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1. Introduction

The Variational inequality problem (VIP) is an approach of finding a point p ∈ E such
that

⟨A(p), x− p⟩ ≥ 0, ∀ x ∈ E, (1.1)

where E is a nonempty closed convex subset of a real Hilbert space H, A : H −→ H is a
monotone operator and ⟨·, ·⟩ denotes an inner product space. It is a fundamental problem
in optimization theory which is applied in many areas of study such as transportation
problems, equilibrium, economics, engineering and so on (see [3, 4, 9, 11, 17, 19–21, 23,
27, 28, 32–35, 37, 43, 44]).

There are basically two approaches to the variational inequality (VIP) problem, namely,
regularization and the projection method. Based on these, many study have been carried
out and a number of algorithms have been considered and proposed (see for example
[10, 12–15, 25, 26, 40, 41]).

In this study we are interested in the projection method. The basic idea of the projection
method comes from extending the gradient projection method for minimizing a function
f(x) subject to x ∈ E which is given by:

xn+1 = PE (xn − λn ▽ f(xn)) , ∀ n ≥ 1, (1.2)

where {λn} is a sequence of positive real numbers satisfying a particular condition and PE

is a metric projection onto E. Replacing the gradient operator ▽f(xn) with an operator
A gives an extension of the method to the problem (VIP), where a sequence {xn} is
generated by the following scheme:

xn+1 = PE (xn − λnAxn) , ∀ n ≥ 1. (1.3)

However, a slightly strong assumption of strong monotonicity or strong inverse monotonic-
ity needs to be placed on the operator A to guarantee the convergence of the sequence
generated by this scheme (see [48]). To solve this problem, Korpelevich proposed the ex-
tragradient method for solving saddle point problem in [22], which was further extented
to solving VI Problems.{

zn = PE (xn − λAxn) ,

xn+1 = PE (xn − λAzn) n ≥ 1.
(1.4)

The method requires only the operator A to be monotone and L - Lipschitz continuous
for the convergence of the generated sequence {xn} with λ ∈ (0, 1/L).

Actually, the extragradient method needs to compute two projections onto the set E
in each iteration, which is going to be difficult in a situation where E is not simple to
project onto. Censor et al introduced the subgradient extragradient method in [6, 7] to
overcome this drawback, where he replaced the second projection with a projection onto
a constructible half - space which has an explicit formula to compute. The scheme is in
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the following form:
zn = PE (xn − λAxn) ,

Tn = {x ∈ H : ⟨xn − λAxn − zn, x− zn⟩}
xn+1 = PTn (xn − λAzn) n ≥ 1.

(1.5)

The subgradient extragradient method have been studied, modified and improved by a
lot of researches to come up with varient methods. Most of these modifications used a
fixed or variable step size which depend on the factorials of the underlying operator such
as strongly or strongly inverse modules and lipschitz constant, therefore those algorithms
require the prior knowledge of such factorials to be implemented. In a situation where
such constants are hard to compute or does not exist, such algorithms may be difficult or
impossible to implement. Recently, some authors present some algorithms with variable
steps size and independent of the strongly pseudomonotone and the lipschitzs constant
in [18, 38, 42, 46].

Recently, inertial schemes have received increasing interests ( see for instance [2, 13,
14, 29, 30, 42, 45, 49]). Similar to the most of inertial type algorithms, the sequences
generated by these algorithms are established to be weakly convergent to the solution of
the problems. However, in the paper [24] for fixed point problems and recently in [39]
and [42] introduced an inertial type algorithms with strong convergence.

In this paper, motivated and inspired by the above works, we proposed an accelerated sub-
gradient extragradient algorithm by incorporating the inertial extrapolation step. The
aim of this modification is to obtain an algorithm with faster and strong convergence
properties which performs better under mild conditions imposed on the parameters. Fur-
thermore, we present several numerical examples to illustrate the perfomance and the
effect of the inertial step when compared to the existing algorithms in the literature.

This paper is organized as follows: In Section , we give some definitions and lemmas which
we will use in our convergence analysis. In Section we present the convergence analysis
of our proposed algorithm and lastly, in Section , we illustrate the inertial effect and the
computational performance of our algorithms by giving some examples.

2. Preliminaries

This section, recalls some known facts and necessary tools that we need for the convergence
analysis of our method.

Throughout this article H is a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥·∥,
E is a nonempty, closed and convex subset of H. The notation xn ⇀ x (respxn −→ x) is
used to indicate that, respectively, the sequence {xn} converges weakly (strongly) to x.
The following are known to hold in a Hilbert space:

∥x± y∥2 = ∥x∥2 + ∥y∥2 ± 2 ⟨x, y⟩ (2.1)
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and

∥αx+ (1− α)y∥2 = α∥x∥2 + (1− α)∥y∥2 − α(1− α)∥x− y∥2 (2.2)

for all x, y ∈ H and α ∈ R [5].

Definition 2.1. Let A : H −→ H be a mapping defined on a real Hilbert space H. A is
said to be:

(1) Strongly monotone if there exists γ > 0 such that

⟨A(x)−A(y)⟩ ≥ γ∥x− y∥2 ∀x, y ∈ E.

(2) Monotone if
⟨A(x)−A(y), x− y⟩ ≥ 0, ∀x, y ∈ E.

(3) Strongly pseudomonotone if if there exists γ > 0 such that

⟨A(x), y− x⟩ ≥ 0, =⇒ ⟨A(y), x− y⟩ ≤ −γ∥x− y∥2 ∀x, y ∈ E.

(4) L - Lipschitz continuous on H if there exists a constant L > 0 such that

∥Ax−Ay∥ ≤ L ∥x− y∥ , ∀x, y ∈ H.

Lemma 2.2. [5] Let E be a closed convex subset of H and PE be the metric projection
from H onto E (i.e., for x ∈ H, ⟨x− PEx⟩ = inf{⟨x− y⟩ : y ∈ E}. Then, for any x ∈ H,
y = PEx if and only if there holds the relation:

⟨x− y, y − y⟩ ≤ 0, ∀ y ∈ E

Lemma 2.3. [1] Let {αn} and {βn} be a sequences of nonnegative real numbers, if∑∞
n=1 α

n = ∞ and
∑∞

n=1 α
nβn ≤ ∞ then limn→∞ βn = 0.

Lemma 2.4. [31] Let {φn}, {δn} and {αn} be the sequences in [0,+∞) such that, for
each n ≥ 1,

φn+1 ≤ φn + αn(φn − φn−1) + δn,
∑

δn < +∞
and there exists a real number α with 0 ≤ αn ≤ α ≤ 1 for all n ≥ 1. Then the following
conclusions hold:

(i)
∑

[φn − φn−1]+ < +∞, where [t]+ = max{t, 0};

(ii) there exists φ∗ ∈ [0,+∞) such that limφn = φ∗.

3. An algorithm for strongly psedumonotone variational in-

equality problems

Assumption 3.1. The following conditions are assumed for the convergence of our
method:

(A1) The feasible set E is a nonempty closed and convex subset of the real Hilbert
space H.

(A3) The solution set Ω of the problem VIP (1.1) is nonempty.
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(A2) A : H −→ H is a strongly psedumonotone and L - Lipschitz on H.

(A4) The real sequence {αn} is a non-decreasing and {λn} ⊂ (0, 1] is a sequence of
positive real numbers with limn→∞ λn = 0 and

∑∞
n=1 λ

n = ∞.

Algorithm 1 Accelerated Subgradient Extragradient Algorithm

Initialization: Choose x0, x1 ∈ H and t0 = 1, λn ∈
(
0,
√
2− 1

)
,

Iterative Steps: Assume that xn−1, xn ∈ H, and tn are known, calculate tn+1, wn

and yn as follows:
Step 1. Compute

tn+1 =
−0.1 +

√
1 + 4(tn)2

2
and

wn = xn − αn(xn − xn−1),

where

αn =
tn − 1

tn+1
.

Step 2.Compute
yn = Pc (wn − λnAwn) .

Step 3.Construct

Tn = {x ∈ H : ⟨wn − λnAwn − yn, x− yn⟩ ≤ 0} .
Compute

xn+1 = PTn (wn − λnAyn) .

If yn =: xn+1 = yn then stop and yn is a solution of problem (VIP), otherwise
set n = n+ 1 and go back to Step 1.

Lemma 3.2. The sequence {tn} generated by Algorithm 1 is monotonically increasing
and bounded from below.

n+ 1

2
≤ tn ∀n ≤ 0

Lemma 3.3. The following holds for each p ∈ V I(A,C) and n ≥ 0,

∥xn+1−p∥2 ≤ ∥wn−p∥2−(1−Lλn)∥wn−yn∥2−(1−Lλn)∥xn+1−yn∥2−γ∥yn−p∥2.
(3.1)

Proof. Let tn = wn − λnAyn, then

∥xn+1 − p∥2 = ∥PTn(tn)− p∥2

= ⟨PTn(tn)− tn + tn − p, PTn(tn)− tn + tn − p⟩
= ∥tn − p∥2 + ∥PTn(tn)− tn∥2 + 2 ⟨PTn(tn)− tn, tn − p⟩
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Notice that

2∥PTn(tn)− tn∥2 + 2 ⟨PTn(tn)− tn, tn − p⟩ ,
= 2 ⟨PTn(tn)− tn, PTn(tn)− tn⟩+ 2 ⟨PTn(tn)− tn, tn − p⟩ ,
= 2 ⟨PTn(tn)− tn, PTn(tn)− p⟩ ,
= 2

⟨
xn+1 − (wn − λnAyn), xn+1 − (wn − λnAyn)

⟩
≤ 0.

(3.2)

Therefore,

∥PTn(tn)− tn∥2 + 2 ⟨PTn(tn)− tn, tn − p⟩ ≤ −∥PTn(tn)− tn∥2, (3.3)

Hence,

∥xn+1 − p∥2 ≤ ∥tn − p∥2 − ∥PTn(tn)− tn∥2,
= ∥wn − λnAyn − p∥2 − ∥xn+1 − (wn − λnAyn)∥2

= ∥wn − p∥2 − ∥xn+1 − wn∥2 + 2λn
⟨
Ayn, p− xn+1

⟩
Since p is a solution of problem (VIP), ⟨Ap, x− p⟩ ≥ 0 for all x ∈ C. It follows from the
strong monotonicity of A that ⟨Ax, x− p⟩ ≤ ∥x− p∥2. Thus, taking x := yn we have for
all yn ∈ C

⟨Ayn, yn − p⟩ ≤ γ∥yn − p∥2

, this implies that⟨
Ayn, yn − xn+1

⟩
= ⟨Ayn, p− yn⟩+

⟨
Ayn, yn − xn+1

⟩
≤

⟨
Ayn, yn − xn+1

⟩
− ∥yn − p∥2

(3.4)

Combining the relation 3 with the relation 3, we obtain

∥xn+1 − p∥2

= ∥wn − p∥2 − ∥xn+1 − wn∥2 + 2λn
⟨
Ayn, yn − xn+1

⟩
− 2λnγ∥yn − p∥2,

= ∥wn − p∥2 − ∥xn+1 − yn∥2 − ∥yn − wn∥2 + 2
⟨
xn+1 − yn, yn − wn

⟩
,

+ 2λn
⟨
Ayn, yn − xn+1

⟩
− 2λnγ∥yn − p∥2,

= ∥wn − p∥2 − ∥xn+1 − yn∥2 − ∥yn − wn∥2 + 2
⟨
wn − λnAyn − yn, xn+1 − yn

⟩
,

− γ∥yn − p∥2.

From the definition of yn and the fact that xn+1 ∈ Tn, we have

2
⟨
wn − λnAyn − yn, xn+1 − yn

⟩
= 2

⟨
wn − λnAwn − yn, xn+1 − yn

⟩
,

+ 2λn
⟨
Awn −Ayn − yn, xn+1 − yn

⟩
,

≤ 2λn
⟨
Awn −Ayn − yn, xn+1 − yn

⟩
,

≤ 2Lλn∥wn − yn∥∥xn+1 − yn∥,
≤ Lλn∥wn − yn∥2 + Lλn∥xn+1 − yn∥2.

(3.5)
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Now, from () and (), we have

∥xn+1−p∥2 ≤ ∥wn−p∥2−(1−Lλn)∥wn−yn∥2−(1−Lλn)∥xn+1−yn∥2−γ∥yn−p∥2.

Hence, the proof.

Theorem 3.4. The sequence xn, yn generated by Algorithm 1 converges strongly to some
solution of problem (VIP).

Proof. From Lemma 3.3, we have

∥xn+1 − p∥2 ≤ ∥wn − p∥2 − (1− Lλn)∥wn − yn∥2 − (1− Lλn)∥xn+1 − yn∥2

− γ∥yn − p∥2.
≤ ∥wn − p∥2 − (1− Lλn)∥wn − yn∥2 − (1− Lλn)∥xn+1 − yn∥2

≤ ∥wn − p∥2 − (1− Lλn)

[
∥wn − yn∥2 + ∥xn+1 − yn∥2

]
≤ ∥wn − p∥2 − (1− Lλn)

2

[
∥wn − yn∥2 + ∥xn+1 − yn∥2

]
≤ ∥wn − p∥2 − (1− Lλn)

2
∥xn+1 − wn∥2

It follows from the Assumption that limn→∞ λn = 0. Therefore, there exist N ∈ N such
that λn ≤ 1

2L for all n ≥ N . It now follows from (??) that there exist N ∈ N such that
1−Lλn

2 ≥ 1
4 for all n ≥ N . Thus,

∥xn+1 − p∥2 ≤ ∥wn − p∥2 − 1

4
∥xn+1 − wn∥2. (3.6)

By the definition of wn, we have

∥wn − p∥2 = ∥xn − αn(xn − xn−1)− p∥2,
= ∥(1 + αn)(xn − p)− αn(xn−1 − p)∥2,
= (1 + αn)∥xn − p∥2 − αn∥xn−1 − p∥2 + αn(1 + αn)∥xn − xn−1∥2.

(3.7)

On the other hand, we have

∥xn+1 − wn∥2

= ∥xn+1 − xn∥2 + (αn)2∥xn − xn−1∥2 − 2αn
⟨
xn+1 − xn, xn − xn−1

⟩
,

≥ ∥xn+1 − xn∥2 + (αn)2∥xn − xn−1∥2 − 2αn∥xn+1 − xn∥∥xn − xn−1∥,
≥ (1− αn)∥xn+1 − xn∥2 + ((αn)2 − αn)∥xn − xn−1∥2.

(3.8)
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Combining (3.6), (3.7) and (3.8), we have

∥xn+1 − p∥2 ≤ (1 + αn)∥xn − p∥2 − αn∥xn−1 − p∥2 + αn(1 + αn)∥xn − xn−1∥2

− 1

4
(1− αn)∥xn+1 − xn∥2 − 1

4
((αn)2 − αn)∥xn − xn−1∥2,

= (1 + αn)∥xn − p∥2 − αn∥xn−1 − p∥2 − 1

4
(1− αn)∥xn+1 − xn∥2

+

[
αn(1 + αn)− 1

4
((αn)2 − αn)

]
∥xn − xn−1∥2,

= (1 + αn)∥xn − p∥2 − αn∥xn−1 − p∥2 − 1

4
(1− αn)∥xn+1 − xn∥2

+

[
3

4
(αn)2 +

5

4
αn

]
∥xn − xn−1∥2,

= (1 + αn)∥xn − p∥2 − αn∥xn−1 − p∥2 − βn∥xn+1 − xn∥2

+ γn∥xn − xn−1∥2,
(3.9)

where βn = 1
4 (1− αn) ≥ 0 and γn = 3

4 (α
n)2 + 5

4α
n ≥ 0.

Put Γn = ∥xn−p∥2−αn∥xn−1−p∥2+γn∥xn−xn−1∥2, it follows from (3.9) and the fact
that the sequence αn is a non-decreasing sequence that,

Γn+1 − Γn = ∥xn+1 − p∥2 − (1 + αn+1)∥xn−1 − p∥2 + αn∥xn−1 − p∥2,
+ γn+1∥xn+1 − xn∥2 − γn∥xn − xn−1∥2,

= ∥xn+1 − p∥2 − (1 + αn)∥xn−1 − p∥2 + αn∥xn−1 − p∥2,
+ γn+1∥xn+1 − xn∥2 − γn∥xn − xn−1∥2,

≤ −βn∥xn+1 − xn∥2 + γn+1∥xn+1 − xn∥2,
= −(βn − γn+1)∥xn+1 − xn∥2.

(3.10)

It can be seen that for n ≥ N , we have

βn − γn+1 =
1

4
(1− αn)− 3

4
(αn+1)2 − 5

4
αn+1,

≥ 1

4
(1− αn+1)− 3

4
(αn+1)2 − 5

4
αn+1,

≥ 1

4
(1− α)− 3

4
α2 − 5

4
α,

≥ 1

4
− 6

4
α− 3

4
α2.

(3.11)

It follows from (3.10) and (3.11) that,

Γn+1 − Γn ≤ −τ∥xn+1 − xn∥, (3.12)

where τ = 1
4 − 6

4α− 3
4α

2 ≥ 0. This implies that

Γn+1 − Γn ≤ 0. (3.13)
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It now follows that the sequence {Γn} is a nonincreasing sequence. On the other hand,
we have

Γn = ∥xn − p∥2 − αn∥xn−1 − p∥2 + γn∥xn − xn−1∥,
≥ ∥xn − p∥2 − αn∥xn−1 − p∥2.

(3.14)

Therefore, for all n ≥ N , we obtain

∥xn − p∥2 ≤ αn∥xn−1 − p∥2 + Γn,

≤ α∥xn−1 − p∥2 + ΓN ,

≤ ... ≤ αn∥xN − p∥2 + ΓN (αn−1 + ...+ 1),

≤ αn−N∥xN − p∥2 + ΓN

1− α
.

(3.15)

Also we have,

Γn+1 = ∥xn+1 − p∥2 − αn+1∥xn − p∥2 + γn+1∥xn+1 − xn∥,
≥ −αn+1∥xn − p∥2.

(3.16)

It follows from (3.15) and (3.16), we have

−Γn+1 ≤ αn+1∥xn − p∥2 ≤ αn∥xn − p∥2 ≤ αn−N+1∥xN − p∥2 + αΓN

1− α
,

≤ ∥xN − p∥2 + αΓN

1− α
.

(3.17)

It now follows from (3.12) and (3.17) that

τ

k∑
n=N

∥xn+1 − xn∥2 ≤ ΓN − Γk+1 ≤ ∥xN − p∥2 + ΓN

1− α
. (3.18)

Letting k → ∞, we have

k∑
n=N

∥xn+1 − xn∥2 ≤ +∞, (3.19)

therefore, we have

∥xn+1 − xn∥2 → 0. (3.20)

From (3.8), we have

∥xn+1−wn∥2 = ∥xn+1−xn∥2+(αn)2∥xn−xn−1∥2−2αn
⟨
xn+1 − xn, xn − xn−1

⟩
,

(3.21)

Therefore,

∥xn+1 − wn∥2 → 0. (3.22)

It follows from (3.9), (3.19) and Lemma (cite) we have

lim
n→∞

∥xn − p∥2 → ∞. (3.23)
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By (3.7) we have

lim
n→∞

∥wn − p∥2 → ∞. (3.24)

From (3.20) and (3.22), we have

0 ≤ ∥xn − wn∥ = ∥xn − xn+1∥+ ∥xn+1 − wn∥. (3.25)

It follows from (3.1), (3.23) and (3.24) thtat

(1− λnL)∥yn − wn∥2 ≤ ∥wn − p∥2 − ∥xn+1 − p∥2 → 0. (3.26)

By (3.1) and (3.25) we get

lim
n→∞

∥yn − wn∥ = 0. (3.27)

From (3.25) and (3.27) we have

lim
n→∞

∥xn − yn∥ ≤ lim
n→∞

∥xn − wn∥+ lim
n→∞

∥wn − yn∥ = 0. (3.28)

We can now show that the sequence {xn} converges strongly to p, It follows from (3.1)
that

2λnγ∥yn − p∥2 ≤ −∥xn+1 − p∥2 + ∥wn − p∥2,
≤ −∥xn+1 − p∥2 + (1 + αn)∥xn − p∥2 − αn∥xn−1 − p∥2

+ αn(1 + αn)∥xn − xn−1∥2,
≤ (∥xn − p∥2 − ∥xn+1 − p∥2) + 2α∥xn − xn−1∥2

+ (αn∥xn − p∥2 − αn−1∥xn−1 − p∥2).

(3.29)

This implies

k∑
n=1

2λnγ∥yn − p∥2 ≤ ∥x1 − p∥2 − ∥xk+1 − p∥2 + αk∥xk − p∥2 − α0∥x0 − p∥2

+

k∑
n=1

2α∥xn − xn−1∥2

≤ ∥x1 − p∥2 + αk∥xk − p∥2 +
k∑

n=1

2α∥xn − xn−1∥2,

≤ M,

for some M > 0, therefore,

k∑
n=1

2λnγ∥yn − p∥2 ≤ +∞.

It follows from the assumption that
∑∞

n=1 λ
n = ∞ and Lemma (cite) that

lim
n→∞

inf ∥yn − p∥ = 0. (3.30)

It follows from (3.29) that there exist a subsequence {ynk} of {yn} such that

lim
n→∞

∥ynk − p∥ = 0.
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Table 1. The numerical results for example 4.1

EGM ISEGM MISEGM

λn m Iter. CPU(s) Iter. CPU(s) Iter. CPU(s)

1
n+1 50 3046 67.6559 2501 23.2553 2294 21.5560

1
(n+1) log(n+3) 50 7367 143.1685 3900 38.7113 3014 29.3706

log(n+3)
(n+1) 50 2119 21.9511 1655 18.0232 1122 11.9152

Since limn→∞ ∥xn − yn∥ = 0, we get that limn→∞ ∥xnk − p∥ = 0. On the other hand we
have limn→∞ ∥yn − p∥ = 0 ∈ R. Therefore, xn → 0 as n → ∞. Hence, the proof.

4. Numerical Illustrations

Some numerical results will be presented in this section to examine the convergence of
the algorithm 1 compared to the existing algorithms. The MATLAB program was run
on a PC (with Intel(R) Core(TM)i5-6200U CPU @ 2.30GHz 2.40GHz, RAM 8.00 GB) in
MATLAB version 9.5 (R2018b).

• Hieu algorithm 1 [16] (shortly, EGM) and Dn = ∥xn − yn∥2.

• Hieu algorithm 1 [42] (shortly, ISEGM), αn = 1
10 and Dn = ∥wn − yn∥2.

• Our proposed algorithm 1 (shortly, MISEGM) and Dn = ∥wn − yn∥2.

Example 4.1. Consider the linear operator F (x) := Mx+q where which is taken from [?
] and has been considered by many authors for numerical experiments, see, for example,
[47], where

M = BBT + S +D

and B is an m ×m matrix, S is an m ×m skew-symmetric matrix, and D is an m ×m
diagonal matrix, whose diagonal entries are nonnegative. The feasible set C ⊂ Rm is
closed and convex and defined as

C = {x ∈ Rm : −5 ≤ xi ≤ 5}.
For experiments, the starting point x−1 = x0 = (1, 1, · · · , 1)T ∈ Rm and the matrices
B, S, q are randomly generated in the interval (−2, 2) and D is randomly generated
in the interval (0, 2). Figures 1-6 and table 1 illustrate the comparison of our proposed
algorithm.

Example 4.2. Let F : R2 → R2 be defined by

F (x1, x2) = (x1 + x2 + sinx1;−x1 + x2 + sinx2) ∀x ∈ R2,

and let C = {x ∈ R2 : −5 ≤ xi ≤ 5}. It is not hard to check that F is strongly
pseudomonotone and Lipschitz continuous. During this experiment 4.2, we take x−1 =
x0 = (1, 1)T . Figures 7-12 and table 2 illustrate the comparison of our proposed algorithm.
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Table 2. The numerical results for example 4.2

EGM ISEGM MISEGM

λn TOL Iter. CPU(s) Iter. CPU(s) Iter. CPU(s)

1
n+1 10−15 1155 21.4736 598 4.7345 431 3.1472

1
(n+1) log(n+3) 10−15 8383 164.8228 6095 59.8131 4800 44.5205

log(n+3)
(n+1) 10−20 680 12.0765 417 3.0595 319 2.1016
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Figure 7. Example 4.2 for λn = 1
n+1 .
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5. Conclusion

In this article, we presented a strong convergence inertial projection algorithm by in-
corporating the inertial term with the subgradient extragradient method for variational
inequality problems. We have shown that the sequence generated by our proposed algo-
rithm converges strongly under mild assumptions imposed on the underlying operator.
The proposed algorithm is one of the few inertial algorithms whose iterates converge
strongly to the solution of the given problem. We also presented some numerical exam-
ples to show the computational performance of our proposed algorithm. Moreover we
compared the proposed algorithm with other algorithms in the literature, our proposed
algorithms performed better in both number of iteration and computational time com-
pared to these algorithms. As a future research, we will consider modifications of the
proposed algorithm by introducing line search procedure such as the Armijo line search.
We will give more computational experiments and consider probems in infinite Hilbert
dimensional space.
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