xn − x0∥ ≤ ∥x† − x0∥.

By the definition of x†, p = x† and lim
n→∞

∥xn−x0∥ ≤ ∥x†−x0∥. Thus from xn−x0 ⇀ x†−x0

and the Kadec-Klee property of H, we obtain xn − x0 → x† − x0, and so xn → x†.
Lemma 3.2 ensures that the sequences {yin}, {zin} also converge strongly to PFx0. The
proof of Theorem 3.4 is completed.

4. Application to Signal Recovering Problem.

In signal processing, compressed sensing can be modeled as the following under
determinated linear equation system b = Bx + ν where x is a original signal with N
components to be recovered (x ∈ RN ), ν, b are noise and the observed signal with noisy
for M components respectively (ν, b ∈ RM ) and B : RN → RM (M < N) is a bounded
linear observation operator. Finding the solutions of b = Bx + ν can be seen as solving
the LASSO problem

min
x∈RN

1

2
∥b−Bx∥22 subject to ∥x∥1 ≤ t, (4.1)

where t > 0 is a given constant. We can apply the Algorithm 3.1 to solve the problem
(4.1) by setting Aix = BT (Bx− b) for all i = 1, 2, ..., N .

In this experiment, the original signal x with N = 4096 is generated by the uniform
distribution in the interval [−2, 2] with m = 40 nonzero element. The matrix B is
generated by the normal distribution with mean zero and variance one. The observation b
withM = 2048 is generated by white Gaussian noise with signal-to-noise ratio SNR = 40.
The process is started with t = m and signal initial data x0 with N = 4096 are picked
randomly.
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Original signal

Degraded Signal

Initial Signal Data
Fig. 1 The original signal (x), Degraded Signal (b) and Proposed (x0)

The parameters αn, βn, γn and µ on an implemented algorithm in solving the image
deblurring is set as equation (3.1). The Cauchy error and the signal error are measured
by using second norm ∥xn − xn−1∥2 and ∥xn − x∥2 respectively. The performance of
the proposed method at nth iteration is measured quantitatively by the means of the
signal-to-ratio (SNR), which is defined by

SNR(xn) = 20log10

( ∥x∥2
∥xn − x∥2

)
,

where xn is the recovered signal at nth iteration by using the proposed method. The
Cauchy error, signal error and SNR quality of the proposed method for recovering the
degraded signal are shown on figure 2. The Cauchy error shows that the proposed method
can be applied to signal recovering problem. And, the signal error confirms the conver-
gence of the implemented algorithm.
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Fig. 2 Cauchy Error, Signal Error and SNR Quality of the proposed methods in
recovering the obsered signal.

It is clearly seen that the solution of the signal recovering problem solved by the
proposed algorithm get the quality improvements of observed signal. The improvement
of the recovering signal based on SNR quality are also show on figure 3.
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Recovering Signal with SNR = 1 (29 Iteration)

Recovering Signal with SNR = 10 (112 Iteration)

Recovering Signal with SNR = 20 (238 Iteration)

Recovering Signal with SNR = 30 (383 Iteration)

Recovering Signal with SNR = 40 (560 Iteration)

Recovering Signal with SNR = 50 (979 Iteration)

Recovering Signal with SNR = 55 (7884 Iteration)
Fig. 3 Recovering Signal based on SNR quality.
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