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Abstract In this paper, we prove some strong and ∆-convergence theorems for Suzuki generalized

nonexpansive mappings in the setting of Hadamard spaces (or CAT(0) spaces) by using the iteration

process in [12] and [13]. We also give an example to show the efficiency of the proposed process.

MSC: 47H09; 47H10

Keywords: Suzuki generalized nonexpansive; iterative scheme; nonlinear method; Hadamard spaces

Submission date: 13.09.2019 / Acceptance date: 11.01.2020

1. Introduction

Banach contraction theorem is well-known shrinking theory and the iterative process have
been developed to estimate fixed points of different types of mappings. Some of the well-
known iterative processes are those of Mann [3], Ishikawa [4], Agarwal [5], Noor [6], Abbas
[7], SP [8], Picard Mann [9], Picard-S [10], Thakur [11] and so on([22–30]).

In [12] and [13] introduced the iterative scheme for nonexpansive mappings in a uniformly
convex Banach spaces: zn = (1− sn)un + snT un,

wn = (1− tn)zn + tnT zn,
xn+1 = (1− νn)T wn + νnT wn, ∀n ∈ N,

(1.1)

where {sn}, {tn} and {νn} are sequence in (0, 1).

On the other hand, we know that every Banach space is a CAT(0) space. For details
about CAT(0) spaces, please see [14]. Some results are restored here for the CAT(0)
space X .

If T q = q, then a point q is called a fixed point of a mapping T and F (T ) represents
the set of all fixed points of the mapping T . Let C be a nonempty subset of a CAT(0)
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space X . A mapping T : C → C is called a contraction if there exists β ∈ (0, 1) such
that

d(T w,T z) ≤ βd(w, z), ∀w, z ∈ C .

A mapping T : C → C is called nonexpansive if

d(T w,T z) ≤ d(w, z), ∀w, z ∈ C .

Suzuki [18] introduced a new condition on a mapping, called condition (C ), which is
weaker than nonexpansiveness. A mapping T : C → C is said to satisfy condition (C ) if
for all w, z ∈ C , we have

1

2
d(w,T w) ≤ d(w, z) implies d(T w,T z) ≤ d(w, z). (1.2)

The mapping satisfying condition A mapping T : C → C is said to satisfy condition (C )
is called a Suzuki generalized nonexpansive mapping. The following is an example of a
Suzuki generalized nonexpansive mapping which is not nonexpansive.

Motivated by the above, we prove some strong and ∆-convergence theorems results using
iterative scheme (1.1) for Suzuki generalized nonexpansive mappings in the setting of
CAT(0) space is given by

zn = (1− sn)un

⊕
snT un,

wn = (1− tn)zn
⊕

tnT zn,

xn+1 = (1− νn)T zn
⊕

νnT wn, ∀n ∈ N,
(1.3)

where {sn}, {tn} and {νn} are sequence in (0, 1).

2. Preliminaries

Lemma 2.1 (Dhompongsa et al. [15]). Let X be a CAT(0) space, y, w, z ∈ X and
ν ∈ [0, 1]. Then

(i) d(νy
⊕

(1− ν)w, z) ≤ νd(y, z) + (1− ν)d(w, z).

(ii) d2(νy
⊕

(1− ν)w, z) ≤ νd2(y, z) + (1− ν)d2(w, z)− ν(1− ν)d2(y, w).

Lemma 2.2 (Laokul et al. [17]). Let x be a point in a CAT (0) space (X , d) and {νn}
be a sequence in a closed interval [a, b] for some a, b ∈ (0, 1). Assume that {wn} and {zn}
be two sequences in X such that lim supn→∞ d(wn, q) ≤ α, lim supn→∞ d(zn, q) ≤ α and
limn→∞ d(((1− νn)wn ⊕ νnzn), q) = α for some α ≥ 0. Then limn→∞ d(wn, zn) = 0.

Proposition 2.3 (Suzuki [18]). Let X be a CAT(0) space, C be a nonempty subset of
X and T : C → C be any mapping. Then:

(i) If T is nonexpansive then T is a Suzuki generalized nonexpansive mapping.

(ii) If T is a Suzuki generalized nonexpansive mapping and has a fixed point, then T
is a quasi-nonexpansive mapping.

(iii) If T is a Suzuki generalized nonexpansive mapping, then d(w,T z) ≤ 3d(T w,w)+
d(w, z) for all w, z ∈ C .
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Lemma 2.4 (Suzuki [18]). Let X be a CAT(0) space and C be a weakly compact con-
vex subset of X . Let T be a mapping on C . Assume that T is a Suzuki generalized
nonexpansive mapping. Then T has a fixed point.

Let X be a CAT(0) space, C be a nonempty closed convex subset of X , and let {un}
be a bounded sequence in X . u ∈ X , we set

r(u, {un}) = lim sup
n→∞

d(u, un).

The asymptotic radius of {un} relative to C is given by

r(C , {un}) = inf{r(u, {un}) : u ∈ C },

and the asymptotic center of {un} relative to C is the set

A (C , {un}) = {u ∈ C : r(u, {un}) = r(C , {un})}.

Lemma 2.5 (Kirk and Panyanak[16]). Every bounded sequence in a complete CAT(0)
space always has a ∆-convergent subsequence.

3. Main results

Theorem 3.1. Let X be a Hadamard space, C be a nonempty closed convex subset of X ,
and T : C → C be a Suzuki generalized nonexpansive mapping with F (T ) ̸= ∅. For arbi-
trarily chosen u0 ∈ C , let the sequence {un} be generated by (1.3) then limn→∞ d(un, q)
exists for any q ∈ F (T ).

Proof. Let q ∈ F (T ) and p ∈ C . Since T is a Suzuki generalized nonexpansive mapping,
we obtain

1

2
d(q,T q) = 0 ≤ d(q, p) implies that d(T q,T p) ≤ d(q, p).

Using Lemma 2.1(i) and Proposition 2.3(ii), we have

d(zn, q) = d(((1− sn)un

⊕
snT un), q)

≤ (1− sn)d(un, q) + snd(T un, q)

≤ (1− sn)d(un, q) + snd(un, q)

= d(un, q).

(3.1)

Using (3.1), we obtain

d(wn, q) = d(((1− tn)zn
⊕

tnT zn), q)

≤ (1− tn)d(zn, q) + tnd(T zn, q)

≤ (1− tn)d(zn, q) + tnd(zn, q)

≤ d(zn, q)

≤ d(un, q).

(3.2)
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It follows that

d(xn+1, q) = d(((1− νn)T zn
⊕

νnT wn), q)

≤ (1− νn)d(T zn, q) + νnd(T wn, q)

≤ (1− νn)d(zn, q) + νnd(wn, q)

≤ (1− νn)d(un, q) + νnd(un, q)

= d(un, q).

(3.3)

This implies that {d(un, q)} is bounded and non-increasing for all p ∈ F (T ). Therefore,
limn→∞ d(un, q) exists.

Theorem 3.2. Let X , C , T and {un} satisfy the hypotheses of Theorem 3.1, where
{sn}, {tn}, {νn} are sequences of real numbers in [a, b] for some a, b with 0 < a ≤ b < 1.
Then F (T ) ̸= ∅ if and only if {un} is bounded and limn→∞ d(un,T un) = 0.

Proof. Assume F (T ) ̸= ∅ and let q ∈ F (T ). Using Theorem 3.1, limn→∞ d(un, q) exists
and {un} is bounded. Let

lim
n→∞

d(un, q) = α. (3.4)

From (3.1), (3.2) and (3.4), we get

lim sup
n→∞

d(zn, q) ≤ lim sup
n→∞

d(un, q) ≤ α (3.5)

and

lim sup
n→∞

d(wn, q) ≤ lim sup
n→∞

d(un, q) ≤ α. (3.6)

Using Proposition 2.3(ii), we obtain

d(T un, q) = d(T un,T q) ≤ d(un, q) ⇒ lim sup
n→∞

d(T un, q) ≤ lim sup
n→∞

d(un, q) ≤ α.

(3.7)

In the same way,

d(T zn, q) = d(T zn,T q) ≤ d(un, q) ⇒ lim sup
n→∞

d(T zn, q) ≤ lim sup
n→∞

d(un, q) ≤ α

(3.8)

and

d(T wn, q) = d(T wn,T q) ≤ d(un, q) ⇒ lim sup
n→∞

d(T wn, q) ≤ lim sup
n→∞

d(un, q) ≤ α.

(3.9)

Again,

lim
n→∞

d(xn+1, q) = lim
n→∞

d(((1− νn)T zn
⊕

νnT wn), q) = α. (3.10)

From (3.8)–(3.10) and using Lemma 2.2, we get

lim
n→∞

d(T zn,T wn) = 0. (3.11)
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On the other hand,

d(xn+1, q) = d(((1− νn)T zn ⊕ νnT wn), q)

≤ (1− νn)d(T zn, q) + νnd(T wn, q)

≤ (1− νn)d(zn, q) + νnd(wn, q)

= d(zn, q)− νnd(zn, q) + νnd(wn, q).

(3.12)

This implies that

d(xn+1, q)− d(zn, q)

νn
≤ d(wn, q)− d(zn, q). (3.13)

Then,

d(xn+1, q)− d(zn, q) ≤
d(xn+1, q)− d(zn, q)

νn
≤ d(wn, q)− d(zn, q) (3.14)

implies that

d(xn+1, q) ≤ d(wn, q). (3.15)

Hence,

α ≤ lim inf
n→∞

d(wn, q). (3.16)

From (3.6) and (3.16), we get

α = d(wn, q)

= d(((1− tn)zn
⊕

tnT zn), q)
(3.17)

From (3.5), (3.8), (3.17) and using Lemma 2.2, we get

lim
n→∞

d(zn,T zn) = 0. (3.18)

From (3.1) and (3.2), we get

d(wn, q) ≤ d(zn, q) ≤ d(un, q). (3.19)

This gives

lim
n→∞

d(zn, q) = α. (3.20)

Using Lemma 2.1(ii),

d(zn, q)
2 = d(((1− sn)un

⊕
snT un), q)

2

≤ (1− sn)d(un, q)
2 + snd(T un, q)

2 − sn(1− sn)d(un,T un)
2

≤ (1− sn)d(un, q)
2 + snd(un, q)

2 − sn(1− sn)d(un,T un)
2

= d(un, q)
2 − sn(1− sn)d(un,T un)

2.

(3.21)

So,

d(un,T un)
2 =

1

sn(1− sn)
(d(un, q)

2 − d(zn, q)
2). (3.22)

Using (3.4) and (3.20), lim supn→∞ d(T un, un) ≤ 0 and hence,

lim
n→∞

d(un,T un) = 0. (3.23)
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Conversely, assume {un} is bounded and limn→∞ d(un,T un) = 0. Let q ∈ A (C , {un}).
By Proposition 2.3(iii), we obtain

r(T q, {un}) = lim sup
n→∞

d(un,T q)

≤ lim sup
n→∞

(3d(T un, un) + d(un, q))

≤ lim sup
n→∞

d(un, q)

= r(q, {un}).

(3.24)

This implies that T q ∈ A (C , {un}). Since X is uniformly convex, A (C , {un}) is a
singleton and hence we have T q = q. Thus F (T ) ̸= ∅.

Theorem 3.3. Let C , X , T and {un} be as in Theorem 3.2 with F (T ) ̸= ∅. Then
{un}, ∆-converges to a fixed point of T .

Proof. The proof of the following ∆-convergence theorem is similar to the proof of [19].

Theorem 3.4. Let C , X , T and {un} be as in Theorem 3.2 such that C is compact
subset of X . Then {un} converges strongly to a fixed point of T .

Proof. Using Lemma 2.4, we have F (T ) ̸= ∅ and Theorem 3.1 we have limn→∞ d(T un, un) =
0. Since C is compact, there exists a subsequence {unl

} of {un} such that {unl
} converges

strongly to p for some q ∈ C . From Proposition 2.3(iii), we have

d(unl
,T q) ≤ 3d(T unl

, unl
) + d(unl

, q), ∀n ≥ 1.

Tanking l → ∞, we obtain T q = q, i.e., q ∈ F (T ). From Theorem 3.1, limn→ d(un, q)
exists for every q ∈ F (T ) and hence the {un} converge strongly to q.

A mapping T : C → C is said to satisfy Condition (I) [20] if there exists a non-decreasing
function f : [0,∞) → [0,∞) with f(0) = 0 and f(α) > 0 for all α > 0 such that

d(u,T u) ≥ f(d(u, F (T )), ∀u ∈ C .

Theorem 3.5. Let C , X , T and {un} be as in Theorem 3.2 with F (T ) ̸= ∅. If T
satisfies condition (I), then {un} converges strongly to a fixed point of T .

Proof. Using Theorem 3.1, we have limn→∞ d(un, q) exists for all q ∈ F (T ) and limn→∞ d(un, F (T ))
exists. Suppose limn→∞ d(un, q) = α for some α ≥ 0. If α = 0 then the result follows.
Assume α > 0, from the hypothesis and condition (I),

f(d(un, F (T ))) ≤ d(T un, un). (3.25)

Since F (T ) ̸= ∅, using Theorem 3.2, we have limn→∞ d(T un, un) = 0. Thus (3.25) implies
that

lim
n→∞

f(d(un, F (T ))) = 0. (3.26)

Since f is a nondecreasing function, from (3.26) we have limn→∞d(un, F (T )) = 0. Hence,
we have a subsequence {unl

} of {un} and a sequence {wl} ⊂ F (T ) such that

d(unl
, wl) <

1

2l
, ∀ l ≥ 1.
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Using (3.4), we obtain

d(unl+1
, wl) ≤ d(unl

, wl) <
1

2l
, ∀ l ≥ 1.

Thus,

d(wl+1, wl) ≤ d(wl+1, ul+1) + d(ul+1, wl)

≤ 1

2l+1
+

1

2l

<
1

2l−1

→ 0 as l → ∞.

This shows that {wl} is a Cauchy sequence in F (T ) and it converges to a point q. Since
F (T ) is closed, q ∈ F (T ) and then {unl

} converges strongly to q. Since limn→∞d(un, q)
exists, we have un → q ∈ F (T ).

4. Numerical illustrations

Define a mapping T : [4, 5] → [4, 5] by

T w =


9− w, if w ∈

[
4,

37

9

)
,

w + 40

9
, if w ∈

[
37

9
, 5

]
.

Next, we show that T is a Suzuki generalized nonexpansive mapping but not nonexpan-
sive.

Take w =
411

100
and z =

37

9
, then

d(T w,T z) = |T w − T z|

=

∣∣∣∣9− 409

100
− 397

81

∣∣∣∣
=

71

8100

>
1

900
= |w − z|
= d(w, z).

Thus, T is not a nonexpansive mapping.
Now, we verify that T is a Suzuki generalized nonexpansive mapping.
Case I. Let w ∈

[
4, 37

9

)
, then 1

2d(w,T w) = 9−2w
2 ∈

(
7
18 ,

1
2

]
. For 1

2d(w,T w) ≤ d(w, z)

we must have 9−2w
2 ≤ z − w, i.e., 9

2 ≤ z, hence z ∈
[
9
2 , 5

]
. We have

d(T w,T z) =

∣∣∣∣z + 40

9
− (9− w)

∣∣∣∣ = ∣∣∣∣z + 9w − 41

9

∣∣∣∣ < 1

9
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and

d(w, z) = |w − z| =
∣∣∣∣379 − 9

2

∣∣∣∣ = 7

18
>

1

9
.

Thus, 1
2d(w,T w) ≤ d(w, z) ⇒ d(T w,T z) ≤ d(w, z).

Case II. Let w ∈ [ 379 , 5], then 1
2d(w,T w) = 1

2 |
w+40

9 − w| = 40−8w
18 ∈ [0, 64

18 ]. For
1
2d(w,T w) ≤ d(w, z), we must have 40−8w

18 ≤ |z − w|, which gives two possibilities:

(a). Let w < z, then 40−8w
18 ≤ z − w ⇒ z ≤ 40+10w

18 ⇒ z ∈ [ 730162 , 5] ⊂ [ 379 , 5]. So

d(T w,T z) =

∣∣∣∣w + 40

9
− z + 40

9

∣∣∣∣ = 1

9
d(w, z) ≤ d(w, z).

Thus, 1
2d(w,T w) ≤ d(w, z) ⇒ d(T w,T z) ≤ d(w, z).

(b) . L e t w > z, then 40−8w
18 ≤ z − w ⇒ z ≤ w − 40−8w

18 = 26w−40
18 ⇒ z ∈ [ 602162 , 5]. Since

z ∈ [4, 5]. So z ≤ 26w−40
18 ⇒ w ∈ [ 11226 , 5] the case is w ∈ [ 11226 , 5] and z ∈ [4, 5].

Now, w ∈ [ 11226 , 5] and ∈ [ 379 , 5] is already included in (a). So, let w ∈ [ 11226 , 5] and

z ∈ [4, 37
9 ) then

d(T w,T z) =

∣∣∣∣w + 40

9
− (9− z)

∣∣∣∣ = ∣∣∣∣w + 9z − 41

9

∣∣∣∣ .
For convenience, first we consider w ∈ [ 11226 , 39

8 ] and z ∈ [4, 37
9 ), then d(T w,T z) ≤ 3

72

and d(w, z) > 23
117 . Thus, d(T w,T z) ≤ d(w, z).

Next consider w ∈ [ 398 , 5] and z ∈ [4, 37
9 ), then d(T w,T z) ≤ 1

9 and d(x, y) > 55
72 . Thus,

d(T w,T z) ≤ d(w, z). Hence, 1
2d(w,T w) ≤ d(w, z) ⇒ d(T w,T z) ≤ d(w, z).

Therefore, T is a Suzuki generalized nonexpansive mapping. With help of Matlab Pro-
gram Software, we obtain the comparison Table 1 and Figure 1 for various iterative
schemes with control sequences νn = 0.65, tn = 0.35, sn = 0.95 and initial guess u1 = 4.2.

Table 1. Results comparison

n Algorithm (1.3) Thakur S
1 4.2000 4.2000 4.2000
2 4.9890 4.9627 4.9291
3 4.9998 4.9983 4.9937
4 5.0000 4.9999 4.9994
5 5.0000 5.0000 5.0000
6 5.0000 5.0000 5.0000
7 5.0000 5.0000 5.0000
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Figure 1. Graph of results comparison

5. Conclusions

The extension of the linear version of the fixed point results to nonlinear domains has its
own significance. We extend a linear version of convergence results to the fixed point of a
mapping satisfying Suzuki generalized nonexpansive mappings for iteration process [12]
and [13] to nonlinear Hadamard spaces.
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