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1. INTRODUCTION

Let Hy; and Hy be real Hilbert spaces with inner product (,-) and norm || - ||. Let
C and @ be nonempty closed convex subsets of H; and Hj, respectively. Let {z,} be
a sequence in Hip, then z, — x (respectively, x,, — x) will denote strong (respectively,
weak) convergence of the sequence {z,}. A mapping S : C'— C is called nonexpansive if
1Sz = Sy|| < [lo —yl|, Va,y € C.

The fixed point problem (FPP) for the mapping S is to find 2 € C such that

Sz =x. (1.1)

We denote Fiz(S) := {z € C: Sz =z}, the set of solutions of FPP.

Assume throughout the paper that S is a nonexpansive mapping such that Fiz(S) # 0.
Recall that a self-mapping f : C — C is a contraction on C' if there exists a constant
a € (0,1) and z,y € C such that ||f(z) — f(y)]| < aflz — y.
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Given a nonlinear mapping A : C — H;. Then the variational inequality problem
(VIP) is to find u € C such that

(Au,v —u) >0, Yv € C. (1.2)

The solution of VIP (1.2) is denoted by VI(A,C). It is well known that if A is strongly
monotone and Lipschitz continuous mapping on C' then VIP (1.2) has a unique solution.
There are several different approaches towards solving this problem in finite dimensional
and infinite dimensional spaces see [1—3] and the research in this direction is intensively
continued. Then VIP satisfies the following Lemma;

Lemma 1.1. For a given z € Hy,u € C satisfies the inequality
(u—2z,v—u) >0, YoeC, iffu= Pez, (1.3)
where Po is the projection of Hy onto a closed convex set C.

For finding an element of Fiz(S)NVI(A,C) when C is closed and convex, S is non-
expansive and A is a-inverse strongly monotone, Takashi and Toyoda [4] introduced the
following Mann-type itereative algorithm:

Tpa1 = QnTp + (1 — ) SPe(x, — \pAzy,), Yn >0, (1.4)

where S is nonexpansive P¢ is the metric projection of H onto C,zg = z € C,{a,} is
a sequence in (0,1) and {\,} is a sequence in (0,2«). They showed that, if Fiz(S) N
VI(A,C) # 0, then the sequence {x,,} converges weakly to some z € Fiz(S)NVI(A,C).
Nadezhkina and Takahashi [5] and Zeng and Yao [6] propose extragardient methods mo-
tivated by Korpelevié [7] for finding a common element of the fixed point set of a nonex-
pansive mapping and the solution set of a variational inequality problem.

Let Dy1,Dy : C — H be two mappings. Now we consider the following problem of
finding (z*,y*) € C' x C such that

(mDry* +2* —y*,z—a*) >0, Ve e C

(uoDox™ +y* —a*,x —y*) >0, Vo € C, (1.5)

which is called a general system of variational inequalities where 1 > 0 and us > 0 are
two constants. The set of solutions of problem (1.5) is denoted by GSVI(Dy, Dy, C).
In particular, if D; = Dy = A, then problem (1.5) reduces to the problem of finding
(z*,y*) € C x C such that

(mAy* +2* —y*, e —a*) >0, Ve € C

(o Ax* +y* —a*,x —y*) >0, Ve € C, (1.6)

which was defined by Verma [8] and is called the new system of variational inequalities.
Further, if 2* = y* additionally, the problem (1.6) reduces to the classical variational
inequality problem (1.2).

Ceng et al. [9] studied the problem (1.5) by transforming it into a fixed-point problem.
Precisely and for easy reference, we state their results in following lemma and theorem.
Lemma CWY [9] For given Z,5 € C, (Z,7) is a solution of (1.5) if and only if Z is a
fixed point of the mapping G : C — C defined by

G(z) = Po[Pc(xz — p1Dex) — p1 D1 Po(x — paDax)], Vo € C, (1.7)
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where § = Po(Z—p2D2Z). In particular, if the mapping D, : C — H is p;-inverse strongly
monotone for ¢ = 1,2, then the mapping G is nonexpansive provided pu; € (0,2u;) for
i=1,2.

Throughout this paper, the fixed-point set of the mapping G is denoted by G. Utilizing

Lemma CWY, they introduced and studied a relaxed extragradient method for solving
problem (1.5).
Theorem CWY [9] Let C' be a nonempty closed convex subset of a real Hilbert space
H. Let the mapping D; : C — H be n;-inverse strongly monotone for ¢ = 1,2. Let
S : C — H be a nonexpansive mapping with Fiz(S) NG # 0. Suppose 1 = u € C' and
{z,} is generated by

Yn = Po(zn, — poDazy),

1.8
Tpil = QpUu + ﬁnxn + 'YnSPC(yn - ,ulDlyn)a ( )

where p; € (0,2n;) for i = 1,2, and {a,},{Bn}, {7n} are three sequences in [0, 1] such
that

(i) an+ Bn+yn =1foralln>1;

o0
(ii) hman—O Zan—oo;
(iii) 0 < hm 1nfﬂn < hm supf, < 1.
n—oo

Then {x,} converges strongly to & = Pg;;(s)ngu and (Z,y) is a solution of problem (1.5),
where Y= Pc(f — uzsz).

It is clear that the above result unifies and extends some corresponding result in the
literature.

Based on the relaxed extragradient method and viscosity approximation method, Yao
et al. [10] proposed and analyzed an iterative algorithm for finding a common element of
strictly pseudocontractive mapping in a real Hilbert space H.

Theorem YLK [10] Let C' be a nonempty closed convex subset of a real Hilbert space H.
Let the mapping D; : C' — H be n;-inverse strongly monotone for i = 1,2. Let S : C — H
be a k-strictly pseudocontractive mapping with Fiz(S)NG # 0. Let Q : C — C be a

p-contraction with p € [0,%). For given zy € C arbitrarily, let {z,}, {y»}, and {z,} be
generated iterative by

zn = Po(xn — poDaxy,),
Yn = nQrp + (1 — a) Po(zn, — p1 D1 2s), (1.9)
Tpt1 = Bnn + 'YnPC(Zn - NlDlzn) +6,SYn, Vn >0,.

where p; € (0,2n;) for ¢ = 1,2, and {an},{Bn}, {1}, {0n} are four sequences in [0, 1]
such that

(i) Bn 4+ +dp =1 and (v, + 0n)k < v, < (1 —2p)J, for all n > 0;

(i

i)
(iii) 0 < hm 1nfﬂn < hm supﬁn < 1 and hm 1nf5 > 0;
v)

(iv) lim (%+1/(1 ~Butr) — (1 - /Bn)) “o.

Then the sequence {z,,} generated by (1.9) converges strongly to Z = Ppiy(3)ng@Z and
(Z,7) is a solution of the general system (1.5) of variational inequalities, where § =
Pc(.f? — /J,ng.f).

hman—O Zan—oo;
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Recall also a multi-valued mapping M : H; — 21 is called monotone if, for all
z,y € Hi,u € Mz and v € My such that

(x —y,u—v)>0.

A monotone mapping M is maximal if the Graph(M) is not properly contained in the
graph of any other monotone mapping. It is well known that a monotone mapping M is
maximal if and only if for (z,u) € Hy x Hy, (x —y,u—v) > 0 for every (y,v) € Graph(M)
implies that u € Mz.

Let M : H; — 21 be a multi-valued maximal monotone mapping. Then the resolvent
mapping JM : Hy — H; associated with M is defined by

JM(z) := (I + AM)~Y(z), Vo € Hy,

for some A > 0, where I stands for the identity operator on H;. Note that for all A > 0
the resolvent operator J /]\V[ is single-valued, nonexpansive, and firmly nonexpansive.

In 2011, Moudafi [11] introduced the following split monotone variational inclusion
problem: Find z* € H; such that

{ 0 € fi(z*) + Bi(z"),

1.10
y*=Ax" € Hy: 0€ fo(y*) + B2(y"), (110

where By : H; — 21 By : Hy — 22 are multi-valued maximal monotone mappings and
A is bounded linear operator, f; : Hy — Hj and fo : Ho — Hs are two given operators.

The split monotone variational inclusion problem (1.10) includes as special cases: the
split common fixed point problem, the split variational inequality problem, the split zero
problem, and the split feasibility problem, which have already been studied and used
in practice as a model in intensity-modulated radiation therapy treatment planning, see
[12] This formalism is also at the core of the modeling of many inverse problems arising
for phase retrieval and other real-world problems; for instance, in sensor networks in
computerized tomography and data compression.

If fi =0 and f» = 0, the problem (1.10) reduces to the following split variational
inclusion problem: Find z* € H; such that

0e€ Bl(x*),
{ y* = Ax* € Hy : 0 € By(y*), (1.11)

which constitutes a pair of variational inclusion problems connected with a bounded linear
operator A in two different Hilbert spaces H; and Hs. The solution set of problem (1.11)
is denoted by I' = {z* € Hy : 0 € By(z*),y* = Az* € Hy : 0 € Ba(y*)}.

Very recently, Byrne et al. [13] studied the weak and strong convergence of the following
iterative method for problem (1.11): For given 2y € H; and A > 0, compute iterative
sequence {x,} generated by the following scheme:

Tpp1 = JPH (@ + A (TP — 1) Axy). (1.12)

In 2013, Kazmi and Rivi [14] modified scheme (1.11) to the case of a split variational
inclusion and the fixed point problem of a nonexpansive mapping. To be more precise,
they proved the following strong convergence theorem.

Theorem KR [14] Let H; and Hy be two real Hilbert spaces and A : H; — Hy be
a bounded linear operator. Let f : H; — H; be a contraction mapping with constant
p € (0,1) and T : H; — H; be a nonexpansive mapping such that Q = Fiz(T) N T # 0.
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For a given xy € H; arbitrarily, let the iterative sequences {u,} and {z,} be generated
by

{ Uy = Jfl(xn +eA*(Jf2 —1)Az,),

Tp+1 = anf(*xn) + (]— — an)Tun, (113)

1

where A > 0 and ¢ € (0, +), L is the spectral radius of the operator A*A, and A* is

'L
&)

the adjoint of A, {a,} is a sequence in (0,1) such that lim o, = 0, " a,, = oo and
n—00 ne1

o0
> o — ap—1| < oco. Then the sequence {u,} and {z,,} both convergence strongly to
n=1
z € Q, where z = Pqf(2).

Inspired and motivation by research going on in this area, a modified general iterative
method for a split variational inclusion and k-strictly pseudo-contractive mapping, which
is defined in the following way:

2 = S0 (@ + AT (TP — 1) Axy),
Yn = Ky + (1 - Oén)Pc[Pc(Zn — ,LLQDQZn) — ulDch(zn — ’u2D2zn)]
Tna1 = BnTn + Yulyn + 60Syn, Yn >0,
(1.14)

where y; € (0,2m;) for i = 1,2, {an}, {Bn}, {7} C [0,1,A > 0 and £ € (0, +), L is the
spectral radius of the operator A*A, A* is the adjoint of bounded linear operation A,
D; : C — H; are m;-inverse strongly monotone for ¢ = 1,2, S : C' — C is a k-strictly
pseudocontractive mapping and K : C' — C be p-contraction with p € [0, %)

Furthermore, we prove that the sequences generated by the iterative scheme converge
strongly to a common solution set of split variational inclusion problem, a general system
of variational inequalities and fixed point set of a strictly pseudocontractive mapping in
real Hilbert space.

2. PRELIMINARIES

In this section, we collect some notations and lemmas. Let C' be a nonempty closed
convex subset of a real Hilbert space Hy. A mapping D : C — Hj is called monotone if

(Dx — Dy,x —y) >0, Va,y € C. (2.1)

A mapping D : C' — H, is called Lipschitz continuous if there exists a real number L > 0
such that

Dz — Dy|| < Lilz — yl|, Yo,y € C. (2.2)

Recall that a mapping D : C — H; is called a-inverse strongly monotone if there exists
a real number a > 0 such that

<D.’L'—Dy7$—y>ZOéHD.’IJ—DyH2, Vl’,yEC. (23)

It is clear that every inverse strongly monotone mapping is a monotone and Lipschitz con-
tinuous mapping. Also, recall that a mapping S : C' — C is said to be k-strictly pseudocontractive
if there exists a constant 0 < k < 1 such that

1S — Syll> < lle — yl> + K|(I = S)a — (I = S)y|]*, Vay € C. (2.4)
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For such a case, we also say that S is a k-strict pseudo-contraction [15]. Tt is clear that,
in a real Hilbert space Hj, inequality (2.4) is equivalent to the following:
1-k
(2= Sy,2—y) <o~y - =T = S = (T = Syl*, Yo,y € C. (25)

This immediately implies that if S is a k-strictly pseudocontractive mapping, then I — S
is 1;k—inverse strongly monotone.
Let H; be a real Hilbert space. Then

o =yl = [zl = [lyll* = 2z — v, v), (2.6)

Iz +yl? < 2] + 20y, @ + y), (2.7)
and

Az 4+ (1= Nyll* = Allz]l* + (1 = Mlyll> = A1 = N[z — yl?, (2.8)

for all z,y € Hy and y € [0, 1].

We recall some concepts and results which are needed in sequel. A mapping P¢ is said
to be metric projection of Hy onto C' if for every point x € Hy, there exists a unique
nearest point in C denoted by Poz such that

|z — Pez|| < [z —yl|, Vy € C. (2.9)

It is well known that P is a nonexpansive mapping and is characterized by the fol-
lowing property:

|Pcx — Poyl|* < (x — vy, Pox — Pcy), Yo,y € Hy. (2.10)
Moreover, Pox is characterized by the following properties:

(x — Pox,y — Pox) <0, (2.11)

lz = ylI* = llz — Poz|* + ly — Poz||*, Vo € Hi,y € C, (2.12)
and

I(z —y) — (Pox — Pey)|* 2 [lz —y|I* — | Pex — Peyl|?, Va,y € Hi. (2.13)

It is known that every nonexpansive operator S : H; — H; satisfies, for all (z,y) €
H, x Hy, the inequality

((z =5(x)) = (y = S()),S(y) = S(x)) < %H(S(x) —2) = (S -yl (214)
and therefore, we get, for all (z,y) € Hy x Fiz(5),
(z—5(x),y—S(x)) < %Hs(x)*iEH? (2.15)

Lemma 2.1. [16] Let {z,} and {z,} be bounded sequences in a Banach space X and
let {Bn} be a sequence in [0,1] with 0 < liminf, . B, < limsup,,_, . Bn < 1. Suppose
Znt1 = (1 = Bn)zn + Brxy for all integers n > 0 and

lim sup(||zn+1 — 2n|| = [[Znt1 — zal]) <0.
n— o0

Then, lim, o0 ||2n — Zn|| = 0.
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Lemma 2.2. [17] Let {a,} be a sequence of nonnegative numbers satisfying the condition
Gp41 S (]- - (sn)an + 5n0na vn Z ]-7
where {6, }, {on} are sequences of real numbers such that

(i) {6n} C[0,1] and > 6, = 0o, or equivalently, O1:[01(1 —6,) = lim il (1-10g) =

n=1 n—ook=1
0;
o0
(i) limsupo,, <0 or > d,0, is convergent.
n— oo n=1
Then, lim a, = 0.
n— o0
Lemma 2.3. [18] Assume that T is nonexpansive self mapping of a closed convex subset

C of a Hilbert space Hy. If T has a fized point, then I — T is demiclosed, i.e., whenever
{zn} converges strongly to some y, it follows that (I — T)x = y. Here I is the identity
mapping on Hy.

Lemma 2.4. [19] Let C be a nonempty closed convex subset of a real Hilbert space H
and S : C — C be a self-mapping of C.
(i) If S is a k-strict pseudocontractive mapping, then S satisfies the Lipschitz
condition
1+ k
1-k
(i) If S is a k-strict pseudocontractive mapping, then the mapping I — S is demi-
closed at 0, that is, if {x,} is a sequence in C such that x, — & weakly and
(I = S)x, — 0 strongly, then (I —S)Z = 0.
(iti) If S is k-(quasi)strict pseudo-contraction, then the fized-point set Fix(S) of S
is closed and convex so thst the projection Prigs) is well defined.

Lemma 2.5. [10] Let C be a nonempty closed convexr subset of a real Hilbert space H.
Let S : C — C be a k strictly pseudocontractive mapping. Let v and § be two nonnegative
real numbers. Assume (v + 6)k <. Then

Iv(@ —y) +6(Sz = Sy)|| < (v + )|l —yl, Va,y € C. (2.17)

3. MAIN RESULT

Theorem 3.1. Let Hy and Hy be two real Hilbert spaces and let C C Hy and Q C Hy
be nonempty closed conver subsets. Let A : Hy — Hs be a bounded linear operator and
D, : C — H be n;-inverse strongly monotone for i =1,2. Let S : C — C be a k-strictly
pseudocontractive mapping such that Fix(S)NTNG # 0. Let K : C — C be p-contraction
with p € [0,3). For given zog € C arbitrarily, let the sequences {xn}, {yn} and {z,} be
generated iteratively by

2 = JP (g + EAT (TP — 1) Azy,),
Yn = an Ky + (1 — an) Po[Po(2zn — p2Dazn) — 11 D1 Po(2n — paD22y)]
Tp+1 = ann + YnYn + 6ns’yn7 vn Z 07
(3.1)
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where p; € (0,2n;) for i = 1,2, {an}, {Bn}, {1}, {0n} C[0,1],A >0 and £ € (0, 1), L is
the spectral radius of the operator A*A, A* is the adjoint of A. Assume that the following
conditions are satisfied:

(i) Bn+ v+ 6n =1 and (v + dn)k < 7n for alln > 0;
(i) hman—O Zan—oo

(iii) 0 < hm 1nfﬂn < hm Supﬁn < 1; and lim infé,, > 0;

n—oo

(i) lim (%+1/(1—5n+1) /(1= Bn)) = 0.

Then, the sequence {x,} generated by (3.1) converges strongly to T € Ppyy(s)nrng KT if
and only if lim ||y, — z,|| = 0. Furthermore (Z,y) is a solution of the general system
n—oo

(1.5) of variational inequalities, where § = Po(T — poDaT).
Proof. We devide the proof into 6 steps.

Step 1. First we will prove that {z,,} is bounded. B

Indeed, take z* € Fiz(S) N T NG arbitrarily. Then Sz* = z*, 2* € T, and z* =
Po[Po(x* — poDox™) — puy Dy Po(x™ — pa Dox™)).

From z* € ', we have 2* = Jle* Azx* = JB2 (Az*). We estimate

Iz — ™|

1T (@n + A (T2 = D) Axy) — 27
[T (2 + EA* (T2 — ) Azy) — J3 2|
|y + EA* (TP — T) Az, — ||
o — |2 + €47 (JF* — 1) A
+2¢(xy, — 2, A*(J? — I)Axy,). (3.2)

IA A

Thus, we have
l20 —a"I2 < — a2 + €I = I) Ao, AA* (T2 = I) Aw)
+2¢(zy, — 2, A*(JP? — I)Axy,). (3.3)
Now, we have

EX(J2? — 1) Ay, AA*(JP? — 1) Axy,)

IN

LE((JY2 = D) Az, (1 — 1) Awy,)
LE||(J 72 = 1) Az . (3.4)
Setting A := 2&(x,, — 2, A"“(J/\B2 — I)Ax,) and using (2.15), we have
A = 2(x, — 2" A (JP — I)Ax,)
= 26(A(wy —2%), (JP? — I)Az,,)
= 26{A(z, —2*) + (JP? — DAz, — (JP? — T) Az, (JP?* — I)Ax,,)

(I A = A0, (3 = DA, ~ |75 = DA

IA
)
N

|
[\)
ars
—N

15— 1) A2 — [(JF I)Axnn?}

IN

—El(I7 = DAz, (3.5)
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Using (3.3), (3.4) and (3.5), we obtain
lzn — 2|1 < llm — (1 + §(LE = DI — 1) Azn* (3.6)
Since £ € (0, 1), we obtain
l2n = 21 < llen — 2" (3.7)
For simplicity, we write y* = Po(z* — peDox™) and w,, = Po(z, — paDazy,) for all
n > 0. Since D; : C'— H;j be n;-inverse strongly monotone for ¢ = 1,2 and 0 < p; < 2n;

for ¢ = 1,2, we know that for all n > 0,

| Po[Po(2n — p2D22y) — p1 D1 Po(2n — p2D22y)] — ||
= ||Pc[Pc(zn — p2Dazn) — p1 D1 Po(2n — p2D22y)]
—Pc[Po(z* — paDax™) — i1 Dy Po(z* — paDaz™)]|?

< |[Pe(zn — p2D2zn) — 1 D1 Po(2n — p2Dazn)]
—[Po(z* — paDax™) — puy Dy Po (¢ — paDox™)]|1?
= |[[Pc(zn — p2Dazyn) — Po(x™ — poDax™)]
—p1[D1Pc(2n — paDazy) — D1 Po(a* — paDoa™)]|?
< ||Po(zn — p2Dazn) — Po(a* — pgDax*)|?
—p1(2m — w)|| D1 Pe (2 — p2D2zy) — D1 Po(z* — paDaz™) ||
< l(zn — p2Dazn) — (2% = paDax®)[|* — pa(2m — pa)|| Dyun — Dry*|?
= |l(zn — &%) — p2(Dazn — Dax*)|> — p1(2m1 — 1) | Dy — Dyy*|?
< lzn — & |1? = p2(2m2 — p2)||Dazn — Daa™||* — pa(2m — )| Daun — Dry*|?
<z — 2|
e (3.8)

Hence, we get

lyn —2”|]
= |lan(Kzy —2%) + (1 — ap)(Pe[Po(zn — p2Da2zy)
—1 D1 Po(zn — p2Dazy)] — )|

< apl|Kzn — 27| + (1 — o) || Po[Po(zn — p2D2zy)
—p1D1Po(2n — p2Dazy)] — )|
< an(pllan — || + [[Ka® —2™]]) + (1 — an)lJon — 27
* | Kz* — x*
— (= (=Pl — ']+ (1= pla, T =
K * _ *
< max{|xn—x*||,|glc_px”}. (3.9)

Since (Y, + 0n)k < 7y, for all n > 0, utilizing Lemma 2.5, we obtain from (3.9)
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[2nr =2 = [IBn(@n —2%) + mlyn — 27) + 0n(Syn — 27)||
< Bullzn — 2| + [ (Yn — %) + 6n(Syn — 27)||
< Bullzn — 2| + (9 + n)llyn — 2" ||
N wn || Kzt —ax*
< Bullxn — || + (n + (5n)max{||xn -z, ”1,0”}
K * _ *
< max{|xn—x*||,|x$”}. (3.10)
1—-p
By induction, we obtain that for all n > 0,
K * _ *
2y — ]| Smax{||mo—a:*|,w}. (3.11)
—p

Hence, {x,} is bounded. Consequently, we deduce immediately that {z,},{vn}, {Syn}
and {u,} are bounded, where u,, = Po(z, — u2Dazy,) for all n > 0.
Now, put

tn := Po[Po(zn — paDazpn) — 1 D1 Po(zn — paDazy)], VYn > 0. (3.12)

Then it is easy to see that {¢,} is bounded because Px, D1, and Dy are Lipschitz contin-
uous and {z,} is bounded.
Step 2. We will prove that lim ||z,41 — 24| = 0.
n—oo

Indeed, define z,,+1 = Bnxn + (1 — Bn)w, for all n > 0, so we get w,, = % It

follows that

Y1 (Ynt1 = Yn) + 01 (SYns1 — Syn) ( Tn+1 Tn >
Wnt1 — Wn = + - n
o 1~ Bots 1= o 1-6.)7
6n+1 571 )
+ — Syy,. 3.13
(1 —Bn+1 1—=0n Y (3:13)

Since (Y, + 0 )k < 7, for all n > 0, utilizing Lemma 2.5 we have

1Vn+1(Unt1 = Yn) + 0ns1(SYns1 — Syn)ll < (g1 + Ong 1) [[Yns1 — Ynll- (3.14)

Next, we estimate ||ynt+1 — ynl|.- Observe that

||Zn+1 - ZnH

TP (2pir + YA (P2 = ) Azpyy — TP (2, + A (TP — 1) A,

(T2 + YA (T2 — D) A)zpgr — TP+ y AT (T2 — 1) Ay

Znt1 — zn- (3.15)

VANVAN
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And

th+1 - thZ

| Pc[Pc(zns1 — p2Dazny1) — p1D1Po(zns1 — paD2zni1)]
—Pc[Po(zn — paDazn) — p1 D1 Pe (2 — paDazy)] |12

I[P (2n41 — p2D22n41) — 1 D1Po(2n41 — pr2Dazny1)]

—[Pc(zn — p2Dazn) — i1 D1 Pe (2 — piaDazy)] |2

[[Pe(2nt1 — p2D22nt1) — Po(zn — p2D22y)]

—p1[D1Po(zni1 — p2Dozni1) — DiPo(zn — paDazn)]|1?

1P (2n41 — p2Dazni1) — Pol(zn — paDazn)||

—p1(2m — p1)||D1Pe(2ng1 — paDazni1) — D1 Po(zn — paDazn) ||
1P (2n11 — paDazny1) — Po(zn — paDazn)|?

1(zn41 — p2Dazni1) — (20 — p2 D2z

= [[(zns1 — 2n) — p2(D2zns1 — Dazy)|?

Hzn+1 - Zn||2 — p2(2n2 — N2)||D2Zn+1 - D2zn||2

|2n+1 — Zn||2 (3.16)

I IN I

IN

IN N

INIA

Comblining (3.15) with (3.16), we get

[tn+1 = tall < llzng1 — znl (3.17)

This together with (3.17) implies that

—
= [[(tns1 — tn) + a1 (KTt — thg) — an(Kzy — 1)
[tnt1 = tnll + g | K@pgr — tna |l + an|| K2y — G|
[Znt1 = @nll + ang1[[Kzng1 — taga || + o[ Kazn — ta. (3.18)
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From w,, = %, and it follows from (3.13) , (3.14) and (3.18) that

[Wn+1 — wa
_ Yr+1Yn+1 + Ont15Yn1 _ Yn¥Yn + 0n.SYn
B 1- 6n+1 1- /Bn
_ |y +0n1SYnt1 | Ynti¥n nsi¥n
B 1= Bt 1=0Bnt1 1= 0Bnt1
On+15Yn _ On+1SYn _ InYn + 0,.SYn
1=0Bnt1 1= 0Bnt1 1—0n
_ <7n+1yn+1 _ Tn+1¥Yn ) + <5n+1syn+1 _ 5n+15yn)
1=Bnt1 1= Bt 1=Bny1 1=Bam

Tn+1Yn TnYn Ont15Yn 0nSYn

+ — + -
I_Bn—&-l 1_ﬂn 1_Bn+1 l_ﬁn

< ‘ Yrt1(Yn+1 = Yn) + Ons1(SYnt1 — Syn) ’
o 1-— Bn-i-l
Yrt1 Yn Ont1 on
+ - + — S
e B e O
Ynt1 + Ont1 Yrn+1 Tn
< - + —
1— 5n+1 ||y7l+1 ynH 1— 6n+1 1— 671 HynH
6n+1 671
+ — S
1-— ﬂn-&-l 1- Bn || y’ﬂ”
Tnt+1 + Ont1 Vnt1 T
< — - + - +||S
T s [yn+1 = yall + G 1-7. (lynll + 1Synll)
'7n+1 ’Yn
= — — S
lYn+1 — ynll + 6o 1-5, (lynll + 11Synll)
S ||xn+1 - an + O‘n—&-l”Kxn—i-l - tn-i—l” + anHK'xn - tn”

Yn+1 Tn

1 - 611—0—1 ]- - ﬂn
Since {zy}, {yn} and {t,} are bounded, it follows from conditions (ii) and (iv) that

+

(lynll + 11Synll)- (3.19)

lim sup(||wp41 — wn | = (|41 — 24l])
n—oo
< 1imsup{ozn+1||Kmn+1 — tnt1|l + anl| Kzn — ta|
n— oo
Yn+1 Yn
+ - Ynll + 1Syn }
2 Tl + )
= 0. (3.20)
By Lemma 2.1 , we get
nlgxgo||wn —z,] = 0. (3.21)

From z,11 = (1 — Bp)wn + Bnxn we get || znr1 — xnl| = (1 — Bp)||wn — x| s0

nlgr;o”xwrl —an| = nlggo(l = Bn)llwn — an| = 0. (3.22)
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Step 3. We will prove that lim || Dsz, — Daz*|| = 0, lim ||Diu,, — D1y*|| = 0 where
n—o0 n—oo

y* = Po(a* — puaDox™).
Indeed, utilizing Lemma 2.5 and the convexity of || - |2, we get from (3.1) and (3.8)

Therefore,

VANVAN

IN

ININ N DA

IN

1 — 2|
1Bn(@n = 2*) + Yn(yn — 2*) + 6n(Syn — 2*)|?
2

Yn + On
Bullzn = 2** + (yn + 0n)llyn — =*?

BullTs — x*HQ + (Vo + 6n)[an || Kz — x*HQ + (1 —an)lltn — x*||2]
Bulln — *|* + anl|Kap — 2| + (0 + 62)[[tn — ™[I

BullTn — I*HZ + o || Kz — x*Hz + (Yo + 0n)

X[llzn = 2*[1* = p2(2n2 — p2) || Dazn — Do
—p1(2m — ) || Diun — Dry*||’]

ﬁonn - x*||2 + anHKxn - x*||2 + (Y + 0n)

X[lzn — z*||* = pa(2m2 — p2)||D2zn — Dax™||?

—p1(2m — )| Drun — Diy*|[?]

lzn — JC*”2 + o || Kz — x*HZ

—(Yn + 0n) 2 (202 — p2) | Dazn — Da*|?

+p11(2m — 1) || Dy, — Dyy*||). (3.23)

*||2

(Y + 6n)[p2(202 — p2)|| D22y — Doa™*(|? + p1 (21 — 1) || D1un — D1y*||?]
lzn — x*”Q — |71 — m*HQ + an || Kz, — x*||2
(lzn =z + 2041 — 2" )z — Znsall + anl| Kzn — 27|, (3.24)

Since ay, — 0, ||y, — Tny1|| = 0 and lim (v, + J,,) > 0, we have
n—oo

lim
n—oo

||D1un — Dly*H = 0, ||D22n — DQZ‘*H =0. (325)

lim
n—oo

Step 4. We will prove that lim ||Sy, — y,| = 0.
n—oo
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From (3.1), we obtain

that is

IN

IN

lun =y < llzn = 2717 = ll2n — ua — (& = y")

l[un —y* ||

|Po(zn — paDazy) — Po(a* — paDaa™)|?
((2n — p2Dazpn) — (2% — paD2x™), up — y*)
1
2
—[|(zn — &) = pa(Dazy — Daz™) — (un — y*)|1?]
Sl =2 I+l — P

~l(zn = un) = p2(Dazy — Daz™) = (a* = y")|?]
1

(120 — 2" — p2(D22n — Doa™)|* + [lun — y*|>

lllen = |12+ un — v 1? = llzn — un — (2" —y*)|°
F2u2(zn — Uy — (* —y*), Doz, — Daz™)
—3|| D22y — Doa™[|?], (3.26)

I

+2p2)|zn — un — (27 — y*) ||| D2zn — Daz”|. (3.27)

Substituting (3.6) in (3.27), we have

lun =y |I?

< lzn = 2+ ELE = DN = D Aza|® = |20 — up — (¥ = ")

+2p2)|zn — un — (27 — y*) [ D2zn — Daaz”|. (3.28)

Further, similarly to above argument, we derive

that is,

VAl

IN

[tn — z*[|?
| Pc(un — p1 Dyun) — Po(y* — piDiy™) |
<(Un - NlDlun) - (y* - NlDly*)7tn - .7;*>

1 * * *
S[lun —y* = p1(Dyup — Dry®)|* + [[tn — 2|
2

_”(un - y*) — p1(D1up — D1y™) — (tn — x*)HQ]
1
2
—p1(Drun, — Dry*) + (2" — y*)|?]

1 * * * *
lllun =y 1+ [[tn — 21> = llun — tn + (& = y*)|1?

+2H1<un —tn + (1‘* - y*)leun - Dly*>
—ui[| Drug, — Diy*|?) (3.29)

[llun =y 17 + lltn — 2*[I* = [|(un — ta)

ltn =27 < llun =y I1* = lun = ta + (@ = ")

241 ||un =ty + (2% — y*)”HDlun - Dly*” (3.30)
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Substituting (3.28) in (3.30), we have
[t — 2]
<l — )P+ E(LE = DII(JR? — 1) Azy|?
=y + 220 — un — (2" — )|
x| D2z — Doa™|| = flun — tn + (x* = y")|”
+2plfun —tn + (27 — y") ||| Dyun — Dry*|. (3.31)
Thus from (3.1) and (3.31), it follows that

—[lzn = upn — (2"

01 — 2"

Bullzn — 2|1 + (vn + 0n) lyn — ||

Brllzn — x*||2 + (1 = Bo)lan||[ Kz, — x*||2 + (1= an)lltn — x*||2]
BullTn — x*HQ +an || Kz — x*HQ + (1= Bu)lltn — x*HQ

Bullzn — x*”Z + ap||[Kxy, — 55*”2

+(1 = Ba)lllwn — 2*|* + E(LE = V)||(J = I) Az ||?

—llzn —un — (=" — y*)HQ + 2p2||2n — un — (2% — y*) || D2zn — Daz”||

—ln = tn + (=" = y*)I? + 2 Jun — o + (@ = y) || Drun — Dry*|]
*||2

VAN VAN VAN VAN

= |lzn —2*|? + an||Kzp — 2
+(1 = B)E(LE = DI = DAz, |® = |20 — up — (2" = y")|I?
F2p2llzn — un — (% = y*)|l[| D2z — Doz™|| (3.32)
~llun = tn + (@ = y*)I* + 2p1l|un — tn + (2" = y") || Drun — Dry*|]
which hence implies that
(1= Ba)E(L = LO(J7> — D) Az
+lzn — un — (2" — y*)HQ + lun —tn + (2" — y*)HQ]

< g = 2P = engr — [P + an || Kzn — 27|12
+(1 = Bn) 20220 — un — (2" — y*)[[[[D22n — Daz™||]
+2p1 [lun — tn + (2" — y" )| Drus — Dry™|. (3:33)
Since £(1 — L&) > 0,a,, — 0,limsupf, < 1,|D2z, — Daz*|| — 0,||Diu, — Diy*|| —

n—oo

0, [|[Znt1 — zn|| — 0, it follows from the boundedness of {z,},{z,}, {un} and {t,} that

(1= Bu)[E(1 — LO(J? — I) Az, |?]
+(1 = Ba)lllzn — un — (@ =y + llun — ta + (@ —y*)|1?]

< (e =2+ lnss = 2" Dllzn = 2naall + on| Kz — 27|
+(1 = Bn)2uzllzn — un — (7 = y*) ||| D2zn — Daz™|]
+2p [lun = tn + (27 = y*) [ Drun — Dry™||. (3.34)
We get
. B _ _
Tim (/7 — 1) Az, =0, (3.35)
lim ||u, —t, + (2" —y")|| =0, (3.36)

n—oo
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lim ||z, — up — (2" —y*)|| = 0. (3.37)

n—oo

Furthermore, using (3.1) and v € (0, 1), we observe that

I — 2|1

1T (o + €A™ (T2 — D) A) = T2

< Az — 2tz + YA (I — DAz, — 27)
1 * * > *
= lllza -2 I + l|lon + EA*(JY? — 1) Az, — 27|12
—||(zn — @) = [0 + EA"(J? — I) Ay, — 2¥]|1}
1 * *
= il -2 I + llzn — 2|1 + £(Ly — DI(J{2 — 1) Az, |?
—|lzn — 20 — fA*(J>]\32 - ])A$n||2}
1 * * *
< Slllzn -2 I + lzn — 2*[1* = [ll2n — znll® + ENA*(JT? — 1) Az, |?
—26(2y — p, A*(JP2 — 1) Az,)]}
1 * *
< Sillen—a 12+ lln — 2*[|* = 20 — 2all?

26| Alzn — ) [I(J* — 1) Azal}.
Hence, we obtain
lon = 2* 12 < lln = *I* = ll2n — zall® + 26/ A(2n — @) [[|(J* = I) Azy|. (3.38)
Substituting (3.38) in (3.27), we get

lun —y*|?
<l = 2P = zn = @ll® + 26/ Az — 2a)|[II(J32 = 1) Az,
—ll2n — un — (2" — y*)||2 + 2pa|zn — un — (2" —y")||
x|| Doz — Dox™||. (3.39)

Substituting (3.39) in (3.30), we get

[tn — *||>

[z — 2*)|* = ll2n — znl* + 26]| A(z0 — @) [I|(JX? — I) Az,

—llzn = un = (& = y*)1* + 22l 20 — un — (" = y*) || D2z — Daz™||

—llun = tn + (@ = y*)? + 2m fJun — tn + (2" =)

|| Dyun — Dyy*]|. (3.40)

IN
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From (3.23) and (3.40), we get

|Znt1 — '73*”2

Bullzn — 1'*“2 + (9 + 8n) lyn — 93*”2
= Ballzn — 2>+ (1 = Bn)llyn — "I

< Bullen — 21> + (1 = Bu)lan || Kzn — 21> + (1 — o) [tn — 2*|1?]
< Bullzn — x*HQ + an || Kz, — CU*HQ + (1= Bn)ltn — x*HQ
< Bullen — x*HQ +an||Kzyn — x*H2 + (1= Bn) [wn - m*||2 — llzn — xn||2

26 Az — &)1 = DAzl = |20 —un — (&% —y*)|I?
22|20 — un — (27 = y*)|[[|D2zn — Daa™|| = |lun — tn + (=" = y")|?

o — b + (@ — )| Drn — Dly*n]
= Jow — "I + anl Kzn — 2P + (1 Ba) [%HA(zn —e)lIIE — 1) Az,
+2/‘2H2n — Un — (x* - y*)”HDZ'Zn - D2x*”
o — b + (2 — )| Dy — Dly*n]
(-8 [nzn ol o o — i — (& — )2
i — i+ (2" — y*>||2], (3.41)
which hence implies that

(1 =5n) {lmn = znll® Hllzn = un = (@ =y + lun — ta + (" =y

< N =21~ ngs — 22 + aull Kon — 2°P
(1 B [%nA(zn — ) I = 1Az
1242ll2n — tn — (&* — 5| Doz — Doa”|
2411 in — tn + (& — y*) || Drin — Dly*n]
< (n— 2"+ [Engs — 2 ) n — s + | K — 22

(1= B [%HA(zn —e)IB — DAz,
24tsll 2 — un — (& — )| Doz — Daa”|

2purllun — to + (@ — )| Dyt — Dly*n]. (3.42)

Since a, — 0, ||z — Tpy1|| — 0, ||(J/\B2 — D)Az,| — 0,|| D2z, — Daz*|| — 0, ||D1uy, —
Dyy*|| = 0, Jup, — tn + (2" —y™)|| = 0 and ||z, — up, — (2* — y™)|| — O implies that

lim ||z, — 2z,| = 0. (3.43)
n—oo
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Also since y,, = ap Kz + (1 — ap)t, and o, — 0 and ||y, — 2, || — 0 thus
yn — tall < anl|Kzy =t
implies that
lim ||y, —tn] = 0. (3.44)
n—oo
And
(1= an)lltn = zoll = [lyn — 20 — @ (Kxn — 20) || < [lyn — 20l + an||[ Kzn — 20l
since a,, — 0 and ||y, — 2| — 0 implies that
lim [|t,, — zn]| = 0. (3.45)
n— oo
Observe that
[tn — znll < [ltn — 20|l + llzn — znll,
since (3.43) and (3.45), we get
1 — = U. 4
nh_}n;Oth Tn| =0 (3.46)
And
yn — Tull < Mlyn — tall + Itn — zall,
since (3.44) and (3.46), we get
lim ||y, — x| = 0. (3.47)

n—sco
Note that from z,11 = Bpn + YnYn + 00SYn,
16n.(Syn — @n)| < 2011 = @nll + Ynllyn — znll
Since (3.22) and (3.47), it follows that
lim || Sy, — z,| = 0. (3.48)
n—co
Note that
15y = ynll < [15Yn — zall + 20 — ynll,
from (3.47) and (3.48), we get
Jim [[Syn —yall = 0. (3.49)

Step 5. We will prove that limsup(KZ — Z,z, — Z) < 0, where T = Pp;y()nrng KT
n—oo

Indeed, since {z,} is bounded, there exists a bounded {z,,} of {z,} such that

limsup(KZ — Z,z, — Z) = lim (KT — T, 2y, — T). (3.50)

n—00 1—00

Also, since H is reflexive and {y,} is bounded, without loss generality we may assume
that y,, — p weakly for some p € C. First, it is clear from Lemma 2.4 that p € Fiz(S5).
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Now let us show that p € G. We note that

[yn — G(yn)l
< O‘nHKxn_G(yn)H +(1_an)||PC[PC(zn_M2D22n)
—p1 D1 Pe(zn — p2D2zn)] — Gyn) |
= ol|Kzn — Glyn)ll + (1 — an)|G(zn) — G(yn)ll
< apl|Kr, — Gya) |+ (1 — an)l|zn — yal
— 0. (3.51)

According to Lemma 2.4 we obtain p € G. Further, let us show that p € I'. On the other
hand z,, = JJ (€, +EA*(JP? — I)Az,, ) can be rewritten as

(xnk — an:) + fA*(J)J\B2 B I)Axnk
A

€ Blznk. (352)

By passing to limit k¥ — oo in (3.52) and by taking into account (3.35) and (3.43) and
the fact that the graph of a maximal monotone operator is weakly-strongly closed, we
obtain 0 € Bi(p), i.e., p € SOLVIP(B;). Furthermore, since {x,} and {z,} have the
same asymptotical behavior, {Ax,, } weakly converges to Ap. Again, by (3.35) and the
fact that the resolvent J f 2 is nonexpansive and Lemma 2.3, we obtain that Ap € By (Ap),
i.e., Ap € SOLVIP(B,). Thus, p € Fiz(S)NTNG.

Hence it follows from (2.11) and (3.50) that

limsup(KZ — Z,z, — %) = lim(KZ—Z,x,, —T)
n—oo 71— 00

= (KZ—-2Z,p—1I)
< 0. (3.53)

Step 6. We will prove that lim x, = Z.
n—oo

Indeed, since G : C' — C is nonexpansive, we have
[tn — 2] = 1G(zn) = G(@)|| < [len — 2| (3.54)
Note that
(K, — T,yn — )
= (Kxp, —T,xp —T) +{(Kxp — T, yn — Tp)

= (Kzp, — KZ,x, —T) + (KT — T, — T) + (KXp, — T, Yp, — Tn)
pllen = 2| + (Kz — 2,2, — &) + | K2y — Zlllyn — 2 (3.55)

IN
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Utilizing (2.7) and Lemma 2.5, we obtain from (3.54), (3.55) and the convexity of || - ||?

1 Znt1 _£H2
”Bn(xn - i') + 'Yn(yn - j) + 5n(8yn - i)HQ

2

< Ballzn _EHQ"‘('VH"“SH) m[’?’n(yn_f)"‘én(syn_f)]
< ﬁn”xn_j||2+(7n+5n)”yn_f”2
< Ballzn - j”Q + (v + 0n)[(1 — an)2||tn - 53||2 + 20 (K2 — T,y — T)]
< Ballen = 2l° + (v + 0)[(1 = an)llzn — 2] + 200 (K2 — T,y — 7)]
= (1 - (’Yn + 6n)an)”xn - i'||2 + ('Yn + 57L)2047L<Kxn —Z,Yn — j>
< (1= (g +dn)an) ||z, — 2|2

(Y + 0n)2anpllzn — 2| + (KT — 2,20 — 7) + || Ko — Z[||yn — )]
< (1= (1= 20)(m + ba)an]fan — 712

+(n + 0n) 20, [(KZ — %, 2, — T) + | K2n — Z[|||lyn — 2]
= [1=(1=2p)(vn + dn)an]l|zn — sz
2[(KZ —Z,xn — %) + || Kzn — | |lyn — 2]

+(1 = 2p)(vn + dn) vy, 1—2p . (3.56)

Note that 1ini>inf(1 —2p)(yn + 0,) > 0. Tt follows that > (1 —2p) (v, + 0n)ay, = co. Tt is
n—00 n=0

clear that
(KT — T, 2, — T) + | K — Z||[yn — 2
n—00 1-— 2p
because limsup(KZ — Z,z, —Z) < 0 and lim ||z, — y,|| = 0. Therefore, all conditions
n— 00 n—00

of Lemma 2.2 are satisfied. Consequently, we immediately deduce that z,, — z. This
completes the proof.
L]

4. CONSEQUENTLY RESULTS

* Let Hy and Hs be two real Hilbert spaces and let C C H; and Q C Hs be nonempty
closed convex subsets. Let A : H; — Hs be a bounded linear operator and D; : C — H be
n;-inverse strongly monotone for i = 1,2. Let S : C' — C be a k-strictly pseudocontractive
mapping such that Fiz(S)NT'NG # 0. Let K : C — C be p-contraction with p € [0, 3).
For fixed u € C' and given g € C arbitrarily, let the sequences {z,}, {y»} and {z,} be
generated iteratively by

2 = JP (@, + EA*(JP? — 1) Axy),

Yn = ant + (1 — an) Po[Po(zn — p2Daezy) — pr1 D1 Po(2n — p2Dazy)] (4.1)

Tyl = BnTn + Ynln + 0nSYn, ¥n >0,
where y; € (0,2m;) for i = 1,2, {an}, {Bn}, {7} C [0,1,A > 0 and £ € (0, +), L is the
spectral radius of the operator A*A, A* is the adjoint of A. Assume that the following
conditions are satisfied:

(1) ﬁn + Tn + 571 =1and (’Yn + 57;)]€ < Yn for all n > O,
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(ii) hm 0oy, = 0, Z Q= 00;
(iii) 0 < hmlnfﬁn S hmsupﬁn < 1; and 11m1nf6 > 0;

(iv) hm (’Yn+1/(1 - Bn-&-l) Yn/ (1 Bn)) = 0

Then, the sequence {z,} generated by (4.1) converges strongly to T € Pp;,(s)nrngt if
and only if nh—{go”y" — 2|l = 0. Furthermore (7,7) is a solution of the general system
(1.5) of variational inequalities, where § = Po(Z — 2 DaT).

* Let Hy; and Hy be two real Hilbert spaces and let C C Hy; and Q € Hs be nonempty
closed convex subsets. Let A : H;y — Hs be a bounded linear operator and D; : C — H
be n;-inverse strongly monotone for i = 1,2. Let S : C' — C be a nonexpansive mapping
such that Fiz(S)NIT'NG # 0. Let K : C — C be p-contraction with p € [0, 1). For given
xo € C arbitrarily, let the sequences {x,}, {y.} and {z,} be generated iteratively by

2 = JP (@, + EA*(JP? — 1) Azy),
Yn = o, K, + (1 - an)PC[PC'<Zn - /~L2D2zn) - MIDIPC(’Z’I'L - M2D2Z’n>]
Tn4+1 = BrnTn + YnYn + 6nSyna Vn >0,
(4.2)

where p1; € (0,2m;) for i = 1,2, {a}, {Bn}, {7} C [0,1],A > 0 and £ € (0, 1), L is the
spectral radius of the operator A*A, A* is the adjoint of A. Assume that the following
conditions are satisfied:

(i) Bn+n + 0, =1 and (y, + 0n)k < 7, for all n > 0;

(i) hm 0 o, = 0, Z Oy, = 00;

(iii) O < hm 1nf6n S hm supf, < 1; and hm 1nf(5 > 05

n—r oo
(iv) T (1/(1 = Buts) = 30 /(L= ) = 0.
Then, the sequence {x,} generated by (4.2) converges strongly to T € Pp;,(g)nrng KT if
and only if lim ||y, — z,| = 0. Furthermore (Z, %) is a solution of the general system
n— oo

(1.5) of variational inequalities, where § = Po(Z — p2Da2T).

Corollary 4.1. Let Hy and Hy be two real Hilbert spaces and let C' C Hy and Q C Hy
be nonempty closed convex subsets. Let A : Hy — Hy be a bounded linear operator
and D; : C — H be n;-inverse strongly monotone for i = 1,2. Let S : C — C be a
nonexpansive mapping such that Fiz(S)NT NG # 0. Let K : C — C be p-contraction
with p € 0, 3). For fized u € C' and given xo € C arbitrarily, let the sequences {x,}, {yn}
and {zn} be generated iteratively by

2n = JP (0 + EAX(JP? — 1) Azy),
Yn = ant+ (1 — o) Po[Po(zn — oDazy) — p1 D1 Po(zn — poDazy)) (4.3)
ZTnt1 = Bnn + nYn + 00SYn, ¥n >0,

where p; € (0,2n;) for i = 1,2, {a,}, {Bn}, {7} C [0,1],A > 0 and £ € (0, 1), L is the
spectral radius of the operator A*A, A* is the adjoint of A. Assume that the following
conditions are satisfied:

(Z) ﬁn + Yn + 571 =1 and (’Yn + 5n)k <Y fO’/” allm > 0,‘
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(ii) hm 0oy, = 0, Zocn = 00;
(ii1) 0 < hm 1nfﬁn § hm Supﬁn <1; and hrn 1nf(5 > 0;

(iv) hm (’Yn+1/(1 - Bn-&-l) Yn/ (1 Bn)) = 0-

Then, the sequence {z,} generated by (4.3) converges strongly to T € Ppysynrngt if and
only if lim ||y, — 2z,|| = 0. Furthermore (Z,y) is a solution of the general system (1.5)
n—oo

of variational inequalities, where § = Po(T — paDaT).
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