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Abstract An efficient method for solving large scale unconstrained optimization problems is the conju-
gate method. Based on the conjugate gradient algorithm proposed by Rivaie, Mamat, June and Mohd
(Applied Mathematics and Computation 218.22 (2012): 11323-11332), we propose a spectral conjugate
gradient algorithm for solving nonlinear equations with convex constraints which generate sufficient de-
scent direction at each iteration. Under the Lipschitz continuity assumption, the global convergence of
the algorithm is established. Furthermore, the propose algorithm is shown to be linearly convergent
under some appropriate conditions. Numerical experiments are reported to show the efficiency of the

algorithm.
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1. INTRODUCTION

In the last decade, several articles have been written on the subject of iterative methods.
This is due to the numerous problems encountered in the fields of science and engineering
resulting in the appearance of nonlinear equations in vast applications. For instance, in
[1] the subproblem in generalized proximal algorithms with Bergman distances. Also, in
real-world applications such as Nash equilibrium problem in economics [2] and the signal
processing problem in [3], it can be seen that both problems need to be reformulated
into a nonlinear system of equations. It is therefore essential to solve these problems of
nonlinear equations arising in these fields by developing numerous algorithms.

*Corresponding author. Published by The Mathematical Association of Thailand.
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Let C be a nonempty closed and convex subset of R™ and F' : R™ — R" be a monotone
mapping. That is,

(x —y)'(F(z) = F(y)) 20, Va,yeR" (1.1)
The focus of this work is on the nonlinear equation:
F(z)=0, zeC. (1.2)

Several iterative algorithms have been proposed for solving the nonlinear problem (1.2).
A few includes the trust-region [4], the Levenberg-Marquardt method [5], the TPRP
method [6] and the Gauss-Newton methods [7, 8]. However, the methods mentioned have
appear to be typically unsuitable for handling large scale nonlinear equations because at
each iteration, computation and storage of matrix is required. Nevertheless, one of the
preferable method for solving this problem is the conjugate gradient (CG) method- The
CG-method is a popular iterative method developed with the sole aim of solving large-
scale unconstrained optimization problems. For an excellent survey on the CG-methods,
see [9].

Following the well known projection scheme of Solodov and Svaiter in [10], the CG-
method have been extended by many aurthors to solve (1.2). One among many of such
extentions is the method of Cheng et.al in [11], where they extended the PRP method
[12] to solve unconstrained monotone equations. Recently, the spectral gradient pro-
jection (SP) method [13] was extended to solve monotone nonlinear convex constrained
equations. Numerical experiment indicates that the proposed method is suitable for large
scale problems. Thus, CG-methods for solving unconstrained optimization problems have
been extended by various authors in solving convex constrained monotone nonlinear equa-
tions. For more related articles, we refer reader to [14—17, 17, 18, 25, 25, 25, 26, 26-34]
and references therein).

Motivated by the results of Rivaie et al. [35], we propose a derivative-free spectral
gradient-type iterative projection method for solving (1.2). The global convergence of the
method is proved under some conditions. Furthermore, the linearly convergent rate of
the proposed method is proved under some assumptions.

The remaining part of this paper is presented as follows: In section 2, we introduce our
algorithm and the method for unconstrained optimization problems posed in [35]. We
establish the global convergence of the method in section 3. We report the results of the
numerical experiments conducted on benchmark test problems in section 4. Finally, we
end up the paper with the conclusion in section 5.

2. ALGORITHM

We begin this section by presenting our proposed algorithm for solving (1.2). We
assume that the readers are familiar with the conjugate gradient method. Motivated
by the RMIL conjugate gradient algorithm proposed by Rivaie et al. [35] for solving
large-scale unconstrained optimization problems, we propose an efficient derivative-free
algorithm for solving nonlinear monotone equations with convex constraints (1.2) by using
the projection technique in Solodov and Svaiter [10]. Firstly, we define the search direction
as follows:
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dh — —UkF(JL‘k) + ﬁERMILdk_L if £ > 0, (2 1)
T = F(a), if k = 0, '
where
BERMIL _ F(ap)" (F(zk) — F(xkfl))' (2.2)

lde—1l?

For convenience, we refer to (2.1) and (2.2) as MRMIL algorithm. We note that If F is
the gradient of a real-valued function f: R™ — R, then the sufficient descent condition

di, F(zy) < —c| F(aw)l?, (2.3)

where ¢ is a positive constant means that dj is a direction of sufficient descent f at xj.

We obtain vy, to satisfy (2.3). In the following, We abbreviate F(zy) as F.
For k = 0,(2.3) obviously holds. For k € N, we have

i Fe == (o - 2= e
i

To satisfy (2.3), it on;y need that

lyx—1l]
v > C+ .
| dr—1l

Without loss of generality, in this paper, we choose vy as
llyk—1ll
k1|l
Next, we recall the projection operator, which is defined as a mapping Po : R* — C,
where C' is a non empty closed convex set such that

Pe(w) = argmin{||z — y]| |y € C}. (2.5)

Throughout this article, we will denote || - ||, to be the Euclidean norm. A well known
characterization of the projection operator is its nonexpansive property. That is, for any
z,y € R",

Vg = C—+

(2.4)

1Po(z) = Poy)ll < llx—yll.
Consequently,
[1Po(z) =yl < [z —yll, vy € C. (2.6)

In the remainder of this paper, we always assume that F' satisfies the following assump-
tions

Assumption 2.1. The mapping F': R™ — R™ is Lipschiz continuous, that is there exists
a positive L such that

[F(z) = Fy)ll < Lllx —yll, Vz,yeR" (2.7)
Assumption 2.2. Let C* be a solution set, for any solution z* € C*, there exist a
nonnegative constant v satisfying

ydist(x,C*) < |F(2)|2, Va € N(y,a"), (2.8)

where dist(x, C*) is the distance from z to C* and N(z*,C) := {x € R"||z—z*| < ~}.
We state the steps of the algorithm as follow



DERIVATIVE-FREE RMIL CONJUGATE GRADIENT METHOD ... 215

Algorithm 2.3. RMIL
Input. Set an initial point o € R™, the positive constants: Tol > 0, @w € (0,2),
p€e(0,1), k>0,0>0,Set k=0.

Step 0. If ||F|| < Tol, stop. Otherwise, generate the search direction by

dy = {:?(Zi:)c’k) + BERMILg, | iZ : 8: (2.9)
Step 1. Let t;, = max{xp'|i = 0,1,2,--- }, we set zp = x}, + tpdy, to satisfy

—F(z)Tdy > oty ||di ) (2.10)
Step 2. If 2z, € C and |F(zx)|| = 0, stop. Otherwise, compute the next iterate by

Tp+1 = Polzy — w& F(z)], (2.11)

where
F(z)" (w1 — 21)

S VIESIE

Step 3. Finally we set k = k + 1 and return to step 1.

Lemma 2.4. Let dy be a search direction generated by Algorithm 2.3 then, di always
satisfies (2.3).

Proof. The proof follows from (2.4). n

3. CONVERGENCE ANALYSIS

In order to establish the convergence of Algorithm 2.3, we need the following lemmas.

Lemma 3.1. Let {di} and {1} be two sequences generated by Algorithm 2.3. Then,
there exists a step size ty, satisfying the line search (2.10) for all k >0

Proof. For any i > 0, suppose (2.10) does not hold for the iterate ko—th, then we have

—(F (1 + Kp'dyy ), diy) < orip' ||y ||
Thus, by the continuity of F' and with 0 < p < 1, it follows that by letting i — oo, we
have
—F(z4,)"dy, <0,

which contradicts (2.3).
L]

Lemma 3.2. Suppose that Assumption 2.1 holds. Let the sequences {x} and {zx} be
generated by Algorithm 2.3, then

pel| Fe||?
ik > 5 (- 3.1
k = max{m, (L+U)||dk;||2 ( )
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Proof. From the line search (2.10), if t; = &, then ¢}, = % does not satisfy (2.10), that is
Ly 123
—F(:vk + ;dk)Tdk < O'; . ||dk||2

It follows from (2.3) and (2.7) that

o[ Fel|* = —Fy d

t t
= (F(J}k + fdk) — Fk)Tdk — F(Ik + ;kdk)Tdk

t
<f@+ammﬁ

This gives the desired inequality (3.1). [

Lemma 3.3. Suppose that Assumption 2.1 holds. Let {xy} and {z} be sequences gen-
erated by Algorithm 2.3, then for any x* € C* the inequality

o ||z — 2

k1 = 2*[|* < flon — 2™[* — w(2 - @) (3.2)
’ G (zx)l1?
holds. In addition, {xy} is bounded and
Z 2k — 2z&||* < +o0. (3.3)

k=0
Proof. First, we begin by using the monotonicity of the mapping F'. Thus, for any solution
¥ e C*,
F(zp) (g — %) > F(zi) T (2 — 21).
The above inequality together with (2.10) gives
F(CL’k + tkdk)T(l‘k — Zk) > Uti”dkHZ > 0. (34)
We have the following from (2.6) and (3.4),
21 — 2| = | Po(zy, — @& F (zr + trdy)) — 2> < |lox — wé F(zy + trdy) — 27|12
= oy — 2*|? = 2w& F(ap + trdi) " (wx — &) + [|o& F(zx + tidy) |2
< ok — 2| = 2w& F (e + trdi) " (2 — 2x) + [00&F (g, + trdy) |2
2
G(zk)" (zn — Zk))
1G (z) |
o?||zk — z*
G (=2

Thus, the sequence {||zy — z*||} is a decreasing sequence, which implies that {xy} is
bounded. That is

lexll << Vk > 0. (3.6)

- ||xk—x*|2—w<2—w>(

< g — 2*|]? — @(2 — @) (3.5)

Furthermore, using the continuity of F' we know that there exists a constant K7 > 0 such
that

|F(z)|| < I, Vk>O0.
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Since (F(x1,) — F(z1))T (21, — zx) > 0, by Cauchy-Schwarz inequality, we have
IF @) llex — 21l = Fx) " (zx — 21) 2 F21)" (@ — 21) = ollae — 2]
From the line search, the last inequality can be implied. So we have
ollek — zkll < | F(zp)l < I

which implies that {2z} is bounded. By continuity of F, we know that there exists a
constant K5 > 0, such that

|F(zk)|| < I, Vk>0.

the above combined with (3.5) yields

2
o
@(2 = @)z llee = 2l" <l = 2" |° =l — 27| (3.7)

2

Now, by taking the summation of (3.7), for & > 0, we have

2 oo oo
g
w(2-w) S k= 2l <> (e — 277 = aper — 2*)|?) < [lzo — 2% < oc.

2 k=0 k=0
(3.8)
(3.8) implies that
lim |jzx — 2| = 0. (3.9)
k—oo
The proof is complete. u

Theorem 3.4. Suppose that Assumption 2.1 hold and let {x}} be the sequence generated
by Algorithm 2.3. Then, we have

liminf || Fy|| = 0. (3.10)

k—o0
Proof. Suppose (3.10) is not valid, that is, there exist a constant say r > 0 such that
r < |||Fk|l, & > 0. Then this along with (2.3) implies that

ldi|| > er, VEk >0. (3.11)
Since {||Fx||} and {||F(zx)||} are bounded, it follows from (2.1)-(2.4) that for all k > 1,

Il < I+ V- A4 T =t )
= il + 2R
<l + 22 122l
<o+ LS o

cr
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Note that, by Cauchy Schwarz inequality, the first inequality is easily obtained. Similarly,
from (2.7) and (3.11), the second inequality follows. Now, from (3.1), we have

pel| Fy||?
tel|di|| > m , d
klldell > aX{’i (L + o) di]2 lld||

2
> max {HCT, (Lpfaa)F} >0,
which contradicts (3.9). Hence (3.10) is valid. n

Theorem 3.5. Let xi be the sequence generated by Algorithm 2.3 under Assumption
2.1 — 2.2. Then the sequence dist{xy, C*} Q—linearly converges to zero.

Proof. Lets set u, = argmin{||zy — h|| |h € C*}. This implies that
lxg — trl] = dist(zg, C*).
From (3.2), for pp € C* we obtain
d(@p11,C*)? < o — bl
< dist(zy, C*)? — o||trdp||*
< dist(xy, C*)? — o c || Fel|*
< dist(zy,C*)? — oy cMd(xy, C*)?
= (1 —o*y2c*t})d(zy, CF)?,
Note that, from the inequality in Assumption 2.2, we obtain the fourth inequality. Let

the parameter 7% > 2, then, 1 — o%%¢*} € (0,1) holds. Finally, we see that d(zy, C*)
(Q—linearly converges to zero. [

4. NUMERICAL EXPERIMENTS

An insight of the proposed algorithm is presented in this section. We test the com-
putational performance of Algorithm 2.3 with existing method in literature using some
benchmark test problems. Precisely, we compare our algorithm with the PDY algorithm
[36] designed for solving same problem (1.2). The numerical experiments are carried out
on a set of seven different problems with dimension ranging from n = 5000 to 100,000
and initial points set as follow:

z; = (0.1,0.1,--- ,0.1)T, 25 = (0.2,0.2,--- ,0.2), 23 = (0.5,0.5,--- ,0.5)7, 24 = (1.2,1.2,---

x5 = (1.5,1.5,---1.5)"  wg = (2,2,--- ,2)T, 27 = rand(n, 1).
Throughout, we set parameters for PDY algorithm as in [36]. For Algorithm 1, the values

of our parameters were set as follows: ¢ =1, p = 0.5, 0 = 0.001. w = 1.8. For each test
problem, the iterative process is stopped when the inequality

[F|| < 107°

is satisfied. Again, failure is declared after a thousand iteration. All algorithms were
written in Matlab and run on a HP personal computer with system specifications as
follows Intel(R) Core (TM) i3-7100U CPU 2.40GHZ, 8GB memory and Windows 10
operating system.

,1.2)7T,
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We give a list of the benchmark test problems used in our experiment. Note that in
this article, we take the mapping F as F(z) = (fi(z), f2(z), - , fn(z))T.

Problem 1. This problem is the Exponential function [37] with constraint set C' = R},
that is,

filx) =€t =1,
file)=e" +a; — 1, fori =2,3,...,n.

Problem 2. Modified Logarithmic function [15] with constraint set C' = {x € R" :
S xi <n,xz; >—1,i=1,2,...,n}, that is,

file) =In(e; +1) - 2 i =2.3,...,n.
n

Problem 3. The Nonsmooth Function [35] with constraint set C' = R}.
filz) =2z; —sin|z;], i =1,2,3,...,n.

Problem 4. The Strictly convex function [39], with constraint set C' = R}, that is,
filg) =€ =1, i=2,3,--- ,n.

Problem 5. Tridiagonal Exponential function [40] with constraint set C'= R}, that is,
fu(@) =y — enthao)),

filx) =o; — eC"S(h(””"'*l"’w”““)), for 2<i<n-—1,
1
n+1"

falz) = 2 — ecos(h(mn_1+zn))’ where h —

Problem 6. Nonsmooth function [11] with with constraint set C = {z € R" : > ; <
n,x; > —1, 1<i<n}.

fi(x) =z —sin|x; — 1|, i=2,3,---,n
Problem 7. The Trig exp function [37] with constraint set C' = R}, that is,
fi(z) = 323 + 2wy — 5 4 sin(z; — ) sin(z; + x2)
filz) = 3x§’ + 2241 — 5+ sin(x; — xi41) sin(x; + @ipr) + 4oy — 2177177 =3 fori =2,3,.

Tn—1—"Tn

fulx) = 2H_1€ — 4z, — 3, where h =

n+1

In order to visualize the behavior of Algorithm 1, we adopt the performance profiles pro-
posed by Dolan and More in [12] to compare the performance among the tested methods.
The performance profile seeks to find how well the solvers perform relative to the other
solvers on a set of problems based on the total number of iterations, total number of
function evaluations, and the running time of each method. The details of our numerical
test are presented in the Appendix section. We denote by ”Iter.” the number of iterations,
"Fval.” the number of function evaluations and ”Time.” the CPU time in seconds.
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-
MRMIL
PDY 7
0.2} |
0.1} -
O 1 1 1 1 1 1 1
0 0.5 1 15 2 2.5 3 35

-
FI1GURE 1. Performance profiles with respect to the number of iterates

The figures in this section show the performance profiles of our method versus other recent
existing method. The performance of the methods are measured based on the number of
iterations, the number of function F' evaluations and the CPU time. It is not difficult to
see that both methods solved all the test problems successfully. However, the MRMIL
algorithm highly performs better on a whole based on these measures compared to PDY
algorithm.

In detail, Figure 1 illustrates the performance profile of our method, where the perfor-
mance index is the total number of iterations. It can be seen that the MRMIL algorithm
is the best solver with probability around 79% while the probability of the compared
method of solving the same problem as the best solver is around 31%. Figure 2.5 and 3
illustrates the performance profiles of the total number of function evaluation and CPU
time. Similar results as Figure 1 can be derived from these figures.
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FIGURE 2. Performance profiles with respect to the number of iterates
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O 1 1 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4

-
F1GURE 3. Performance profiles with respect to CPU time

5. CONCLUSION

In this article, the authors proposed a modified conjugate gradient algorithm for solving
monotone nonlinear equations with convex constraints. This work can be regarded as an
extension of the method in [35]. Using some technical conditions, we established the
global convergence of the proposed method. We present numerical results to illustrate
that our method is stable and efficient for the monotone nonlinear equations, especially
for the large-scale problems with convex constraints.
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APPENDIX
TABLE 1. Numerical results for problem 1

\ MRMIL \ PDY \
| DIM |INP | ITER | FVAL | TIME | NORM |ITER | FVAL | TIME | NORM |
\ | @y | 5 | 19 |0.017596 | 0.00E+00 | 16 | 64 | 0.040997 | 3.45E-07 |
\ | @2 | 5 | 19 |0.020114 | 0.00E+00 | 16 | 64 |0.033587 | 7.03E-07 |
\ | 3 | 8 | 32 ]0.014192| 211E-07 | 17 | 68 |0.011419 | 6.22E-07 |
| 1000 | @« | 2 | 7 |0.006337 | 0.00E+00 | 18 | 72 | 0.02491 | 4.54E-07 |
\ | @5 | 2 | 7 |0.007319 | 0.00E+00 | 18 | 72 |0.038672 | 3.65E-07 |
\ | @6 | 5 | 19 ]0.008786 | 0.00E+00 | 18 | 72 |0.013774 | 3.80E-07 |
\ | @z | 8 | 32 |0.006044 | 4.80E-07 | 17 | 68 |0.019283 | 7.05E-07 |
\ | @y | 5 | 19 |0.012849 | 0.00E+00 | 16 | 64 |0.076967 | 7.61E-07 |
\ | @2 | 5 | 19 |0.011326 | 0.00E+00 | 17 | 68 | 0.07326 | 5.15E-07 |
\ | #3 | 10 | 40 | 0.03188 | 1.49E-07 | 18 | 72 |0.051817 | 4.63E-07 |
| 5000 | @a | 2 | 7 | 000821 |0.00E4+00| 19 | 76 |0.059926 | 3.38E-07 |
\ | w5 | 2 | 7 |0.007023 | 0.00E+00 | 18 | 72 |0.078845 | 8.12E-07 |
\ | w6 | 7 | 27 ]0.020875 | 0.00E+00 | 18 | 72 |0.072337 | 8.10E-07 |
\ | w7 | 8 | 32 | 00188 | 7.97E-07 | 18 | 72 |0.062592 | 5.38E-07 |
\ | @1 | 12 | 48 ]0.048563 | 1.28B-08 | 17 | 68 |0.097567 | 3.55E-07 |
\ | @ | 6 | 24 ]0.027456 | 2.05B-07 | 17 | 68 |0.085576 | 7.27E-07 |
\ | =3 | 8 | 32 ] 0.02695 | 1.85B-07 | 18 | 72 | 0.10317 | 6.55E-07 |
| 10000 | #a | 2 | 7 |0.007457 | 0.00E+00 | 19 | 76 |0.092351 | 4.77E-07 |
\ | @5 | 2 | 7 |0.012742 | 0.00E+00 | 20 | 80 | 0.13829 | 4.52E-07 |
\ | w¢ | 6 | 23 |0.032861|0.00E+00| 19 | 76 |0.093402 | 5.51E-07 |
\ | @z | 9 | 36 ]0.033609| 9.08E-08 | 18 | 72 |0.084444 | 7.55E-07 |
\ | x| 10 | 40 | 0.18505 | 2.60E-07 | 17 | 68 | 0.43588 | 7.93E-07 |
\ | @z | 8 | 32 | 011334 | 728B-07 | 18 | 72 | 0.32887 | 5.44E-07 |
\ | =3 | 8 | 32 | 013543 | 7.35B-08 | 19 | 76 | 0.36732 | 4.86E-07 |
| 50000 | #a | 2 | 7 ]0.033502]0.00E4+00| 20 | 80 | 0.41552 | 9.70E-07 |
\ | @5 | 2 | 7 |0.059006 | 0.00E+00 | 22 | 88 | 0.57589 |8.63E-07 |
\ | ¢ | 6 | 23 | 01 [0.00E+00| 23 | 92 | 0.49481 |8.62E-07 |
\ | @z | 9 | 36 | 017921 | 1.92B-07 | 19 | 76 | 0.43672 | 5.62E-07 |
\ | @ | 17 | 68 | 046137 | 526BE-09 | 18 | 72 | 0.61655 | 3.76E-07 |
\ | @ | 17 | 68 | 046751 | 6.68E-07 | 18 | 72 | 0.81072 | 7.69E-07 |
\ | =3 | 8 | 31 | 020832 | 0.00E+00 | 19 | 76 | 0.64764 | 6.88E-07 |
| 100000 | #a | 2 | 7 ]0.080694 | 0.00E4+00 | 23 | 92 | 1.0145 | 3.63E-07 |
\ | @5 | 2 | 7 |0.090344 | 0.00E+00 | 23 | 92 | 1.043 |9.61E-07 |
\ | g | 11 | 44 | 027679 | 8.73E-08 | 26 | 104 | 1.0696 | 3.39E-07 |
\ | @z | 9 | 36 | 027043 | 248E-07 | 20 | 80 | 0.9056 | 7.78E-07 |
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TABLE 2. Numerical results for problem 2

\ MRMIL \ PDY \
‘ DIM ‘INP ‘ ITER FVAL TIME NORM |ITER FVAL TIME NORM
a1 7 23 0.004347 1.42E-08 13 51 0.077345 T7.68E-07
\ | @ | 7 23 0.00593 1.44E-08 15 59 0.013322 3.49E-07 |
\ | z3 | 8 26 0.008602 1.11E-08 16 63 0.010509 6.98E-07 |
| 1000 | x4 | 8 26 0.00346 6.52E-09 18 71 0.029102 3.52E-07 |
\ | a5 | 7 23 0.005348 1.18E-08 18 71 0.014308 5.13E-07 |
\ | x| 8 26 0.00715 5.03E-09 18 71 0.01597 8.59E-07 |
‘ ‘ 7 ‘ 16 63 0.015263 5.75E-07 17 67  0.051946 4.52E-07
1 7 24 0.014743 5.75E-07 14 55 0.050839 5.44E-07
\ | ao | T 24 0.016902 5.75E-07 15 59 0.036741 T7.63E-07 |
\ | @3 | 8 27 0.018674 4.90E-07 17 67  0.10101 5.12E-07 |
| 5000 | @4 | 8 27 0.016456 3.19E-07 18 71 0.073292 T7.73E-07 |
\ | @5 | 7 24 0.019151 4.59E-07 19 75 0.074561 3.75E-07 |
\ | @6 | 8 26 0.028861 4.98E-10 19 75 0.045617 6.27E-07 |
‘ ‘ z7 ‘ 15 59 0.042091 8.23E-07 17 67  0.17854 9.89E-07
a1 9 35 0.043477 4.65E-07 14 55 0.096961 7.66E-07
\ | = | 9 34 0.034886 4.65E-07 16 63 0.068215 3.55E-07 |
\ | x3 | 10 38 0.048411 4.04E-07 17 67  0.097321 7.23E-07 |
| 10000 | x4 | 10 38 0.051665 2.72E-07 19 75 0.17663 3.63E-07 |
\ | a5 | 9 35 0.038634 3.75E-07 19 75 0.1389  5.29E-07 |
\ |z | 10 38 0.048532 1.63E-07 19 76 0.084686 9.51E-07 |
‘ ‘ 7 ‘ 16 63 0.066321 5.89E-07 18 71 0.18208 4.65E-07
1 10 39 01595  1.04E-07 15 59 0.60225 5.78E-07
\ | @2 | 10 39 0.13852 1.03E-07 16 63 0.38193 7.92E-07 |
\ | @3 | 10 38 0.25958 9.06E-07 18 71 11323 5.36E-07 |
| 50000 | x4 | 10 38 015314 6.13E-07 21 84 0.48105 3.43E-07 |
\ | @5 | 9 35 0.13068 8.30E-07 21 84 0.65056 4.72E-07 |
\ | @ | 10 38 0.15521 3.60E-07 21 84 0.49099 4.77TE-07 |
‘ ‘ x7 ‘ 16 63 0.38185 8.50E-07 19 75 0.46664 3.46E-07
) 10 39 0.34962 1.46E-07 15 59 0.79437 8.17E-07
\ | x| 10 39 043655 1.46E-07 17 67  0.86905 3.76E-07 |
\ |z | 11 42 0.31355 1.28E-07 18 72 0.92806 9.65E-07 |
| 100000 | 4 | 10 38 0.38263 8.68E-07 22 88 1.0076  8.28E-07 |
\ | x5 | 10 39 028794 1.17E-07 22 88 1542 8.18E-07 |
\ |z | 10 38 0.2989  5.08E-07 22 88 1.3244  7.87E-07 |
\ | a7 | 17 67  0.68179 5.25E-07 20 80 1.0409  5.45E-07 |
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TABLE 3. Numerical results for problem 3

MRMIL \ PDY \

DIM |INP | ITER | FVAL | TIME | NORM | ITER2 | FVAL3 | TIME4 | NORMS5 |
| @ | 11 | 44 ]0.006867 | 9.73E-07 | 15 | 60 | 0.077797 | 4.96E-07 |

T3 12 48 | 0.008871 | 9.29E-07 | 16 64 | 0.017838 | 3.39E-07 |

3 11 44 | 0.005343 | 6.21E-07 | 16 64 ] 0.012914 | 9.24E-07 |

1000 | @4 13 52 | 0.008538 | 7.43E-07 | 17 68 | 0.010386 | 8.94E-07 |
5 10 40 | 0.006854 | 7.08E-07 | 18 72 | 0.013949 | 3.60E-07 |

6 14 56 | 0.009688 | 4.75E-07 | 18 72 ] 0.026721 | 3.47E-07 |

x7 \ \ | 17 68 | 0.018595 | 3.94E-07 |

) 13 52 | 0.023164 | 5.44E-07 | 16 64 | 0.036111 | 3.74E-07 |

T 14 56 | 0.023803 | 5.19E-07 | 16 64 | 0.045275 | 7.58E-07 |

3 12 48 ] 0.024052 | 6.95E-07 | 17 68 | 0.060382 | 6.84E-07 |

5000 | @4 14 56 | 0.02763 | 4.15E-07 | 18 72 | 0.11091 | 6.68E-07 |
5 11 44 ]0.014771 | 3.96E-07 | 18 72 | 0.049381 | 8.05E-07 |

g 15 60 | 0.025569 | 2.66E-07 | 18 72 | 0.065425 | 7.46E-07 |

z7 \ \ | 17 68 | 0.06995 | 8.75E-07 |

) 13 52 | 0.037055 | 7.69E-07 | 16 64 | 0.12557 | 5.28E-07 |

T2 14 56 | 0.034567 | 7.34E-07 | 17 68 | 0.092694 | 3.55E-07 |

3 12 48 | 0.056047 | 9.82E-07 | 17 68 | 0.079822 | 9.67E-07 |

72 | 0.24877 | 9.44E-07 |

| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
10000 | =4 | 14 | 56 |0.055368 | 5.87E-07 | 18
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

5 11 44 | 0.038703 | 5.60E-07 | 20 80 | 0.080159 | 3.38E-07 |
g 15 60 | 0.037159 | 3.76E-07 | 19 76 | 0.084531 | 3.50E-07 |
x7 \ \ | 18 72 | 01757 | 4.10E-07 |
1 14 56 | 0.23139 | 8.60E-07 | 17 68 | 0.37534 | 3.91E-07 |
o 15 60 | 0.16087 | 8.21E-07 | 17 68 | 0.24801 | 7.93E-07 |
3 14 56 | 0.17539 | 5.49E-07 | 18 72 | 0.26549 | 7.25E-07 |
50000 | 4 15 60 | 0.18294 | 3.28E-07| 20 80 | 0.46666 | 6.42E-07 |
5 12 48 | 0.15805 | 3.13E-07 | 21 84 | 0.32816 | 5.20E-07 |
g 15 60 | 0.23569 | 8.40E-07 | 21 84 | 0.48755 | 3.51E-07 |
x7 \ \ | 18 72 | 0.50034 | 9.18E-07 |
T 15 60 | 0.28424 | 6.08E-07 | 17 68 | 0.73834 | 5.53E-07 |
T3 16 64 | 0.30566 | 5.80E-07 | 18 72 | 0.75733 | 3.76E-07 |
3 14 56 | 0.30675 | 7.77E-07 | 19 76 | 0.54971 | 3.40E-07 |
100000 | @4 15 60 | 0.46637 | 4.64E-07 | 22 88 | 1.353 | 6.92E-07 |
s 12 48 | 0.26464 | 4.43E-07 | 22 88 | 0.69186 | 6.17E-07 |
6 16 64 | 031211 | 297E-07 | 22 88 | 1.0329 | 5.81E-07 |
x7 \ \ | 20 80 | 1.1918 | 4.62E-07 |
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TABLE 4. Numerical results for problem 4

\ MRMIL | PDY |
‘ DIM ‘INP ‘ ITER FVAL TIME NORM |ITER FVAL TIME NORM
1 11 44 0.005463 5.14E-07 15 60  0.008008 5.13E-07
\ | x| 10 40 0.006904 T7.26E-07 16 64  0.013881 3.59E-07 |
\ | s |2 7 0.002464 0.00E+00 16 64 0.024003 9.42E-07 |
| 1000 | s | 2 7 0.002327 0.00E400 15 60  0.008609 6.44E-07 |
\ | @5 | 2 7 0.00394 0.00E400 17 68  0.016199 3.91E-07 |
\ |z | 2 7 0.003647 0.00E400 17 68  0.073791 7.89E-07 |
‘ ‘ x7 ‘ 10 40 0.004219 3.71E-07 17 68  0.017215 4.89E-07
1 12 48 0.019223 5.75E-07 16 64  0.038264 3.86E-07
\ |z | 11 44 0.015049 8.12E-07 16 64  0.032691 8.02E-07 |
\ | x5 | 2 7 0.006792 0.00E400 17 68  0.030878 7.00E-07 |
| 5000 | x4 | 2 7 0.006842 0.00E400 16 64 0.026864 4.74E-07 |
\ | x5 | 2 7 0.006989 0.00E+00 17 68  0.067797 8.74E-07 |
\ | z6 | 2 7 0.006434 0.00E400 19 76 0.031626 5.11E-07 |
‘ ‘ 7 ‘ 10 40 0.017007 1.66E-07 18 72 0.030529 3.71E-07
) 12 48 0.026133 8.13E-07 16 64 0.046997 5.46E-07
\ | x| 12 48 0.029647 5.74E-07 17 68  0.07771 3.76E-07 |
\ | x5 | 2 7 0.008574 0.00E400 17 68 0.0702  9.90E-07 |
| 10000 | 24 | 2 7 0.011381 0.00E400 19 76 0.058083 3.70E-07 |
\ | x5 | 2 7 0.008156 0.00E400 18 72 0.097611 4.15E-07 |
\ | z6 | 2 7 0.01211  0.00E+00 19 76 0.13803 7.22E-07 |
‘ ‘ x7 ‘ 13 52 0.065447 5.08E-07 18 72 0.075793 5.07E-07
1 13 52 0.11185 9.09E-07 17 68  0.18421 4.04E-07
\ | @y | 13 52 0.17585 6.42E-07 17 68  0.19435 8.40E-07 |
\ | x5 | 2 7 0.028215 0.00E400 18 72 0.22118 7.39E-07 |
| 50000 | 24 | 2 7 0.040046 0.00E+00 20 80 0.29846  6.25E-07 |
\ | x5 | 2 7 0.036865 0.00E400 20 80 0.24516 8.13E-07 |
\ | xs | 2 7 0.034726 0.00E+00 22 88 0.45415 9.65E-07 |
‘ ‘ z7 ‘ 13 52 0.15831 3.24E-07 19 76 0.32983 6.75E-07
) 14 56 026401 6.43E-07 17 68 056127 5.71E-07
\ | x| 13 52 032171  9.08E-07 18 72 0.5503  3.98E-07 |
\ | xs | 2 7 0.060471 0.00E400 19 76 0.42901 9.57E-07 |
| 100000 | =4 | 2 7 0.084635 0.00E+00 22 88 0.53544  3.99E-07 |
\ | x5 | 2 7 0.081715 0.00E4+00 24 96 0.95585 3.66E-07 |
\ | @6 | 2 7 0.059423 0.00E400 26 104 0.7676  3.55E-07 |
\ | z7 | 13 52 0.2707  4.50E-07 19 76 0.56768 9.53E-07 |
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TABLE 5. Numerical results for problem 5

\ MRMIL \ PDY \
‘ DIM ‘INP ‘ ITER FVAL TIME NORM |ITER FVAL TIME NORM
a1 28 112 0.02166 6.16E-07 18 72 0.064493 4.82E-07
\ | @ | 28 112 0.036568 5.92E-07 18 72 0.017572 4.64E-07 |
\ | zs | 28 112 0.021776 5.22E-07 18 72 0.025552 4.08E-07 |
| 1000 | a4 | 27 108 0.017528 7.14E-07 17 68  0.027679 8.34E-07 |
\ | s |27 108 0.01623 5.73E-07 17 68  0.02813 6.69E-07 |
\ | ze | 26 104 0.048145 6.76E-07 17 68  0.013746 3.94E-07 |
‘ ‘ x7 ‘ 28 112 0.019109 5.26E-07 18 72 0.016604 4.11E-07
1 29 116 0.10404 6.90E-07 19 76 0.15354 3.58E-07
\ |z | 29 116 0.077534 6.63E-07 19 76 0.1347  3.44E-07 |
\ | @3 | 29 116 0.075795 5.84E-07 18 72 0.061833 9.14E-07 |
| 5000 | x4 | 28 112 0.077236 8.00E-07 18 72 0.14442  6.26E-07 |
\ | =5 | 28 112 0.086837 6.42E-07 18 72 0.058368 5.02E-07 |
\ | @ | 27 108 0.074944 757B-07 17 68  0.080337 8.83E-07 |
‘ ‘ z7 ‘ 29 116 0.088769 5.90E-07 18 72 0.060071 9.21E-07
) 29 116 0.13172  9.75E-07 21 84 0.13537 4.00E-07
\ |z | 29 116 0.13083 9.38E-07 21 84  0.13596 3.85E-07 |
\ | zs | 29 116~ 0.18213 8.26E-07 20 80 0.2194  5.83E-07 |
| 10000 | =4 | 29 116 0.12873  5.66E-07 18 72 0.14363 8.85E-07 |
\ | x5 | 28 112 015234 9.08E-07 18 72 0.16376 7.10E-07 |
\ | oz | 28 112 0.15848 5.35E-07 18 72 0.099046 4.19E-07 |
‘ ‘ z7 ‘ 29 116~ 0.13706 8.34E-07 20 80 0.20036 5.88E-07
1 31 124 0.64489 5.45E-07 24 96 0.73376  7.08E-07
\ | @y | 31 124 0.70682 5.24E-07 24 96 0.81236 6.81E-07 |
\ | @3 | 30 120 0.55822 9.24E-07 23 92 0.6838  7.26E-07 |
| 50000 | x4 | 30 120 053198 6.32E-07 21 84 0.57411 5.18E-07 |
\ | @5 | 30 120 0.54466 5.07E-07 21 84  0.66594 4.16E-07 |
\ | @6 | 29 116 0.53353 5.98E-07 18 72 0.47458 9.36E-07 |
‘ ‘ x7 ‘ 30 120 0.53253 9.32E-07 23 92 0.78547 7.33E-07
) 31 124 12364 T7.71E-07 29 116 34129  5.93E-07
\ |z | 31 124 1.5374  T7.42E-07 28 112 2.232  6.09E-07 |
\ | xz | 31 124 1.3392  6.53E-07 26 104 1.9924  6.39E-07 |
| 100000 | =4 | 30 120 1.2903  8.94E-07 23 92 1.6393  7.03E-07 |
\ | x5 | 30 120 1.3408 T7.8E-07 22 88 1.4593  3.66E-07 |
\ |z | 29 116 1.3172  846E-07 20 80 1.5262  5.97E-07 |
\ |z | 31 124 1.3756  6.59E-07 26 104 20768  6.44E-07 |
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TABLE 6. Numerical results for problem 6

\ MRMIL \ PDY \
‘ DIM ‘INP ‘ ITER FVAL TIME NORM |ITER FVAL TIME NORM
a1 8 32 0.007545 2.09E-07 17 68 0.047472 6.92E-07
\ | @ | 8 32 0.007651 1.30E-07 17 68  0.01164 4.34E-07 |
\ | zs | 7 28 0.0044 4.82E-07 5 20 0.035276 4.50E-08 |
| 1000 | =y | 9 36 0.006288 T7.10E-08 18 72 0.031358 8.82E-07 |
\ | x5 | 9 36 0.004769 2.98E-07 19 76 0.016064 8.09E-07 |
\ | x| 9 35 0.005865 4.30E-07 18 71 0.019573 5.23E-07 |
‘ ‘ 7 ‘ 15 60  0.011421 247E-07 19 76 0.034046 4.32E-07
1 8 32 010747 4.68E-07 18 72 0.060315 5.59E-07
\ | z2 | 8 32 0.013586 2.90E-07 17 68  0.043677 9.70E-07 |
\ | @3 | 8 32 0.02763 6.88E-08 5 20 0.020451 1.01E-07 |
| 5000 | x4 | 9 36 0.013456 1.59E-07 19 76 0.067458 7.14E-07 |
\ | @5 | 9 36 0.021637 6.67E-07 20 80  0.048031 6.56E-07 |
\ | @6 | 9 35 0.01803 9.62E-07 19 75 0.072431 4.22E-07 |
‘ ‘ z7 ‘ 17 68  0.067433 2.62E-07 19 76 0.072684 9.09E-07
) 8 32 0.035531 6.62E-07 18 72 0.17816 7.90E-07
\ | = | 8 32 0.024332 4.10E-07 18 72 012132 4.95E-07 |
\ | xs | 8 32 0.025852 9.73E-08 5 20 0.017535 1.42E-07 |
| 10000 | x4 | 9 36 0.022198 224E-07 20 80 0.14969 3.66E-07 |
\ | a5 | 9 36 0.023586 9.43E-07 20 80 0.20198 9.28E-07 |
\ |z | 10 39 0.027458 8.69E-08 21 84 0.09774 4.36E-07 |
‘ ‘ 7 ‘ 15 60  0.061535 7.77E-07 20 80  0.15572  4.75E-07
1 9 36 0.091915 9.46E-08 19 76 0.30923 6.42E-07
\ | = | 8 32 0.086014 9.17E-07 19 76 0.33924  4.02E-07 |
\ | x3 | 8 32 010021 2.18E-07 5 20 0.073014 3.18E-07 |
| 50000 | x4 | 9 36 0.10806 5.02E-07 21 84  0.41239 8.23E-07 |
\ | @5 | 10 40 0.10572 1.35E-07 21 84  0.57454 T7.14E-07 |
\ | @ | 10 39 017226 1.94E-07 21 84 0.3827  9.75E-07 |
‘ ‘ x7 ‘ 18 72 0.2558  6.43E-07 21 84  0.93238 3.82E-07
) 9 36 0.26898 1.34E-07 20 80 0.79946 7.45E-07
\ | = | 9 36 0.17345 8.28E-08 19 76 1.0298  5.69E-07 |
\ | x5 | 8 32 025039 3.08E-07 5 20 0.14119  4.50E-07 |
| 100000 | s | 9 36 0.21676 7.10E-07 22 88 10177 4.22E-07 |
\ | x5 | 10 40 0.27836 1.91E-07 22 88  0.81176 7.50E-07 |
\ |z | 10 39 019144  2.75E-07 22 88 0.93483  5.00E-07 |
\ | w7 | 20 80  0.54314 3.45E-07 20 80  0.73771 6.67E-07 |
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TABLE 7. Numerical results for problem 7

\ MRMIL \ PDY \
‘ DIM ‘INP ‘ ITER FVAL TIME NORM |ITER FVAL TIME NORM
a1 25 100 0.073028 4.63E-07 36 144 0.20315 6.34E-07
\ |z | 25 100 0.11462 9.07E-07 35 140 0.2928 9.13E-07 |
\ | w5 | 22 88 0.059525 9.01E-07 35 140 0.18604 7.34E-07 |
| 1000 | x4 | 25 100 0.085671 4.88E-07 33 132 0.16095 2.30E-07 |
\ | x5 | 25 100 0.060418 1.67E-07 31 124 0.13438 8.06E-07 |
\ | @ | 25 100 0.080534 8.31E-07 24 96 0.10379 9.72E-07 |
‘ ‘ 7 ‘ 26 104 0.088063 5.63E-07 29 116 0.1692 3.15E-07
1 28 112 0.35075 7.48E-07 34 136 0.71146  8.36E-07
\ |z | 24 96 0.38934 8.05E-07 34 136 0.69158 7.93E-07 |
\ | z3 | 25 100 0.30709 7.27E-07 34 136 0.63571 6.18E-07 |
| 5000 | x4 | 25 100 0.337  5.12E-07 31 124 0.66455 3.90E-07 |
\ | x5 | 25 100 0.39557 5.84E-07 30 120 0.59363 8.11E-07 |
\ | we | 23 92 027766 5.03B-07 24 96 0.54085 7.51E-07 |
‘ ‘ 7 ‘ 28 112 0.50805 6.90E-07 25 100 0.79827 2.93E-07
a1 30 120 0.71688 6.74E-07 34 136 1.8057 6.78E-07
\ | 2 | 30 120 0.66154 7.68B-07 34 136 1.3939 6.42E-07 |
\ | zs | 25 100 0.55277 5.63E-07 33 132 1.3301 7.57E-07 |
| 10000 | 24 | 29 113 0.7388  9.13E-07 30 120 1.3051  3.94E-07 |
\ | x5 | 25 100 0.57022 7.39E-07 30 120 1.1445 5.57E-07 |
\ |z | 25 100 0.56951 8.67E-07 24 96 0.8758 T7.21E-07 |
‘ ‘ 7 ‘ 29 116 0.72454  6.65E-07 25 100 0.89229 4.07E-07
1 28 112 28081 B8.07E-07 34 136 7.9299 6.35E-07
\ |z | 30 120 2.9855 7.96E-07 33 132 6.6438 6.12E-07 |
\ | w3 | 26 104 26057 9.25E-07 32 128 7.4126  7.22E-07 |
| 50000 | x4 | 5 17 040473  NaN 24 96 54526 3.36E-07 |
\ | @5 | 7 25 0.6025 NaN 29 116 6.8103 5.83E-07 |
\ | @ | 28 112 29107 4.55E-07 31 124 6.0871 7.91E-07 |
‘ ‘ 7 ‘ 29 116 3.0354  2.75E-07 27 108 543  3.65E-07
a1 30 119 62617 481E-07 33 132 19.5575 8.00E-07
\ |z | 28 112 57996 827E-07 33 132 17.3005 7.49E-07 |
\ | @3 | 29 116 6.1519 8.53E-07 40 160 21.0229 9.75E-07 |
| 100000 | =4 | 5 17 0.83758 NaN 30 120 12.1478 9.85E-07 |
\ | x5 | 26 104 55499 7.56E-07 28 112 10.8844 9.46E-07 |
\ | we | 33 131 71703 6.89E-07 26 104 9.8098 9.05E-07 |
| | o7 |

31 124 6.7745  5.21E-07 27 108 9.8646 4.03E-07 ‘
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