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Abstract In this paper, we introduce the notion of Almost type Z-contraction and a new fixed point

theorem in frame of metric spaces. We prove existence of fixed points for cyclic mappings. Also, we

obtain fixed point results for weak contraction type mappings.
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1. Introduction

Banach contraction principle is widely and extensively applied in defferent branches
of Mathematics and is regarded as one of cornerstones in the study of metric fixed point
theory. A lot of authors studied generalizations of this principle.

Theorem 1.1. [1] Let (X, d) be a complete metric space and Γ be a self-mapping on the
set X such that ∃ρ ∈ [0, 1),

d(Γϕ, Γφ) ≤ ρd(ϕ, φ), ∀ϕ, φ ∈ X. (1.1)

Then, Γ has a unique fixed point in X.

In addition, Berinde [3] introduce almost contractions which exhibits new features with
respect to the ones of the particular results incorporated as follows:

Theorem 1.2. [3] Let (X, d) be a complete metric space and a self-mapping Γ on the
set X be an almost contraction, that is, a mapping for which there exist δ ∈ [0, 1) and
∃L ≥ 0 such that

d(Γϕ, Γφ) ≤ δd(ϕ, φ) + Ld(φ, Γϕ), ∀ϕ, φ ∈ X. (1.2)

Then,
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(i) Fix(Γ ) ̸= ∅, where Fix(Γ ) = {ϕ ∈ X : Γϕ = ϕ};
(ii) For any ϕ0 ∈ X, the Picard iteration {ϕn} given by ϕn+1 = Γϕn for each n ≥ 0
converges to some ϕ∗ ∈ Fix(Γ );

(iii) The following estimate holds

d(ϕn+i−1, ϕ
∗) ≤ δi

1− δ
d(ϕn, ϕn−1), ∀n ≥ 0, i ≥ 1.

Subsequently, Babu et al. [5] defined the class of mappings satisfying condition (B) as
follows:

Definition 1.3. [5] Let (X, d) be a metric space and a self-mapping Γ on X is said to
satisfy condition (B) if there exist a constant δ ∈ (0, 1) and ∃L ≥ 0 such that

d(Γϕ, Γφ) ≤ δd(ϕ, φ) + LQ(ϕ, φ), ∀ϕ, φ ∈ X, (1.3)

where Q(ϕ, φ) = min{d(ϕ, Γϕ), d(φ, Γφ), d(ϕ, Γφ), d(φ, Γϕ)}.

They proved a fixed point theorem for such mappings in complete metric spaces. They
also discussed quasi-contraction, almost contraction and the class of mappings that satisfy
condition (B) in detail.

Khojasteh et al. [6] originated the notion of Z-contractions using a specific family of
functions called simulation functions. Subsequently, many researchers generalized this
idea in many ways (see [7–21] and proved many interesting results in the arena of fixed
point theory.

Definition 1.4. [6] A mapping ζ : [0,∞)2 → R is called a simulation function if it
satisfies the following conditions:

(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(t, s) < s− t for all t, s > 0;
(ζ3) if {tn}, {sn} are sequences in (0,∞) such that limn→∞ tn = limn→∞ sn > 0,
then lim supn→∞ ζ(tn, sn) < 0.

Denoted by Z is the set of all simulation functions.

Example 1.5. [6] The following are some examples of simulation functions.

(i) ζ(t, s) = αs− t for all t, s ∈ [0,∞), where α ∈ [0, 1);
(ii) ζ(t, s) = s

1+s − t for all t, s ∈ [0,∞);

(iii) ζ(t, s) = sf(s) − t for all t, s ∈ [0,∞), where f : [0,∞) → [0, 1) such that
limt→κ f(t) < 1 for all κ > 0.

Definition 1.6. [6] Let (X, d) be a metric space and ζ ∈ Z. A mapping Γ : X → X is
called a Z-contraction with respect to ζ if

ζ(d(Γϕ, Γφ), d(ϕ, φ)) ≥ 0

holds for all ϕ, φ ∈ X.

Motivated and inspired by Definition 1.6, Definition 1.3 and Theorem 1.2, we define an
Almost type Z-contraction mappings in metric spaces as follows:

Definition 1.7. Let (X, d) be a metric space and ζ ∈ Z. We say that Γ : X → X is a
modified almost type Z-contraction if there is a constant L ≥ 0 such that

ζ(d(Γϕ, Γφ),P(ϕ, φ) + LQ(ϕ, φ)) ≥ 0, ∀ϕ, φ ∈ X, (1.4)
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where

P(ϕ, φ) = max

{
d(ϕ, φ),

[1 + d(ϕ, Γϕ)]d(φ, Γφ)

1 + d(ϕ, φ)

}
and

Q(ϕ, φ) = min {d(ϕ, Γϕ), d(φ, Γφ), d(ϕ, Γφ), d(φ, Γϕ)} .

Remark 1.8. If Γ is a modified almost type Z-contraction with respect to ζ ∈ Z, then

d(Γϕ, Γφ) < P(ϕ, φ) + LQ(ϕ, φ), ∀ϕ, φ ∈ X. (1.5)

2. Main Results

Lemma 2.1. If Γ is a modified almost type Z-contraction in and Γ has a fixed point,
then the fixed point is unique.

Proof. Let (X, d) be a metric space and Γ : X → X be a modified almost type Z-
contraction with respect to ζ ∈ Z. Suppose that there are two distinct fixed points
ϕ∗, φ∗ ∈ X of the mapping Γ . Then, d(ϕ∗, φ∗) > 0. Thus, it follows from equation (1.4)
and (ζ2) that

0 ≤ ζ(d(Γϕ∗, Γφ∗),P(ϕ∗, φ∗) + LQ(ϕ∗, φ∗)), (2.1)

where

P(ϕ∗, φ∗) = max{d(ϕ∗, φ∗),
[1 + d(ϕ∗, Γϕ∗)]d(φ∗, Γφ∗)

1 + d(ϕ∗, φ∗)
} = d(ϕ∗, φ∗)

and

Q(ϕ∗, φ∗) = min{d(ϕ∗, Γϕ∗), d(φ∗, Γφ∗), d(ϕ∗, Γφ∗), d(φ∗, Γϕ∗)} = 0.

This together with (2.1) shows that

0 ≤ ζ(d(Γϕ∗, Γφ∗),P(ϕ∗, φ∗) + LQ(ϕ∗, φ∗)

= ζ(d(ϕ∗, φ∗), d(ϕ∗, φ∗))

< d(ϕ∗, φ∗)− d(ϕ∗, φ∗)

= 0

(2.2)

which is a contradiction. Hence, the fixed point of Γ in X is unique.

Theorem 2.2. Let (X, d) be a complete metric space and Γ : X → X be a modified
almost type Z-contraction with respect to ζ ∈ Z. Let {ϕn} be a sequence of Picard of
initial point at ϕ0 ∈ X. Then

lim
n→∞

d(ϕn, ϕn+1) = 0. (2.3)

Proof. Let ϕ0 ∈ X and consider the Picard sequence {ϕn = Tnϕ0 = Tϕn−1}, n ≥ 0. If
ϕn0 = ϕn0+1 for some n0, then ϕn0 is a fixed point of Γ. Therefore, for the rest of the
proof, we assume that d(ϕn, ϕn+1) > 0 for all n ≥ 0. From equation (1.4), for all n ≥ 1,
we obtain

0 ≤ ζ(d(Γϕn−1, Γϕn),P(ϕn−1, ϕn) + LQ(ϕn−1, ϕn)), (2.4)
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where

P(ϕn−1, ϕn) = max

{
d(ϕn−1, ϕn),

[1 + d(ϕn−1, Γϕn−1)]d(ϕn, Γϕn)

1 + d(ϕn−1, ϕn)

}
= max

{
d(ϕn−1, ϕn),

[1 + d(ϕn−1, ϕn)]d(ϕn, ϕn+1)

1 + d(ϕn−1, ϕn)

}
= max{d(ϕn−1, ϕn), d(ϕn, ϕn+1)}

(2.5)

and

Q(ϕn−1, ϕn) = min{d(ϕn−1, Γϕn−1), d(ϕn, Γϕn), d(ϕn−1, Γϕn), d(ϕn, Γϕn−1)}
= min{d(ϕn−1, ϕn), d(ϕn−1, ϕn+1)}
= 0.

(2.6)

This together with (2.4) shows that

0 ≤ ζ(d(Γϕn−1, Γϕn),P(ϕn−1, ϕn) + LQ(ϕn−1, ϕn))

= ζ(d(ϕn, ϕn+1),max{d(ϕn−1, ϕn), d(ϕn, ϕn+1)})
< max{d(ϕn−1, ϕn), d(ϕn, ϕn+1)} − d(ϕn, ϕn+1).

(2.7)

By inequality (2.7) shows that

P(ϕn−1, ϕn) = d(ϕn−1, ϕn), ∀n ≥ 1 (2.8)

which implies that

d(ϕn, ϕn+1) < d(ϕn−1, ϕn), ∀n ≥ 1. (2.9)

Therefore, the sequence {d(ϕn, ϕn+1)} is decreasing, so there is some κ ≥ 0 such that

lim
n→∞

d(ϕn−1, ϕn) = κ.

If φ > 0 then since Γ is a modified almost type Z-contraction with respect to ζ ∈ Z and
(ζ3), we get

0 ≤ lim sup
n→∞

ζ(d(ϕn, ϕn+1), d(ϕn−1, ϕn)) < 0

which is a contradiction. Hence, κ = 0, that is, equation (2.3) holds.

Theorem 2.3. Let (X, d) be a complete metric space and Γ : X → X be a modified almost
type Z-contraction with respect to ζ ∈ Z. Then the Picard sequence {ϕn} generated by Γ
such that Γϕn−1 = ϕn for all n ≥ 1 with initial value x0 ∈ X is a bounded sequence.

Proof. Let ϕ0 ∈ X and {ϕn} be the Picard sequence. Assume that {ϕn} is not bounded.
Then there is a subsequence {ϕnk

} such that n1 = 1 and for each k ∈ N, nk+1 is the
minimum integer greater than nk such that

d(ϕnk+1
, ϕnk

) > 1

and

d(ϕm, ϕnk
) ≤ 1 fornk ≤ m ≤ nk+1 − 1.

Therefore, by the triangle inequality, we get

1 < d(ϕnk+1
, ϕnk

) ≤ d(ϕnk+1
, ϕnk+1−1) + d(ϕnk+1−1, ϕnk

)

≤ d(ϕnk+1
, ϕnk+1−1) + 1.
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Taking k → ∞ and by using Theorem 2.2, we get

lim
k→∞

d(ϕnk+1
, ϕnk

) = 1. (2.10)

Since Γ is a modified almost type Z-contraction with respect to ζ ∈ Z, we have

d(ϕnk+1
, ϕnk

) ≤ P(ϕnk+1−1, ϕnk−1)

which

1 < d(ϕnk+1
, ϕnk

) ≤ P(ϕnk+1−1, ϕnk−1)

= max

{
d(ϕnk+1−1, ϕnk−1)

[1 + d(ϕnk+1−1, ϕnk+1
)]d(ϕnk−1, ϕnk

)

1 + d(ϕnk+1−1, ϕnk−1)

}
.

Taking k → ∞, we get

1 ≤ lim
k→∞

P(ϕnk+1−1, ϕnk−1) ≤ 1,

that is,

lim
k→∞

P(ϕnk+1−1, ϕnk−1) = 1. (2.11)

Since

Q(ϕnk+1−1, ϕnk−1)

= min{d(ϕnk+1−1, ϕnk+1
), d(ϕnk−1, ϕnk

), d(ϕnk+1−1, ϕnk
), d(ϕnk−1, ϕnk+1

)}.
Taking k → ∞ and using Theorem 2.2, we get

lim
k→∞

Q(ϕnk+1−1, ϕnk−1) = 0. (2.12)

By equation (1.4), we have

0 ≤ ζ(d(Γϕnk+1−1, Γϕnk−1),P(ϕnk+1−1, ϕnk−1) + LQ(ϕnk+1−1, ϕnk−1))

< P(ϕnk+1−1, ϕnk−1) + LQ(ϕnk+1−1, ϕnk−1)− d(ϕnk+1
, ϕnk

)
(2.13)

which implies that

d(ϕnk+1
, ϕnk

) < P(ϕnk+1−1, ϕnk−1) + LQ(ϕnk+1−1, ϕnk−1).

Moreover, by using (ζ3), we get

lim sup
n→∞

ζ(d(ϕnk+1
, ϕnk

),P(ϕnk+1−1, ϕnk−1) + LQ(ϕnk+1−1, ϕnk−1)) < 0 (2.14)

which contradicts equation (2.13). This contradiction proves that {ϕn} is a bounded
sequence.

Theorem 2.4. Let (X, d) be a complete metric space and Γ : X → X be a modified
almost type Z-contraction with respect to ζ ∈ Z. Then the Picard sequence {ϕn} is a
Cauchy sequence.

Proof. From Theorem 2.3, we claim that sequence {ϕn} is a Cauchy sequence. Consider
the sequence {Cn} ⊂ [0,∞) given by

Cn = sup{d(ϕi, ϕj) : i, j ≥ n}, n ∈ N. (2.15)

It is clear that {Cn} is a positive decreasing sequence. So, there is some C ≥ 0 such that
limn→∞ Cn = C. If C > 0, then, by definition of Cn, for every k ∈ N, nk and mk exist
such that mk > nk ≥ k and

Ck − 1

k
< d(ϕmk

, ϕnk
) ≤ Ck.
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Hence,

lim
k→∞

d(ϕmk
, ϕnk

) = C. (2.16)

Using equation (1.4) and the triangular inequality, we get

d(ϕmk
, ϕnk

) ≤ d(ϕmk
, ϕmk−1) + d(ϕmk−1, ϕnk−1) + d(ϕnk−1, ϕnk

)

and

d(ϕmk−1, ϕnk−1) ≤ d(ϕmk−1, ϕmk
) + d(ϕmk

, ϕnk
) + d(ϕnk

, ϕnk−1)

Taking k → ∞, using Theorem 2.2 and equation (2.16), we get

lim
k→∞

d(ϕmk−1, ϕnk−1) = C. (2.17)

Since Γ is a modified almost type Z-contraction with respect to ζ ∈ Z, we can deduce
that

d(ϕmk
, ϕnk

) = d(Γϕmk−1, Γϕnk−1) < P(ϕmk−1, ϕnk−1) + LQ(ϕmk−1, ϕnk−1)

which

P(ϕmk−1, ϕnk−1) = max

{
d(ϕmk−1, ϕnk−1),

[1 + d(ϕmk−1, ϕmk
)]d(ϕnk−1, ϕnk

)

1 + d(ϕmk−1, ϕnk−1)

}
.

Taking k → ∞ and using Theorem 2.2 and equation (2.16), we get

lim
k→∞

P(ϕmk−1, ϕnk−1) = C. (2.18)

Additionally, with the aid of equation (1.4), we have

lim
k→∞

Q(ϕmk−1, ϕnk−1) = 0. (2.19)

By (2.17),(2.18),(2.19) and (ζ3), we get

0 ≤ lim sup
k→∞

ζ(d(ϕmk
, ϕnk

),P(ϕmk−1, ϕnk−1) + LQ(ϕmk−1, ϕnk−1)) < 0

which is a contradiction and so C = 0. That is, {ϕn} is a Cauchy sequence.

Theorem 2.5. Let (X, d) be a complete metric space and Γ : X → X be a modified almost
type Z-contraction with respect to ζ ∈ Z. Then the Picard sequence {ϕn} converges to
fixed point.

Proof. Since (X, d) is a complete metric space, there is a ϕ∗ ∈ X such that limn→∞ ϕn =
ϕ∗. We will show that the point ϕ∗ is a fixed point of Γ . Suppose that Γϕ∗ ̸= ϕ∗. Then
d(ϕ, Γϕ∗) > 0. By equation (1.4), (ζ2) and (ζ3), we get

0 ≤ lim sup
n→∞

ζ(d(Γϕn, Γϕ∗),P(ϕn, ϕ
∗) + LQ(ϕn, ϕ

∗))

≤ lim sup
n→∞

[P(ϕn, ϕ
∗) + LQ(ϕn, ϕ

∗)− d(ϕn+1, Γϕ∗)]

= −d(ϕ∗, Γϕ∗)

(2.20)

which implies that d(ϕ∗, Γϕ∗) = 0, that is, ϕ∗ is a fixed point of Γ . The uniqueness of
the fixed point follows from Lemma 2.1.
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Example 2.6. Let X = [0, 3] be endowed with the usual metric. Then (X, d) is a
complete metric space. Define a mapping Γ : X → X as Γϕ = 3−ϕ for all ϕ ∈ X. Then,
Γ is not a Z-contraction with respect to ζ where for all t, s ∈ [0,∞)

ζ(t, s) = αs− t, α ∈ [0, 1).

In fact, for all ϕ ̸= φ, we have

ζ(d(Γϕ, Γφ), d(ϕ, φ)) = α |ϕ− φ| − |3− ϕ− (3− φ)|
= α |ϕ− φ| − |ϕ− φ|
< |ϕ− φ| − |ϕ− φ|
= 0.

Now, we show that Γ is a modified almost Z-contraction with respect to ζ.

ζ(d(Γϕ, Γφ),P(ϕ, φ) + LQ(ϕ, φ)) = α[|P(ϕ, φ) + LQ(ϕ, φ)|]− |3− ϕ− (3− φ)|
= α[|P(ϕ, φ) + LQ(ϕ, φ)|]− |ϕ− φ| ,

where

P(ϕ, φ) = max

{
|ϕ− φ| , [1 + |ϕ− (3− ϕ)|] |φ− (3− φ)|

1 + |ϕ− φ|

}
= max

{
|ϕ− φ| , [1 + |2ϕ− 3|] |2φ− 3|

1 + |ϕ− φ|

}
and

Q(ϕ, φ) = min {|ϕ− (3− ϕ)| , |φ− (3− φ)| , |ϕ− (3− φ)| , |φ− (3− ϕ)|}
= min {|2ϕ− 3| , |2φ− 3| , |2ϕ− 3| , |ϕ+ φ− 3|}
= min {|2ϕ− 3| , |2φ− 3| , |ϕ+ φ− 3|} .

We deduce that

ζ(d(Γϕ, Γφ),P(ϕ, φ) + LQ(ϕ, φ))

= α[max

{
|ϕ− φ| , [1 + |2ϕ− 3|] |2φ− 3|

1 + |ϕ− φ|

}
+ Lmin {|2ϕ− 3| , |2φ− 3| , |ϕ+ φ− 3|}]− |ϕ− φ| .

Hence, we get two cases:

Case(i): If ϕ = φ, then

ζ(d(Γϕ, Γφ),P(ϕ, φ) + LQ(ϕ, φ)) = α[1 + |2ϕ− 3|] |2ϕ− 3|+ L |2ϕ− 3|] ≥ 0.

Case(ii): Without loss of generality, assume that ϕ > φ. Then

ζ(d(Γϕ, Γφ),P(ϕ, φ) + LQ(ϕ, φ))

= α
[1 + |2ϕ− 3|] |2φ− 3|

1 + |ϕ− φ|
+ αL |2φ− 3| − |ϕ− φ| .

If we especially choose α = 1
2 and L = 8, then we get

ζ(d(Γϕ, Γφ),P(ϕ, φ) + LQ(ϕ, φ))

=
1

2

[1 + |2ϕ− 3|] |2φ− 3|
1 + |ϕ− φ|

+ 4 |2φ− 3| − |ϕ− φ| .
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Thus, all of the conditions of Theorem 2.5 are satisfied. Hence, Γ has a unique fixed
point ϕ∗ = 3

2 .
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[7] S. Radenović, S. Chandok, Simulation type functions and coincidence points, Filomat
32(1)(2018) 141–147.
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