

ISSN 1686-0209

Thai Journal of Mathematics Vol. 18, No. 1 (2020), Pages 143 - 165

HYBRID EXTRAGRADIENT SCHEME FOR SPLIT VARIATIONAL INCLUSION IN HILBERT SPACES

Jitsupa Deepho*

Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok, Rayong Campus (KMUTNB-Rayong), 9 Moo 11, Tambon Nonglalok, Amphur Bankhai, Rayong 21120, Thailand, e-mail: jitsupa.d@sciee.kmutnb.ac.th

Abstract In this paper, we propose a hybrid extragradient method to approximate a common solution set of split variational inclusion problem, a general system of variational inequalities and fixed point set of a k-strictly pseudocontractive mapping in real Hilbert space. Our hybrid method is based on the well-known extragradient method, viscosity approximation method, and Mann-type iteration method. Strong convergence theorem is established under some suitable conditions in a real Hilbert space. Results presented in this paper may be viewed as a refinement and important generalizations of the previously known results announced by many other authors.

MSC: 47H09; 47H10; 47J40

Keywords: hybrid extragradient method; split variational inclusion problem; fixed point; general system of variational inequality

Submission date: 12.09.2019 / Acceptance date: 09.01.2020

1. Introduction

Let H_1 and H_2 be real Hilbert spaces with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$. Let C and Q be nonempty closed convex subsets of H_1 and H_2 , respectively. Let $\{x_n\}$ be a sequence in H_1 , then $x_n \to x$ (respectively, $x_n \to x$) will denote strong (respectively, weak) convergence of the sequence $\{x_n\}$. A mapping $S: C \to C$ is called nonexpansive if $\|Sx - Sy\| \le \|x - y\|, \forall x, y \in C$.

The fixed point problem (FPP) for the mapping S is to find $x \in C$ such that

$$Sx = x. (1.1)$$

We denote $Fix(S) := \{x \in C : Sx = x\}$, the set of solutions of FPP.

Assume throughout the paper that S is a nonexpansive mapping such that $Fix(S) \neq \emptyset$. Recall that a self-mapping $f: C \to C$ is a contraction on C if there exists a constant $\alpha \in (0,1)$ and $x,y \in C$ such that $||f(x) - f(y)|| \leq \alpha ||x-y||$.

^{*}Corresponding author.

Given a nonlinear mapping $A: C \to H_1$. Then the variational inequality problem (VIP) is to find $u \in C$ such that

$$\langle Au, v - u \rangle \ge 0, \ \forall v \in C.$$
 (1.2)

The solution of VIP (1.2) is denoted by VI(A,C). It is well known that if A is strongly monotone and Lipschitz continuous mapping on C then VIP (1.2) has a unique solution. There are several different approaches towards solving this problem in finite dimensional and infinite dimensional spaces see [1-3] and the research in this direction is intensively continued. Then VIP satisfies the following Lemma;

Lemma 1.1. For a given $z \in H_1, u \in C$ satisfies the inequality

$$\langle u - z, v - u \rangle \ge 0, \ \forall v \in C, \ iff \ u = P_C z,$$
 (1.3)

where P_C is the projection of H_1 onto a closed convex set C.

For finding an element of $Fix(S) \cap VI(A, C)$ when C is closed and convex, S is non-expansive and A is α -inverse strongly monotone, Takashi and Toyoda [4] introduced the following Mann-type itereative algorithm:

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) SP_C(x_n - \lambda_n A x_n), \ \forall n \ge 0,$$

$$(1.4)$$

where S is nonexpansive P_C is the metric projection of H onto $C, x_0 = x \in C, \{\alpha_n\}$ is a sequence in (0,1) and $\{\lambda_n\}$ is a sequence in $(0,2\alpha)$. They showed that, if $Fix(S) \cap VI(A,C) \neq \emptyset$, then the sequence $\{x_n\}$ converges weakly to some $z \in Fix(S) \cap VI(A,C)$. Nadezhkina and Takahashi [5] and Zeng and Yao [6] propose extragardient methods motivated by Korpelevič [7] for finding a common element of the fixed point set of a nonexpansive mapping and the solution set of a variational inequality problem.

Let $D_1, D_2 : C \to H$ be two mappings. Now we consider the following problem of finding $(x^*, y^*) \in C \times C$ such that

$$\langle \mu_1 D_1 y^* + x^* - y^*, x - x^* \rangle \ge 0, \ \forall x \in C$$

 $\langle \mu_2 D_2 x^* + y^* - x^*, x - y^* \rangle \ge 0, \ \forall x \in C,$ (1.5)

which is called a general system of variational inequalities where $\mu_1 > 0$ and $\mu_2 > 0$ are two constants. The set of solutions of problem (1.5) is denoted by $GSVI(D_1, D_2, C)$. In particular, if $D_1 = D_2 = A$, then problem (1.5) reduces to the problem of finding $(x^*, y^*) \in C \times C$ such that

$$\langle \mu_1 A y^* + x^* - y^*, x - x^* \rangle \ge 0, \ \forall x \in C$$

 $\langle \mu_2 A x^* + y^* - x^*, x - y^* \rangle \ge 0, \ \forall x \in C,$

$$(1.6)$$

which was defined by Verma [8] and is called the new system of variational inequalities. Further, if $x^* = y^*$ additionally, the problem (1.6) reduces to the classical variational inequality problem (1.2).

Ceng et al. [9] studied the problem (1.5) by transforming it into a fixed-point problem. Precisely and for easy reference, we state their results in following lemma and theorem. **Lemma CWY** [9] For given $\bar{x}, \bar{y} \in C, (\bar{x}, \bar{y})$ is a solution of (1.5) if and only if \bar{x} is a fixed point of the mapping $G: C \to C$ defined by

$$G(x) = P_C[P_C(x - \mu_1 D_2 x) - \mu_1 D_1 P_C(x - \mu_2 D_2 x)], \ \forall x \in C,$$
(1.7)

where $\bar{y} = P_C(\bar{x} - \mu_2 D_2 \bar{x})$. In particular, if the mapping $D_i : C \to H$ is μ_i -inverse strongly monotone for i = 1, 2, then the mapping G is nonexpansive provided $\mu_i \in (0, 2\mu_i)$ for i = 1, 2.

Throughout this paper, the fixed-point set of the mapping G is denoted by \mathcal{G} . Utilizing Lemma CWY, they introduced and studied a relaxed extragradient method for solving problem (1.5).

Theorem CWY [9] Let C be a nonempty closed convex subset of a real Hilbert space H. Let the mapping $D_i: C \to H$ be η_i -inverse strongly monotone for i=1,2. Let $S: C \to H$ be a nonexpansive mapping with $Fix(S) \cap \mathcal{G} \neq \emptyset$. Suppose $x_1 = u \in C$ and $\{x_n\}$ is generated by

$$y_n = P_C(x_n - \mu_2 D_2 x_n),$$

$$x_{n+1} = \alpha_n u + \beta_n x_n + \gamma_n S P_C(y_n - \mu_1 D_1 y_n),$$
(1.8)

where $\mu_i \in (0, 2\eta_i)$ for i = 1, 2, and $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}$ are three sequences in [0, 1] such that

- (i) $\alpha_n + \beta_n + \gamma_n = 1$ for all $n \ge 1$;
- (ii) $\lim_{n \to \infty} \alpha_n = 0$, $\sum_{n=1}^{\infty} \alpha_n = \infty$; (iii) $0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1$.

Then $\{x_n\}$ converges strongly to $\bar{x} = P_{Fix(S) \cap \mathcal{G}}u$ and (\bar{x}, \bar{y}) is a solution of problem (1.5), where $\bar{y} = P_C(\bar{x} - \mu_2 D_2 \bar{x})$.

It is clear that the above result unifies and extends some corresponding result in the literature.

Based on the relaxed extragradient method and viscosity approximation method, Yao et al. [10] proposed and analyzed an iterative algorithm for finding a common element of strictly pseudocontractive mapping in a real Hilbert space H.

Theorem YLK [10] Let C be a nonempty closed convex subset of a real Hilbert space H. Let the mapping $D_i: C \to H$ be η_i -inverse strongly monotone for i=1,2. Let $S: C \to H$ be a k-strictly pseudocontractive mapping with $Fix(S) \cap \mathcal{G} \neq \emptyset$. Let $Q: C \to C$ be a ρ -contraction with $\rho \in [0, \frac{1}{2})$. For given $x_0 \in C$ arbitrarily, let $\{x_n\}, \{y_n\}, \text{ and } \{z_n\}$ be generated iterative by

$$z_{n} = P_{C}(x_{n} - \mu_{2}D_{2}x_{n}),$$

$$y_{n} = \alpha_{n}Qx_{n} + (1 - \alpha_{n})P_{C}(z_{n} - \mu_{1}D_{1}z_{n}),$$

$$x_{n+1} = \beta_{n}x_{n} + \gamma_{n}P_{C}(z_{n} - \mu_{1}D_{1}z_{n}) + \delta_{n}Sy_{n}, \ \forall n \geq 0,.$$
(1.9)

where $\mu_i \in (0, 2\eta_i)$ for i = 1, 2, and $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\delta_n\}$ are four sequences in [0, 1]such that

- $\begin{array}{ll} \text{(i)} & \beta_n + \gamma_n + \delta_n = 1 \text{ and } (\gamma_n + \delta_n) k \leq \gamma_n < (1-2\rho) \delta_n \text{ for all } n \geq 0; \\ \text{(ii)} & \lim_{n \to \infty} \alpha_n = 0, \ \sum_{n=1}^{\infty} \alpha_n = \infty \ ; \\ \text{(iii)} & 0 < \liminf_{n \to \infty} \beta_n \leq \limsup_{n \to \infty} \beta_n < 1 \text{ and } \liminf_{n \to \infty} \delta_n > 0; \\ \text{(iv)} & \lim_{n \to \infty} (\gamma_{n+1}/(1-\beta_{n+1}) \gamma_n/(1-\beta_n)) = 0. \end{array}$

Then the sequence $\{x_n\}$ generated by (1.9) converges strongly to $\bar{x} = P_{Fix(S) \cap \mathcal{G}}Q\bar{x}$ and (\bar{x},\bar{y}) is a solution of the general system (1.5) of variational inequalities, where $\bar{y}=$ $P_C(\bar{x}-\mu_2D_2\bar{x}).$

Recall also a multi-valued mapping $M: H_1 \to 2^{H_1}$ is called monotone if, for all $x, y \in H_1, u \in Mx$ and $v \in My$ such that

$$\langle x - y, u - v \rangle \ge 0.$$

A monotone mapping M is maximal if the $\operatorname{Graph}(M)$ is not properly contained in the graph of any other monotone mapping. It is well known that a monotone mapping M is maximal if and only if for $(x,u) \in H_1 \times H_1, \langle x-y, u-v \rangle \geq 0$ for every $(y,v) \in \operatorname{Graph}(M)$ implies that $u \in Mx$.

Let $M: H_1 \to 2^{H_1}$ be a multi-valued maximal monotone mapping. Then the resolvent mapping $J_{\lambda}^M: H_1 \to H_1$ associated with M is defined by

$$J_{\lambda}^{M}(x) := (I + \lambda M)^{-1}(x), \ \forall x \in H_{1},$$

for some $\lambda > 0$, where I stands for the identity operator on H_1 . Note that for all $\lambda > 0$ the resolvent operator J_{λ}^M is single-valued, nonexpansive, and firmly nonexpansive.

In 2011, Moudafi [11] introduced the following split monotone variational inclusion problem: Find $x^* \in H_1$ such that

$$\begin{cases}
0 \in f_1(x^*) + B_1(x^*), \\
y^* = Ax^* \in H_2: 0 \in f_2(y^*) + B_2(y^*),
\end{cases}$$
(1.10)

where $B_1: H_1 \to 2^{H_1}, B_2: H_2 \to 2^{H_2}$ are multi-valued maximal monotone mappings and A is bounded linear operator, $f_1: H_1 \to H_1$ and $f_2: H_2 \to H_2$ are two given operators.

The split monotone variational inclusion problem (1.10) includes as special cases: the split common fixed point problem, the split variational inequality problem, the split zero problem, and the split feasibility problem, which have already been studied and used in practice as a model in intensity-modulated radiation therapy treatment planning, see [12] This formalism is also at the core of the modeling of many inverse problems arising for phase retrieval and other real-world problems; for instance, in sensor networks in computerized tomography and data compression.

If $f_1 \equiv 0$ and $f_2 \equiv 0$, the problem (1.10) reduces to the following split variational inclusion problem: Find $x^* \in H_1$ such that

$$\begin{cases}
0 \in B_1(x^*), \\
y^* = Ax^* \in H_2: 0 \in B_2(y^*),
\end{cases}$$
(1.11)

which constitutes a pair of variational inclusion problems connected with a bounded linear operator A in two different Hilbert spaces H_1 and H_2 . The solution set of problem (1.11) is denoted by $\bar{\Gamma} = \{x^* \in H_1 : 0 \in B_1(x^*), y^* = Ax^* \in H_2 : 0 \in B_2(y^*)\}.$

Very recently, Byrne et al. [13] studied the weak and strong convergence of the following iterative method for problem (1.11): For given $x_0 \in H_1$ and $\lambda > 0$, compute iterative sequence $\{x_n\}$ generated by the following scheme:

$$x_{n+1} = J_{\lambda}^{B_1}(x_n + \epsilon A^*(J_{\lambda}^{B_2} - I)Ax_n). \tag{1.12}$$

In 2013, Kazmi and Rivi [14] modified scheme (1.11) to the case of a split variational inclusion and the fixed point problem of a nonexpansive mapping. To be more precise, they proved the following strong convergence theorem.

Theorem KR [14] Let H_1 and H_2 be two real Hilbert spaces and $A: H_1 \to H_2$ be a bounded linear operator. Let $f: H_1 \to H_1$ be a contraction mapping with constant $\rho \in (0,1)$ and $T: H_1 \to H_1$ be a nonexpansive mapping such that $\Omega = Fix(T) \cap \overline{\Gamma} \neq \emptyset$.

For a given $x_0 \in H_1$ arbitrarily, let the iterative sequences $\{u_n\}$ and $\{x_n\}$ be generated by

$$\begin{cases} u_n = J_{\lambda}^{B_1}(x_n + \epsilon A^*(J_{\lambda}^{B_2} - I)Ax_n), \\ x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n)Tu_n, \end{cases}$$
 (1.13)

where $\lambda > 0$ and $\epsilon \in (0, \frac{1}{L}), L$ is the spectral radius of the operator A^*A , and A^* is the adjoint of $A, \{\alpha_n\}$ is a sequence in (0,1) such that $\lim_{n \to \infty} \alpha_n = 0, \sum_{n=1}^{\infty} \alpha_n = \infty$ and

 $\sum_{n=1}^{\infty} |\alpha_n - \alpha_{n-1}| < \infty.$ Then the sequence $\{u_n\}$ and $\{x_n\}$ both convergence strongly to $z \in \Omega$, where $z = P_{\Omega} f(z)$.

Inspired and motivation by research going on in this area, a modified general iterative method for a split variational inclusion and k-strictly pseudo-contractive mapping, which is defined in the following way:

$$\begin{cases}
z_n = J_{\lambda}^{B_1}(x_n + \xi A^*(J_{\lambda}^{B_2} - I)Ax_n), \\
y_n = \alpha_n K x_n + (1 - \alpha_n) P_C[P_C(z_n - \mu_2 D_2 z_n) - \mu_1 D_1 P_C(z_n - \mu_2 D_2 z_n)] \\
x_{n+1} = \beta_n x_n + \gamma_n y_n + \delta_n S y_n, \ \forall n \ge 0,
\end{cases}$$
(1.14)

where $\mu_i \in (0, 2\eta_i)$ for $i = 1, 2, \{\alpha_n\}, \{\beta_n\}, \{\gamma_n\} \subset [0, 1], \lambda > 0$ and $\xi \in (0, \frac{1}{L}), L$ is the spectral radius of the operator A^*A , A^* is the adjoint of bounded linear operation A, $D_i : C \to H_1$ are η_i -inverse strongly monotone for $i = 1, 2, S : C \to C$ is a k-strictly pseudocontractive mapping and $K : C \to C$ be ρ -contraction with $\rho \in [0, \frac{1}{2})$.

Furthermore, we prove that the sequences generated by the iterative scheme converge strongly to a common solution set of split variational inclusion problem, a general system of variational inequalities and fixed point set of a strictly pseudocontractive mapping in real Hilbert space.

2. Preliminaries

In this section, we collect some notations and lemmas. Let C be a nonempty closed convex subset of a real Hilbert space H_1 . A mapping $D: C \to H_1$ is called *monotone* if

$$\langle Dx - Dy, x - y \rangle \ge 0, \ \forall x, y \in C.$$
 (2.1)

A mapping $D: C \to H_1$ is called *Lipschitz continuous* if there exists a real number L > 0 such that

$$||Dx - Dy|| \le L||x - y||, \ \forall x, y \in C.$$
 (2.2)

Recall that a mapping $D: C \to H_1$ is called α -inverse strongly monotone if there exists a real number $\alpha > 0$ such that

$$\langle Dx - Dy, x - y \rangle \ge \alpha \|Dx - Dy\|^2, \ \forall x, y \in C.$$
 (2.3)

It is clear that every inverse strongly monotone mapping is a monotone and Lipschitz continuous mapping. Also, recall that a mapping $S:C\to C$ is said to be k-strictly pseudocontractive if there exists a constant $0\le k<1$ such that

$$||Sx - Sy||^2 \le ||x - y||^2 + k||(I - S)x - (I - S)y||^2, \ \forall x, y \in C.$$
 (2.4)

For such a case, we also say that S is a k-strict pseudo-contraction [15]. It is clear that, in a real Hilbert space H_1 , inequality (2.4) is equivalent to the following:

$$\langle Sx - Sy, x - y \rangle \le ||x - y||^2 - \frac{1 - k}{2} ||(I - S)x - (I - S)y||^2, \ \forall x, y \in C.$$
 (2.5)

This immediately implies that if S is a k-strictly pseudocontractive mapping, then I-S is $\frac{1-k}{2}$ -inverse strongly monotone.

Let H_1 be a real Hilbert space. Then

$$||x - y||^2 = ||x||^2 - ||y||^2 - 2\langle x - y, y \rangle, \tag{2.6}$$

$$||x+y||^2 \le ||x||^2 + 2\langle y, x+y \rangle, \tag{2.7}$$

and

$$\|\lambda x + (1 - \lambda)y\|^2 = \lambda \|x\|^2 + (1 - \lambda)\|y\|^2 - \lambda(1 - \lambda)\|x - y\|^2,$$
(2.8)

for all $x, y \in H_1$ and $y \in [0, 1]$.

We recall some concepts and results which are needed in sequel. A mapping P_C is said to be *metric projection* of H_1 onto C if for every point $x \in H_1$, there exists a unique nearest point in C denoted by $P_C x$ such that

$$||x - P_C x|| \le ||x - y||, \ \forall y \in C.$$
 (2.9)

It is well known that P_C is a nonexpansive mapping and is characterized by the following property:

$$||P_C x - P_C y||^2 \le \langle x - y, P_C x - P_C y \rangle, \ \forall x, y \in H_1.$$
 (2.10)

Moreover, $P_{C}x$ is characterized by the following properties:

$$\langle x - P_C x, y - P_C x \rangle \le 0, (2.11)$$

$$||x - y||^2 \ge ||x - P_C x||^2 + ||y - P_C x||^2, \ \forall x \in H_1, y \in C,$$
(2.12)

and

$$\|(x-y) - (P_C x - P_C y)\|^2 \ge \|x-y\|^2 - \|P_C x - P_C y\|^2, \ \forall x, y \in H_1.$$
 (2.13)

It is known that every nonexpansive operator $S: H_1 \to H_1$ satisfies, for all $(x,y) \in H_1 \times H_1$, the inequality

$$\langle (x - S(x)) - (y - S(y)), S(y) - S(x) \rangle \le \frac{1}{2} ||(S(x) - x) - (S(y) - y)||^2,$$
 (2.14)

and therefore, we get, for all $(x, y) \in H_1 \times Fix(S)$,

$$\langle x - S(x), y - S(x) \rangle \le \frac{1}{2} ||S(x) - x||^2.$$
 (2.15)

Lemma 2.1. [16] Let $\{x_n\}$ and $\{z_n\}$ be bounded sequences in a Banach space X and let $\{\beta_n\}$ be a sequence in [0,1] with $0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1$. Suppose $x_{n+1} = (1-\beta_n)z_n + \beta_n x_n$ for all integers $n \ge 0$ and

$$\lim_{n \to \infty} \sup (\|z_{n+1} - z_n\| - \|x_{n+1} - x_n\|) \le 0.$$

Then, $\lim_{n\to\infty} ||z_n - x_n|| = 0$.

Lemma 2.2. [17] Let $\{a_n\}$ be a sequence of nonnegative numbers satisfying the condition

$$a_{n+1} \le (1 - \delta_n)a_n + \delta_n \sigma_n, \ \forall n \ge 1,$$

where $\{\delta_n\}, \{\sigma_n\}$ are sequences of real numbers such that

(i)
$$\{\delta_n\} \subset [0,1]$$
 and $\sum_{n=1}^{\infty} \delta_n = \infty$, or equivalently, $\prod_{n=1}^{\infty} (1 - \delta_n) = \lim_{n \to \infty} \prod_{k=1}^{\infty} (1 - \delta_k) = 0$;

(ii) $\limsup_{n\to\infty} \sigma_n \leq 0$ or $\sum_{n=1}^{\infty} \delta_n \sigma_n$ is convergent.

Then, $\lim_{n\to\infty} a_n = 0$.

Lemma 2.3. [18] Assume that T is nonexpansive self mapping of a closed convex subset C of a Hilbert space H_1 . If T has a fixed point, then I - T is demiclosed, i.e., whenever $\{x_n\}$ converges strongly to some y, it follows that (I - T)x = y. Here I is the identity mapping on H_1 .

Lemma 2.4. [19] Let C be a nonempty closed convex subset of a real Hilbert space H and $S: C \to C$ be a self-mapping of C.

(i) If S is a k-strict pseudocontractive mapping, then S satisfies the Lipschitz condition

$$||Sx - Sy|| \le \frac{1+k}{1-k} ||x - y||, \ \forall x, y \in C.$$
 (2.16)

- (ii) If S is a k-strict pseudocontractive mapping, then the mapping I-S is demiclosed at 0, that is, if $\{x_n\}$ is a sequence in C such that $x_n \to \tilde{x}$ weakly and $(I-S)x_n \to 0$ strongly, then $(I-S)\tilde{x}=0$.
- (iii) If S is k-(quasi)strict pseudo-contraction, then the fixed-point set Fix(S) of S is closed and convex so that the projection $P_{Fix(S)}$ is well defined.

Lemma 2.5. [10] Let C be a nonempty closed convex subset of a real Hilbert space H. Let $S: C \to C$ be a k strictly pseudocontractive mapping. Let γ and δ be two nonnegative real numbers. Assume $(\gamma + \delta)k \leq \gamma$. Then

$$\|\gamma(x-y) + \delta(Sx - Sy)\| \le (\gamma + \delta)\|x - y\|, \ \forall x, y \in C.$$

$$(2.17)$$

3. Main Result

Theorem 3.1. Let H_1 and H_2 be two real Hilbert spaces and let $C \subseteq H_1$ and $Q \subseteq H_2$ be nonempty closed convex subsets. Let $A: H_1 \to H_2$ be a bounded linear operator and $D_i: C \to H$ be η_i -inverse strongly monotone for i=1,2. Let $S: C \to C$ be a k-strictly pseudocontractive mapping such that $Fix(S) \cap \overline{\Gamma} \cap \mathcal{G} \neq \emptyset$. Let $K: C \to C$ be ρ -contraction with $\rho \in [0, \frac{1}{2})$. For given $x_0 \in C$ arbitrarily, let the sequences $\{x_n\}, \{y_n\}$ and $\{z_n\}$ be generated iteratively by

$$\begin{cases} z_n = J_{\lambda}^{B_1}(x_n + \xi A^*(J_{\lambda}^{B_2} - I)Ax_n), \\ y_n = \alpha_n Kx_n + (1 - \alpha_n)P_C[P_C(z_n - \mu_2 D_2 z_n) - \mu_1 D_1 P_C(z_n - \mu_2 D_2 z_n)] \\ x_{n+1} = \beta_n x_n + \gamma_n y_n + \delta_n Sy_n, \ \forall n \ge 0, \end{cases}$$

$$(3.1)$$

where $\mu_i \in (0, 2\eta_i)$ for $i = 1, 2, \{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\delta_n\} \subset [0, 1], \lambda > 0$ and $\xi \in (0, \frac{1}{L}), L$ is the spectral radius of the operator A^*A , A^* is the adjoint of A. Assume that the following conditions are satisfied:

(i)
$$\beta_n + \gamma_n + \delta_n = 1$$
 and $(\gamma_n + \delta_n)k \leq \gamma_n$ for all $n \geq 0$;

(ii)
$$\lim_{n\to\infty} \alpha_n = 0$$
, $\sum_{n=1}^{\infty} \alpha_n = \infty$;

(ii)
$$\lim_{n \to \infty} \alpha_n = 0$$
, $\sum_{n=1}^{\infty} \alpha_n = \infty$;
(iii) $0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1$; and $\liminf_{n \to \infty} \delta_n > 0$;
(iv) $\lim_{n \to \infty} (\gamma_{n+1}/(1 - \beta_{n+1}) - \gamma_n/(1 - \beta_n)) = 0$.

Then, the sequence $\{x_n\}$ generated by (3.1) converges strongly to $\bar{x} \in P_{Fix(S) \cap \bar{\Gamma} \cap G} K \bar{x}$ if and only if $\lim_{n\to\infty} ||y_n-z_n|| = 0$. Furthermore (\bar{x},\bar{y}) is a solution of the general system (1.5) of variational inequalities, where $\bar{y} = P_C(\bar{x} - \mu_2 D_2 \bar{x})$

Proof. We devide the proof into 6 steps.

Step 1. First we will prove that $\{x_n\}$ is bounded.

Indeed, take $x^* \in Fix(S) \cap \bar{\Gamma} \cap \mathcal{G}$ arbitrarily. Then $Sx^* = x^*, x^* \in \bar{\Gamma}$, and $x^* = x^*$ $P_C[P_C(x^* - \mu_2 D_2 x^*) - \mu_1 D_1 P_C(x^* - \mu_2 D_2 x^*)].$ From $x^* \in \overline{\Gamma}$, we have $x^* = J_{\lambda}^{B_1} x^*, Ax^* = J_{\lambda}^{B_2} (Ax^*).$ We estimate

$$||z_{n} - x^{*}||^{2}$$

$$= ||J_{\lambda}^{B_{1}}(x_{n} + \xi A^{*}(J_{\lambda}^{B_{2}} - I)Ax_{n}) - x^{*}||^{2}$$

$$= ||J_{\lambda}^{B_{1}}(x_{n} + \xi A^{*}(J_{\lambda}^{B_{2}} - I)Ax_{n}) - J_{\lambda}^{B_{1}}x^{*}||^{2}$$

$$\leq ||x_{n} + \xi A^{*}(J_{\lambda}^{B_{2}} - I)Ax_{n} - x^{*}||^{2}$$

$$\leq ||x_{n} - x^{*}||^{2} + \xi^{2}||A^{*}(J_{\lambda}^{B_{2}} - I)Ax_{n}||^{2}$$

$$+2\xi\langle x_{n} - x^{*}, A^{*}(J_{\lambda}^{B_{2}} - I)Ax_{n}\rangle.$$
(3.2)

Thus, we have

$$||z_{n} - x^{*}||^{2} \leq ||x_{n} - x^{*}||^{2} + \xi^{2} \langle (J_{\lambda}^{B_{2}} - I)Ax_{n}, AA^{*}(J_{\lambda}^{B_{2}} - I)Ax_{n} \rangle + 2\xi \langle x_{n} - x^{*}, A^{*}(J_{\lambda}^{B_{2}} - I)Ax_{n} \rangle.$$
(3.3)

Now, we have

$$\xi^{2}\langle (J_{\lambda}^{B_{2}} - I)Ax_{n}, AA^{*}(J_{\lambda}^{B_{2}} - I)Ax_{n}\rangle \leq L\xi^{2}\langle (J_{\lambda}^{B_{2}} - I)Ax_{n}, (J_{\lambda}^{B_{2}} - I)Ax_{n}\rangle$$

$$= L\xi^{2}\|(J_{\lambda}^{B_{2}} - I)Ax_{n}\|^{2}. \tag{3.4}$$

Setting $\Lambda := 2\xi \langle x_n - x^*, A^*(J_\lambda^{B_2} - I)Ax_n \rangle$ and using (2.15), we have

$$\Lambda = 2\xi \langle x_{n} - x^{*}, A^{*}(J_{\lambda}^{B_{2}} - I)Ax_{n} \rangle
= 2\xi \langle A(x_{n} - x^{*}), (J_{\lambda}^{B_{2}} - I)Ax_{n} \rangle
= 2\xi \langle A(x_{n} - x^{*}) + (J_{\lambda}^{B_{2}} - I)Ax_{n} - (J_{\lambda}^{B_{2}} - I)Ax_{n}, (J_{\lambda}^{B_{2}} - I)Ax_{n} \rangle
= 2\xi \left\{ \langle J_{\lambda}^{B_{2}}Ax_{n} - Ax^{*}, (J_{\lambda}^{B_{2}} - I)Ax_{n} \rangle - \|(J_{\lambda}^{B_{2}} - I)Ax_{n}\|^{2} \right\}
\leq 2\xi \left\{ \frac{1}{2} \|(J_{\lambda}^{B_{2}} - I)Ax_{n}\|^{2} - \|(J_{\lambda}^{B_{2}} - I)Ax_{n}\|^{2} \right\}
\leq -\xi \|(J_{\lambda}^{B_{2}} - I)Ax_{n}\|^{2}.$$
(3.5)

Using (3.3), (3.4) and (3.5), we obtain

$$||z_n - x^*||^2 \le ||x_n - x^*||^2 + \xi(L\xi - 1)||(J_\lambda^{B_2} - I)Ax_n||^2.$$
(3.6)

Since $\xi \in (0, \frac{1}{L})$, we obtain

$$||z_n - x^*||^2 \le ||x_n - x^*||^2. \tag{3.7}$$

For simplicity, we write $y^* = P_C(x^* - \mu_2 D_2 x^*)$ and $u_n = P_C(z_n - \mu_2 D_2 z_n)$ for all $n \ge 0$. Since $D_i : C \to H_1$ be η_i -inverse strongly monotone for i = 1, 2 and $0 < \mu_i < 2\eta_i$ for i = 1, 2, we know that for all $n \ge 0$,

$$||P_{C}[P_{C}(z_{n} - \mu_{2}D_{2}z_{n}) - \mu_{1}D_{1}P_{C}(z_{n} - \mu_{2}D_{2}z_{n})] - x^{*}||^{2}$$

$$= ||P_{C}[P_{C}(z_{n} - \mu_{2}D_{2}z_{n}) - \mu_{1}D_{1}P_{C}(z_{n} - \mu_{2}D_{2}z_{n})]$$

$$-P_{C}[P_{C}(x^{*} - \mu_{2}D_{2}x^{*}) - \mu_{1}D_{1}P_{C}(x^{*} - \mu_{2}D_{2}x^{*})]||^{2}$$

$$\leq ||[P_{C}(z_{n} - \mu_{2}D_{2}z_{n}) - \mu_{1}D_{1}P_{C}(x^{*} - \mu_{2}D_{2}z_{n})]$$

$$-[P_{C}(x^{*} - \mu_{2}D_{2}x^{*}) - \mu_{1}D_{1}P_{C}(x^{*} - \mu_{2}D_{2}x^{*})]||^{2}$$

$$= ||[P_{C}(z_{n} - \mu_{2}D_{2}z_{n}) - P_{C}(x^{*} - \mu_{2}D_{2}x^{*})]||^{2}$$

$$\leq ||P_{C}(z_{n} - \mu_{2}D_{2}z_{n}) - P_{C}(x^{*} - \mu_{2}D_{2}x^{*})||^{2}$$

$$-\mu_{1}[2\eta_{1} - \mu_{1})||D_{1}P_{C}(z_{n} - \mu_{2}D_{2}z_{n}) - D_{1}P_{C}(x^{*} - \mu_{2}D_{2}x^{*})||^{2}$$

$$\leq ||(z_{n} - \mu_{2}D_{2}z_{n}) - (x^{*} - \mu_{2}D_{2}x^{*})||^{2} - \mu_{1}(2\eta_{1} - \mu_{1})||D_{1}u_{n} - D_{1}y^{*}||^{2}$$

$$\leq ||(z_{n} - \mu_{2}D_{2}z_{n}) - (x^{*} - \mu_{2}D_{2}x^{*})||^{2} - \mu_{1}(2\eta_{1} - \mu_{1})||D_{1}u_{n} - D_{1}y^{*}||^{2}$$

$$\leq ||(z_{n} - x^{*}) - \mu_{2}(D_{2}z_{n} - D_{2}x^{*})||^{2} - \mu_{1}(2\eta_{1} - \mu_{1})||D_{1}u_{n} - D_{1}y^{*}||^{2}$$

$$\leq ||z_{n} - x^{*}||^{2} - \mu_{2}(2\eta_{2} - \mu_{2})||D_{2}z_{n} - D_{2}x^{*}||^{2} - \mu_{1}(2\eta_{1} - \mu_{1})||D_{1}u_{n} - D_{1}y^{*}||^{2}$$

$$\leq ||z_{n} - x^{*}||^{2}$$

$$\leq ||z_{n} - x^{*}||^{2}$$

$$\leq ||x_{n} - x^{*}||^{2} .$$

$$(3.8)$$

Hence, we get

$$||y_{n} - x^{*}||$$

$$= ||\alpha_{n}(Kx_{n} - x^{*}) + (1 - \alpha_{n})(P_{C}[P_{C}(z_{n} - \mu_{2}D_{2}z_{n}) - \mu_{1}D_{1}P_{C}(z_{n} - \mu_{2}D_{2}z_{n})] - x^{*})||$$

$$\leq \alpha_{n}||Kx_{n} - x^{*}|| + (1 - \alpha_{n})||P_{C}[P_{C}(z_{n} - \mu_{2}D_{2}z_{n}) - \mu_{1}D_{1}P_{C}(z_{n} - \mu_{2}D_{2}z_{n})] - x^{*})||$$

$$\leq \alpha_{n}(\rho||x_{n} - x^{*}|| + ||Kx^{*} - x^{*}||) + (1 - \alpha_{n})||x_{n} - x^{*}||$$

$$= (1 - (1 - \rho)\alpha_{n})||x_{n} - x^{*}|| + (1 - \rho)\alpha_{n}\frac{||Kx^{*} - x^{*}||}{1 - \rho}$$

$$\leq \max\left\{||x_{n} - x^{*}||, \frac{||Kx^{*} - x^{*}||}{1 - \rho}\right\}.$$
(3.9)

Since $(\gamma_n + \delta_n)k \leq \gamma_n$ for all $n \geq 0$, utilizing Lemma 2.5, we obtain from (3.9)

$$||x_{n+1} - x^*|| = ||\beta_n(x_n - x^*) + \gamma_n(y_n - x^*) + \delta_n(Sy_n - x^*)||$$

$$\leq |\beta_n||x_n - x^*|| + ||\gamma_n(y_n - x^*) + \delta_n(Sy_n - x^*)||$$

$$\leq |\beta_n||x_n - x^*|| + (\gamma_n + \delta_n)||y_n - x^*||$$

$$\leq |\beta_n||x_n - x^*|| + (\gamma_n + \delta_n) \max \left\{ ||x_n - x^*||, \frac{||Kx^* - x^*||}{1 - \rho} \right\}$$

$$\leq \max \left\{ ||x_n - x^*||, \frac{||Kx^* - x^*||}{1 - \rho} \right\}.$$
(3.10)

By induction, we obtain that for all $n \geq 0$,

$$||x_n - x^*|| \le \max\left\{||x_0 - x^*||, \frac{||Kx^* - x^*||}{1 - \rho}\right\}.$$
(3.11)

Hence, $\{x_n\}$ is bounded. Consequently, we deduce immediately that $\{z_n\}, \{y_n\}, \{Sy_n\}$ and $\{u_n\}$ are bounded, where $u_n = P_C(z_n - \mu_2 D_2 z_n)$ for all $n \ge 0$. Now, put

$$t_n := P_C[P_C(z_n - \mu_2 D_2 z_n) - \mu_1 D_1 P_C(z_n - \mu_2 D_2 z_n)], \ \forall n \ge 0.$$
(3.12)

Then it is easy to see that $\{t_n\}$ is bounded because P_C, D_1 , and D_2 are Lipschitz continuous and $\{z_n\}$ is bounded.

Step 2. We will prove that $\lim_{n\to\infty} ||x_{n+1}-x_n|| = 0$.

Indeed, define $x_{n+1} = \beta_n x_n + (1 - \beta_n) w_n$ for all $n \ge 0$, so we get $w_n = \frac{x_{n+1} - \beta_n x_n}{1 - \beta_n}$. It follows that

$$w_{n+1} - w_n = \frac{\gamma_{n+1}(y_{n+1} - y_n) + \delta_{n+1}(Sy_{n+1} - Sy_n)}{1 - \beta_{n+1}} + \left(\frac{\gamma_{n+1}}{1 - \beta_{n+1}} - \frac{\gamma_n}{1 - \beta_n}\right) y_n + \left(\frac{\delta_{n+1}}{1 - \beta_{n+1}} - \frac{\delta_n}{1 - \beta_n}\right) Sy_n.$$
(3.13)

Since $(\gamma_n + \delta_n)k \leq \gamma_n$ for all $n \geq 0$, utilizing Lemma 2.5 we have

$$\|\gamma_{n+1}(y_{n+1} - y_n) + \delta_{n+1}(Sy_{n+1} - Sy_n)\| \le (\gamma_{n+1} + \delta_{n+1})\|y_{n+1} - y_n\|.$$
 (3.14)

Next, we estimate $||y_{n+1} - y_n||$. Observe that

$$||z_{n+1} - z_n||$$

$$= ||J_{\lambda}^{B_1}(x_{n+1} + \gamma A^*(J_{\lambda}^{B_2} - I)Ax_{n+1} - J_{\lambda}^{B_1}(x_n + \gamma A^*(J_{\lambda}^{B_2} - I)Ax_n||$$

$$\leq ||J_{\lambda}^{B_1}(I + \gamma A^*(J_{\lambda}^{B_2} - I)A)x_{n+1} - J_{\lambda}^{B_1}(I + \gamma A^*(J_{\lambda}^{B_2} - I)A)x_n||$$

$$\leq ||x_{n+1} - x_n||.$$
(3.15)

And

$$||t_{n+1} - t_n||^2$$

$$= ||P_C[P_C(z_{n+1} - \mu_2 D_2 z_{n+1}) - \mu_1 D_1 P_C(z_{n+1} - \mu_2 D_2 z_{n+1})] - P_C[P_C(z_n - \mu_2 D_2 z_n) - \mu_1 D_1 P_C(z_n - \mu_2 D_2 z_n)]||^2$$

$$\leq ||[P_C(z_{n+1} - \mu_2 D_2 z_{n+1}) - \mu_1 D_1 P_C(z_{n+1} - \mu_2 D_2 z_{n+1})] - [P_C(z_n - \mu_2 D_2 z_n) - \mu_1 D_1 P_C(z_n - \mu_2 D_2 z_n)]||^2$$

$$= ||[P_C(z_{n+1} - \mu_2 D_2 z_{n+1}) - P_C(z_n - \mu_2 D_2 z_n)]||^2$$

$$\leq ||P_C(z_{n+1} - \mu_2 D_2 z_{n+1}) - P_C(z_n - \mu_2 D_2 z_n)]|^2$$

$$\leq ||P_C(z_{n+1} - \mu_2 D_2 z_{n+1}) - P_C(z_n - \mu_2 D_2 z_n)||^2$$

$$\leq ||P_C(z_{n+1} - \mu_2 D_2 z_{n+1}) - P_C(z_n - \mu_2 D_2 z_n)||^2$$

$$\leq ||P_C(z_{n+1} - \mu_2 D_2 z_{n+1}) - P_C(z_n - \mu_2 D_2 z_n)||^2$$

$$\leq ||(z_{n+1} - \mu_2 D_2 z_{n+1}) - (z_n - \mu_2 D_2 z_n)||^2$$

$$\leq ||(z_{n+1} - \mu_2 D_2 z_{n+1}) - (z_n - \mu_2 D_2 z_n)||^2$$

$$\leq ||(z_{n+1} - z_n) - \mu_2(D_2 z_{n+1} - D_2 z_n)||^2$$

$$\leq ||z_{n+1} - z_n||^2 - \mu_2(2\eta_2 - \mu_2)||D_2 z_{n+1} - D_2 z_n||^2$$

$$\leq ||z_{n+1} - z_n||^2.$$
(3.16)

Comblining (3.15) with (3.16), we get

$$||t_{n+1} - t_n|| \le ||x_{n+1} - x_n|| \tag{3.17}$$

This together with (3.17) implies that

$$||y_{n+1} - y_n||$$

$$= ||(t_{n+1} - t_n) + \alpha_{n+1}(Kx_{n+1} - t_{n+1}) - \alpha_n(Kx_n - t_n)||$$

$$\leq ||t_{n+1} - t_n|| + \alpha_{n+1}||Kx_{n+1} - t_{n+1}|| + \alpha_n||Kx_n - t_n||$$

$$\leq ||x_{n+1} - x_n|| + \alpha_{n+1}||Kx_{n+1} - t_{n+1}|| + \alpha_n||Kx_n - t_n||.$$
(3.18)

From $w_n = \frac{\gamma_n y_n + \delta_n S y_n}{1 - \beta_n}$, and it follows from (3.13), (3.14) and (3.18) that

Since $\{x_n\}, \{y_n\}$ and $\{t_n\}$ are bounded, it follows from conditions (ii) and (iv) that

$$\limsup_{n \to \infty} (\|w_{n+1} - w_n\| - \|x_{n+1} - x_n\|)$$

$$\leq \limsup_{n \to \infty} \left\{ \alpha_{n+1} \|Kx_{n+1} - t_{n+1}\| + \alpha_n \|Kx_n - t_n\| + \left| \frac{\gamma_{n+1}}{1 - \beta_{n+1}} - \frac{\gamma_n}{1 - \beta_n} \right| (\|y_n\| + \|Sy_n\|) \right\}$$

$$= 0. \tag{3.20}$$

By Lemma 2.1, we get

$$\lim_{n \to \infty} ||w_n - x_n|| = 0. \tag{3.21}$$

From
$$x_{n+1} = (1 - \beta_n)w_n + \beta_n x_n$$
 we get $||x_{n+1} - x_n|| = (1 - \beta_n)||w_n - x_n||$ so
$$\lim_{n \to \infty} ||x_{n+1} - x_n|| = \lim_{n \to \infty} (1 - \beta_n)||w_n - x_n|| = 0.$$
(3.22)

Step 3. We will prove that $\lim_{n\to\infty} ||D_2 z_n - D_2 x^*|| = 0$, $\lim_{n\to\infty} ||D_1 u_n - D_1 y^*|| = 0$ where $y^* = P_C(x^* - \mu_2 D_2 x^*)$.

Indeed, utilizing Lemma 2.5 and the convexity of $\|\cdot\|^2$, we get from (3.1) and (3.8)

$$\|x_{n+1} - x^*\|^2$$

$$= \|\beta_n(x_n - x^*) + \gamma_n(y_n - x^*) + \delta_n(Sy_n - x^*)\|^2$$

$$\leq \beta_n \|x_n - x^*\|^2 + (\gamma_n + \delta_n) \|\frac{1}{\gamma_n + \delta_n} [\gamma_n(y_n - x^*) + \delta_n(Sy_n - x^*)] \|^2$$

$$\leq \beta_n \|x_n - x^*\|^2 + (\gamma_n + \delta_n) \|y_n - x^*\|^2$$

$$\leq \beta_n \|x_n - x^*\|^2 + (\gamma_n + \delta_n) [\alpha_n \|Kx_n - x^*\|^2 + (1 - \alpha_n) \|t_n - x^*\|^2]$$

$$\leq \beta_n \|x_n - x^*\|^2 + \alpha_n \|Kx_n - x^*\|^2 + (\gamma_n + \delta_n) \|t_n - x^*\|^2$$

$$\leq \beta_n \|x_n - x^*\|^2 + \alpha_n \|Kx_n - x^*\|^2 + (\gamma_n + \delta_n)$$

$$\times [\|z_n - x^*\|^2 - \mu_2(2\eta_2 - \mu_2) \|D_2 z_n - D_2 x^*\|^2$$

$$-\mu_1(2\eta_1 - \mu_1) \|D_1 u_n - D_1 y^*\|^2]$$

$$\leq \beta_n \|x_n - x^*\|^2 + \alpha_n \|Kx_n - x^*\|^2 + (\gamma_n + \delta_n)$$

$$\times [\|x_n - x^*\|^2 - \mu_2(2\eta_2 - \mu_2) \|D_2 z_n - D_2 x^*\|^2$$

$$-\mu_1(2\eta_1 - \mu_1) \|D_1 u_n - D_1 y^*\|^2]$$

$$= \|x_n - x^*\|^2 + \alpha_n \|Kx_n - x^*\|^2$$

$$-(\gamma_n + \delta_n) [\mu_2(2\eta_2 - \mu_2) \|D_2 z_n - D_2 x^*\|^2$$

$$+\mu_1(2\eta_1 - \mu_1) \|D_1 u_n - D_1 y^*\|^2].$$

$$(3.23)$$

Therefore,

$$(\gamma_{n} + \delta_{n})[\mu_{2}(2\eta_{2} - \mu_{2}) \|D_{2}z_{n} - D_{2}x^{*}\|^{2} + \mu_{1}(2\eta_{1} - \mu_{1}) \|D_{1}u_{n} - D_{1}y^{*}\|^{2}]$$

$$\leq \|x_{n} - x^{*}\|^{2} - \|x_{n+1} - x^{*}\|^{2} + \alpha_{n} \|Kx_{n} - x^{*}\|^{2}$$

$$\leq (\|x_{n} - x^{*}\| + \|x_{n+1} - x^{*}\|) \|x_{n} - x_{n+1}\| + \alpha_{n} \|Kx_{n} - x^{*}\|^{2}.$$
(3.24)

Since $\alpha_n \to 0$, $||x_n - x_{n+1}|| \to 0$ and $\lim_{n \to \infty} (\gamma_n + \delta_n) > 0$, we have

$$\lim_{n \to \infty} ||D_1 u_n - D_1 y^*|| = 0, \ \lim_{n \to \infty} ||D_2 z_n - D_2 x^*|| = 0.$$
(3.25)

Step 4. We will prove that $\lim_{n\to\infty} ||Sy_n - y_n|| = 0$.

From (3.1), we obtain

$$||u_{n} - y^{*}||^{2}$$

$$= ||P_{C}(z_{n} - \mu_{2}D_{2}z_{n}) - P_{C}(x^{*} - \mu_{2}D_{2}x^{*})||^{2}$$

$$\leq \langle (z_{n} - \mu_{2}D_{2}z_{n}) - (x^{*} - \mu_{2}D_{2}x^{*}), u_{n} - y^{*} \rangle$$

$$= \frac{1}{2}[||z_{n} - x^{*} - \mu_{2}(D_{2}z_{n} - D_{2}x^{*})||^{2} + ||u_{n} - y^{*}||^{2}$$

$$-||(z_{n} - x^{*}) - \mu_{2}(D_{2}z_{n} - D_{2}x^{*}) - (u_{n} - y^{*})||^{2}]$$

$$\leq \frac{1}{2}[||z_{n} - x^{*}||^{2} + ||u_{n} - y^{*}||^{2}$$

$$-||(z_{n} - u_{n}) - \mu_{2}(D_{2}z_{n} - D_{2}x^{*}) - (x^{*} - y^{*})||^{2}]$$

$$= \frac{1}{2}[||z_{n} - x^{*}||^{2} + ||u_{n} - y^{*}||^{2} - ||z_{n} - u_{n} - (x^{*} - y^{*})||^{2}$$

$$+2\mu_{2}\langle z_{n} - u_{n} - (x^{*} - y^{*}), D_{2}z_{n} - D_{2}x^{*}\rangle$$

$$-\mu_{2}^{2}||D_{2}z_{n} - D_{2}x^{*}||^{2}],$$

$$(3.26)$$

that is

$$||u_n - y^*||^2 \le ||z_n - x^*||^2 - ||z_n - u_n - (x^* - y^*)||^2 + 2\mu_2 ||z_n - u_n - (x^* - y^*)|| ||D_2 z_n - D_2 x^*||.$$
(3.27)

Substituting (3.6) in (3.27), we have

$$||u_{n} - y^{*}||^{2}$$

$$\leq ||x_{n} - x^{*}||^{2} + \xi(L\xi - 1)||(J_{\lambda}^{B_{2}} - I)Ax_{n}||^{2} - ||z_{n} - u_{n} - (x^{*} - y^{*})||^{2} + 2\mu_{2}||z_{n} - u_{n} - (x^{*} - y^{*})|||D_{2}z_{n} - D_{2}x^{*}||.$$
(3.28)

Further, similarly to above argument, we derive

$$||t_{n} - x^{*}||^{2}$$

$$= ||P_{C}(u_{n} - \mu_{1}D_{1}u_{n}) - P_{C}(y^{*} - \mu_{1}D_{1}y^{*})||^{2}$$

$$\leq \langle (u_{n} - \mu_{1}D_{1}u_{n}) - (y^{*} - \mu_{1}D_{1}y^{*}), t_{n} - x^{*} \rangle$$

$$= \frac{1}{2}[||u_{n} - y^{*} - \mu_{1}(D_{1}u_{n} - D_{1}y^{*})||^{2} + ||t_{n} - x^{*}||^{2}$$

$$-||(u_{n} - y^{*}) - \mu_{1}(D_{1}u_{n} - D_{1}y^{*}) - (t_{n} - x^{*})||^{2}]$$

$$\leq \frac{1}{2}[||u_{n} - y^{*}||^{2} + ||t_{n} - x^{*}||^{2} - ||(u_{n} - t_{n})$$

$$-\mu_{1}(D_{1}u_{n} - D_{1}y^{*}) + (x^{*} - y^{*})||^{2}]$$

$$= \frac{1}{2}[||u_{n} - y^{*}||^{2} + ||t_{n} - x^{*}||^{2} - ||u_{n} - t_{n} + (x^{*} - y^{*})||^{2}$$

$$+2\mu_{1}\langle u_{n} - t_{n} + (x^{*} - y^{*}), D_{1}u_{n} - D_{1}y^{*}\rangle$$

$$-\mu_{1}^{2}||D_{1}u_{n} - D_{1}y^{*}||^{2}]$$
(3.29)

that is,

$$||t_n - x^*||^2 \le ||u_n - y^*||^2 - ||u_n - t_n + (x^* - y^*)||^2 + 2\mu_1 ||u_n - t_n + (x^* - y^*)|| ||D_1 u_n - D_1 y^*||.$$
(3.30)

Substituting (3.28) in (3.30), we have

$$||t_{n} - x^{*}||^{2}$$

$$\leq ||x_{n} - x^{*}||^{2} + \xi(L\xi - 1)||(J_{\lambda}^{B_{2}} - I)Ax_{n}||^{2}$$

$$-||z_{n} - u_{n} - (x^{*} - y^{*})||^{2} + 2\mu_{2}||z_{n} - u_{n} - (x^{*} - y^{*})||$$

$$\times ||D_{2}z_{n} - D_{2}x^{*}|| - ||u_{n} - t_{n} + (x^{*} - y^{*})||^{2}$$

$$+2\mu_{1}||u_{n} - t_{n} + (x^{*} - y^{*})|||D_{1}u_{n} - D_{1}y^{*}||.$$
(3.31)

Thus from (3.1) and (3.31), it follows that

$$||x_{n+1} - x^*||^2 \le \beta_n ||x_n - x^*||^2 + (\gamma_n + \delta_n) ||y_n - x^*||^2$$

$$\le \beta_n ||x_n - x^*||^2 + (1 - \beta_n) [\alpha_n ||Kx_n - x^*||^2 + (1 - \alpha_n) ||t_n - x^*||^2]$$

$$\le \beta_n ||x_n - x^*||^2 + \alpha_n ||Kx_n - x^*||^2 + (1 - \beta_n) ||t_n - x^*||^2$$

$$\le \beta_n ||x_n - x^*||^2 + \alpha_n ||Kx_n - x^*||^2$$

$$+ (1 - \beta_n) [||x_n - x^*||^2 + \xi(L\xi - 1) ||(J_{\lambda}^{B_2} - I)Ax_n||^2$$

$$- ||z_n - u_n - (x^* - y^*)||^2 + 2\mu_2 ||z_n - u_n - (x^* - y^*) |||D_2 z_n - D_2 x^*||$$

$$- ||u_n - t_n + (x^* - y^*)||^2 + 2\mu_1 ||u_n - t_n + (x^* - y^*) |||D_1 u_n - D_1 y^*||]$$

$$= ||x_n - x^*||^2 + \alpha_n ||Kx_n - x^*||^2$$

$$+ (1 - \beta_n) [\xi(L\xi - 1) ||(J_{\lambda}^{B_2} - I)Ax_n ||^2 - ||z_n - u_n - (x^* - y^*) ||^2$$

$$+ 2\mu_2 ||z_n - u_n - (x^* - y^*) |||D_2 z_n - D_2 x^*||$$

$$- ||u_n - t_n + (x^* - y^*) ||^2 + 2\mu_1 ||u_n - t_n + (x^* - y^*) |||D_1 u_n - D_1 y^*||]$$

$$(3.32)$$

which hence implies that

$$(1 - \beta_{n})[\xi(1 - L\xi)\|(J_{\lambda}^{B_{2}} - I)Ax_{n}\|^{2} + \|z_{n} - u_{n} - (x^{*} - y^{*})\|^{2} + \|u_{n} - t_{n} + (x^{*} - y^{*})\|^{2}] \leq \|x_{n} - x^{*}\|^{2} - \|x_{n+1} - x^{*}\|^{2} + \alpha_{n}\|Kx_{n} - x^{*}\|^{2} + (1 - \beta_{n})[2\mu_{2}\|z_{n} - u_{n} - (x^{*} - y^{*})\|\|D_{2}z_{n} - D_{2}x^{*}\|] + 2\mu_{1}\|u_{n} - t_{n} + (x^{*} - y^{*})\|\|D_{1}u_{n} - D_{1}y^{*}\|.$$

$$(3.33)$$

Since $\xi(1 - L\xi) > 0$, $\alpha_n \to 0$, $\limsup_{n \to \infty} \beta_n < 1$, $||D_2 z_n - D_2 x^*|| \to 0$, $||D_1 u_n - D_1 y^*|| \to 0$, $||x_{n+1} - x_n|| \to 0$, it follows from the boundedness of $\{x_n\}, \{z_n\}, \{u_n\}$ and $\{t_n\}$ that

$$(1 - \beta_{n})[\xi(1 - L\xi)\|(J_{\lambda}^{B_{2}} - I)Ax_{n}\|^{2}]$$

$$+(1 - \beta_{n})[\|z_{n} - u_{n} - (x^{*} - y^{*})\|^{2} + \|u_{n} - t_{n} + (x^{*} - y^{*})\|^{2}]$$

$$\leq (\|x_{n} - x^{*}\| + \|x_{n+1} - x^{*}\|)\|x_{n} - x_{n+1}\| + \alpha_{n}\|Kx_{n} - x^{*}\|^{2}$$

$$+(1 - \beta_{n})[2\mu_{2}\|z_{n} - u_{n} - (x^{*} - y^{*})\|\|D_{2}z_{n} - D_{2}x^{*}\|]$$

$$+2\mu_{1}\|u_{n} - t_{n} + (x^{*} - y^{*})\|\|D_{1}u_{n} - D_{1}y^{*}\|.$$

$$(3.34)$$

We get

$$\lim_{n \to \infty} \|(J_{\lambda}^{B_1} - I)Ax_n\| = 0, \tag{3.35}$$

$$\lim_{n \to \infty} ||u_n - t_n + (x^* - y^*)|| = 0, \tag{3.36}$$

$$\lim_{n \to \infty} ||z_n - u_n - (x^* - y^*)|| = 0.$$
(3.37)

Furthermore, using (3.1) and $\gamma \in (0, \frac{1}{L})$, we observe that

$$\begin{aligned} &\|z_{n}-x^{*}\|^{2} \\ &= \|J_{\lambda}^{B_{1}}(x_{n}+\xi A^{*}(J_{\lambda}^{B_{2}}-I)Ax_{n})-J_{\lambda}^{B_{1}}x^{*}\|^{2} \\ &\leq \langle z_{n}-x^{*},x_{n}+\gamma A^{*}(J_{\lambda}^{B_{2}}-I)Ax_{n}-x^{*}\rangle \\ &= \frac{1}{2}\{\|z_{n}-x^{*}\|^{2}+\|x_{n}+\xi A^{*}(J_{\lambda}^{B_{2}}-I)Ax_{n}-x^{*}\|^{2} \\ &-\|(z_{n}-x^{*})-[x_{n}+\xi A^{*}(J_{\lambda}^{B_{2}}-I)Ax_{n}-x^{*}]\|^{2}\} \\ &= \frac{1}{2}\{\|z_{n}-x^{*}\|^{2}+\|x_{n}-x^{*}\|^{2}+\xi(L\gamma-1)\|(J_{\lambda}^{B_{2}}-I)Ax_{n}\|^{2} \\ &-\|z_{n}-x_{n}-\xi A^{*}(J_{\lambda}^{B_{2}}-I)Ax_{n}\|^{2}\} \\ &\leq \frac{1}{2}\{\|z_{n}-x^{*}\|^{2}+\|x_{n}-x^{*}\|^{2}-[\|z_{n}-x_{n}\|^{2}+\xi^{2}\|A^{*}(J_{\lambda}^{B_{2}}-I)Ax_{n}\|^{2} \\ &-2\xi\langle z_{n}-x_{n},A^{*}(J_{\lambda}^{B_{2}}-I)Ax_{n}\rangle]\} \\ &\leq \frac{1}{2}\{\|z_{n}-x^{*}\|^{2}+\|x_{n}-x^{*}\|^{2}-\|z_{n}-x_{n}\|^{2} \\ &+2\xi\|A(z_{n}-x_{n})\|\|(J_{\lambda}^{B_{2}}-I)Ax_{n}\|\}. \end{aligned}$$

Hence, we obtain

$$||z_n - x^*||^2 \le ||x_n - x^*||^2 - ||z_n - x_n||^2 + 2\xi ||A(z_n - x_n)|| ||(J_{\lambda}^{B_2} - I)Ax_n||.$$
 (3.38)

Substituting (3.38) in (3.27), we get

$$||u_{n} - y^{*}||^{2} \le ||x_{n} - x^{*}||^{2} - ||z_{n} - x_{n}||^{2} + 2\xi ||A(z_{n} - x_{n})|| ||(J_{\lambda}^{B_{2}} - I)Ax_{n}|| - ||z_{n} - u_{n} - (x^{*} - y^{*})||^{2} + 2\mu_{2}||z_{n} - u_{n} - (x^{*} - y^{*})|| \times ||D_{2}z_{n} - D_{2}x^{*}||.$$
(3.39)

Substituting (3.39) in (3.30), we get

$$||t_{n} - x^{*}||^{2}$$

$$\leq ||x_{n} - x^{*}||^{2} - ||z_{n} - x_{n}||^{2} + 2\xi ||A(z_{n} - x_{n})|| ||(J_{\lambda}^{B_{2}} - I)Ax_{n}||$$

$$-||z_{n} - u_{n} - (x^{*} - y^{*})||^{2} + 2\mu_{2}||z_{n} - u_{n} - (x^{*} - y^{*})|| ||D_{2}z_{n} - D_{2}x^{*}||$$

$$-||u_{n} - t_{n} + (x^{*} - y^{*})||^{2} + 2\mu_{1}||u_{n} - t_{n} + (x^{*} - y^{*})||$$

$$\times ||D_{1}u_{n} - D_{1}y^{*}||.$$
(3.40)

From (3.23) and (3.40), we get

$$||x_{n+1} - x^*||^2$$

$$\leq \beta_n ||x_n - x^*||^2 + (\gamma_n + \delta_n) ||y_n - x^*||^2$$

$$= \beta_n ||x_n - x^*||^2 + (1 - \beta_n) ||y_n - x^*||^2$$

$$\leq \beta_n ||x_n - x^*||^2 + (1 - \beta_n) ||\alpha_n ||Kx_n - x^*||^2 + (1 - \alpha_n) ||t_n - x^*||^2]$$

$$\leq \beta_n ||x_n - x^*||^2 + \alpha_n ||Kx_n - x^*||^2 + (1 - \beta_n) ||t_n - x^*||^2$$

$$\leq \beta_n ||x_n - x^*||^2 + \alpha_n ||Kx_n - x^*||^2 + (1 - \beta_n) \left[||x_n - x^*||^2 - ||z_n - x_n||^2 \right]$$

$$+ 2\xi ||A(z_n - x_n)|| ||(J_{\lambda}^{B_2} - I)Ax_n|| - ||z_n - u_n - (x^* - y^*)||^2$$

$$+ 2\mu_2 ||z_n - u_n - (x^* - y^*)|||D_2 z_n - D_2 x^*|| - ||u_n - t_n + (x^* - y^*)||^2$$

$$+ 2\mu_1 ||u_n - t_n + (x^* - y^*)|||D_1 u_n - D_1 y^*||$$

$$= ||x_n - x^*||^2 + \alpha_n ||Kx_n - x^*||^2 + (1 - \beta_n) \left[2\xi ||A(z_n - x_n)|||(J_{\lambda}^{B_2} - I)Ax_n||$$

$$+ 2\mu_2 ||z_n - u_n - (x^* - y^*)|||D_2 z_n - D_2 x^*||$$

$$+ 2\mu_1 ||u_n - t_n + (x^* - y^*)|||D_1 u_n - D_1 y^*||$$

$$- (1 - \beta_n) \left[||x_n - z_n||^2 + ||z_n - u_n - (x^* - y^*)||^2$$

$$+ ||u_n - t_n + (x^* - y^*)||^2 \right],$$

$$(3.41)$$

which hence implies that

$$(1 - \beta_{n}) \left[\|x_{n} - z_{n}\|^{2} + \|z_{n} - u_{n} - (x^{*} - y^{*})\|^{2} + \|u_{n} - t_{n} + (x^{*} - y^{*})\|^{2} \right]$$

$$\leq \|x_{n} - x^{*}\|^{2} - \|x_{n+1} - x^{*}\|^{2} + \alpha_{n} \|Kx_{n} - x^{*}\|^{2}$$

$$+ (1 - \beta_{n}) \left[2\xi \|A(z_{n} - x_{n})\| \|(J_{\lambda}^{B_{2}} - I)Ax_{n}\| + 2\mu_{2} \|z_{n} - u_{n} - (x^{*} - y^{*})\| \|D_{2}z_{n} - D_{2}x^{*}\| + 2\mu_{1} \|u_{n} - t_{n} + (x^{*} - y^{*})\| \|D_{1}u_{n} - D_{1}y^{*}\| \right]$$

$$\leq (\|x_{n} - x^{*}\| + \|x_{n+1} - x^{*}\|) \|x_{n} - x_{n+1}\| + \alpha_{n} \|Kx_{n} - x^{*}\|^{2}$$

$$+ (1 - \beta_{n}) \left[2\xi \|A(z_{n} - x_{n})\| \|(J_{\lambda}^{B_{2}} - I)Ax_{n}\| + 2\mu_{2} \|z_{n} - u_{n} - (x^{*} - y^{*})\| \|D_{2}z_{n} - D_{2}x^{*}\| + 2\mu_{1} \|u_{n} - t_{n} + (x^{*} - y^{*})\| \|D_{1}u_{n} - D_{1}y^{*}\| \right]. \tag{3.42}$$

Since
$$\alpha_n \to 0$$
, $||x_n - x_{n+1}|| \to 0$, $||(J_{\lambda}^{B_2} - I)Ax_n|| \to 0$, $||D_2z_n - D_2x^*|| \to 0$, $||D_1u_n - D_1y^*|| \to 0$, $||u_n - t_n + (x^* - y^*)|| \to 0$ and $||z_n - u_n - (x^* - y^*)|| \to 0$ implies that
$$\lim_{n \to \infty} ||x_n - z_n|| = 0.$$
 (3.43)

Also since $y_n = \alpha_n K x_n + (1 - \alpha_n) t_n$ and $\alpha_n \to 0$ and $||y_n - z_n|| \to 0$ thus

$$||y_n - t_n|| \le \alpha_n ||Kx_n - t_n||,$$

implies that

$$\lim_{n \to \infty} ||y_n - t_n|| = 0. \tag{3.44}$$

And

$$(1 - \alpha_n) \|t_n - z_n\| = \|y_n - z_n - \alpha_n (Kx_n - z_n)\| \le \|y_n - z_n\| + \alpha_n \|Kx_n - z_n\|,$$

since $\alpha_n \to 0$ and $||y_n - z_n|| \to 0$ implies that

$$\lim_{n \to \infty} ||t_n - z_n|| = 0. \tag{3.45}$$

Observe that

$$||t_n - x_n|| \le ||t_n - z_n|| + ||z_n - x_n||,$$

since (3.43) and (3.45), we get

$$\lim_{n \to \infty} ||t_n - x_n|| = 0. \tag{3.46}$$

And

$$||y_n - x_n|| \le ||y_n - t_n|| + ||t_n - x_n||,$$

since (3.44) and (3.46), we get

$$\lim_{n \to \infty} ||y_n - x_n|| = 0. \tag{3.47}$$

Note that from $x_{n+1} = \beta_n x_n + \gamma_n y_n + \delta_n S y_n$,

$$\|\delta_n(Sy_n - x_n)\| \le \|x_{n+1} - x_n\| + \gamma_n \|y_n - x_n\|.$$

Since (3.22) and (3.47), it follows that

$$\lim_{n \to \infty} ||Sy_n - x_n|| = 0. \tag{3.48}$$

Note that

$$||Sy_n - y_n|| \le ||Sy_n - x_n|| + ||x_n - y_n||,$$

from (3.47) and (3.48), we get

$$\lim_{n \to \infty} ||Sy_n - y_n|| = 0. \tag{3.49}$$

Step 5. We will prove that $\limsup_{n\to\infty} \langle K\bar{x} - \bar{x}, x_n - \bar{x} \rangle \leq 0$, where $\bar{x} = P_{Fix(S)\cap\bar{\Gamma}\cap\mathcal{G}}K\bar{x}$ Indeed, since $\{x_n\}$ is bounded, there exists a bounded $\{x_{n_i}\}$ of $\{x_n\}$ such that

$$\limsup_{n \to \infty} \langle K\bar{x} - \bar{x}, x_n - \bar{x} \rangle = \lim_{i \to \infty} \langle K\bar{x} - \bar{x}, x_{n_i} - \bar{x} \rangle.$$
 (3.50)

Also, since H is reflexive and $\{y_n\}$ is bounded, without loss generality we may assume that $y_{n_i} \to p$ weakly for some $p \in C$. First, it is clear from Lemma 2.4 that $p \in Fix(S)$.

Now let us show that $p \in \mathcal{G}$. We note that

$$||y_{n} - G(y_{n})||$$

$$\leq \alpha_{n} ||Kx_{n} - G(y_{n})|| + (1 - \alpha_{n}) ||P_{C}[P_{C}(z_{n} - \mu_{2}D_{2}z_{n}) - \mu_{1}D_{1}P_{C}(z_{n} - \mu_{2}D_{2}z_{n})] - G(y_{n})||$$

$$= \alpha_{n} ||Kx_{n} - G(y_{n})|| + (1 - \alpha_{n}) ||G(z_{n}) - G(y_{n})||$$

$$\leq \alpha_{n} ||Kx_{n} - G(y_{n})|| + (1 - \alpha_{n}) ||x_{n} - y_{n}||$$

$$\to 0.$$
(3.51)

According to Lemma 2.4 we obtain $p \in \mathcal{G}$. Further, let us show that $p \in \overline{\Gamma}$. On the other hand $z_{n_k} = J_{\lambda}^{B_1}(x_{n_k} + \xi A^*(J_{\lambda}^{B_2} - I)Ax_{n_k})$ can be rewritten as

$$\frac{(x_{n_k} - z_{n_k}) + \xi A^* (J_\lambda^{B_2} - I) A x_{n_k}}{\lambda} \in B_1 z_{n_k}. \tag{3.52}$$

By passing to limit $k \to \infty$ in (3.52) and by taking into account (3.35) and (3.43) and the fact that the graph of a maximal monotone operator is weakly-strongly closed, we obtain $0 \in B_1(p)$, i.e., $p \in \text{SOLVIP}(B_1)$. Furthermore, since $\{x_n\}$ and $\{z_n\}$ have the same asymptotical behavior, $\{Ax_{n_k}\}$ weakly converges to Ap. Again, by (3.35) and the fact that the resolvent $J_{\lambda}^{B_2}$ is nonexpansive and Lemma 2.3, we obtain that $Ap \in B_2(Ap)$, i.e., $Ap \in \text{SOLVIP}(B_2)$. Thus, $p \in Fix(S) \cap \bar{\Gamma} \cap \mathcal{G}$.

Hence it follows from (2.11) and (3.50) that

$$\limsup_{n \to \infty} \langle K\bar{x} - \bar{x}, x_n - \bar{x} \rangle = \lim_{i \to \infty} \langle K\bar{x} - \bar{x}, x_{n_i} - \bar{x} \rangle$$

$$= \langle K\bar{x} - \bar{x}, p - \bar{x} \rangle$$

$$\leq 0.$$
(3.53)

Step 6. We will prove that $\lim_{n\to\infty} x_n = \bar{x}$.

Indeed, since $G: C \to C$ is nonexpansive, we have

$$||t_n - \bar{x}|| = ||G(z_n) - G(\bar{x})|| \le ||x_n - \bar{x}||.$$
(3.54)

Note that

$$\langle Kx_{n} - \bar{x}, y_{n} - \bar{x} \rangle$$

$$= \langle Kx_{n} - \bar{x}, x_{n} - \bar{x} \rangle + \langle Kx_{n} - \bar{x}, y_{n} - x_{n} \rangle$$

$$= \langle Kx_{n} - K\bar{x}, x_{n} - \bar{x} \rangle + \langle K\bar{x} - \bar{x}, x_{n} - \bar{x} \rangle + \langle Kx_{n} - \bar{x}, y_{n} - x_{n} \rangle$$

$$\leq \rho \|x_{n} - \bar{x}\|^{2} + \langle K\bar{x} - \bar{x}, x_{n} - \bar{x} \rangle + \|Kx_{n} - \bar{x}\| \|y_{n} - x_{n}\|. \tag{3.55}$$

Utilizing (2.7) and Lemma 2.5, we obtain from (3.54), (3.55) and the convexity of $\|\cdot\|^2$

$$||x_{n+1} - \bar{x}||^{2}$$

$$= ||\beta_{n}(x_{n} - \bar{x}) + \gamma_{n}(y_{n} - \bar{x}) + \delta_{n}(Sy_{n} - \bar{x})||^{2}$$

$$\leq |\beta_{n}||x_{n} - \bar{x}||^{2} + (\gamma_{n} + \delta_{n}) \left\| \frac{1}{\gamma_{n} + \delta_{n}} [\gamma_{n}(y_{n} - \bar{x}) + \delta_{n}(Sy_{n} - \bar{x})] \right\|^{2}$$

$$\leq |\beta_{n}||x_{n} - \bar{x}||^{2} + (\gamma_{n} + \delta_{n})||y_{n} - \bar{x}||^{2}$$

$$\leq |\beta_{n}||x_{n} - \bar{x}||^{2} + (\gamma_{n} + \delta_{n})[(1 - \alpha_{n})^{2}||t_{n} - \bar{x}||^{2} + 2\alpha_{n}\langle Kx_{n} - \bar{x}, y_{n} - \bar{x}\rangle]$$

$$\leq |\beta_{n}||x_{n} - \bar{x}||^{2} + (\gamma_{n} + \delta_{n})[(1 - \alpha_{n})||x_{n} - \bar{x}||^{2} + 2\alpha_{n}\langle Kx_{n} - \bar{x}, y_{n} - \bar{x}\rangle]$$

$$= (1 - (\gamma_{n} + \delta_{n})\alpha_{n})||x_{n} - \bar{x}||^{2} + (\gamma_{n} + \delta_{n})2\alpha_{n}\langle Kx_{n} - \bar{x}, y_{n} - \bar{x}\rangle$$

$$\leq (1 - (\gamma_{n} + \delta_{n})\alpha_{n})||x_{n} - \bar{x}||^{2} + (\gamma_{n} + \delta_{n})2\alpha_{n}[\rho||x_{n} - \bar{x}||^{2} + \langle K\bar{x} - \bar{x}, x_{n} - \bar{x}\rangle + ||Kx_{n} - \bar{x}|||y_{n} - \bar{x}||]$$

$$\leq [1 - (1 - 2\rho)(\gamma_{n} + \delta_{n})\alpha_{n}]||x_{n} - \bar{x}||^{2} + (\gamma_{n} + \delta_{n})2\alpha_{n}[\langle K\bar{x} - \bar{x}, x_{n} - \bar{x}\rangle + ||Kx_{n} - \bar{x}|||y_{n} - \bar{x}||]$$

$$= [1 - (1 - 2\rho)(\gamma_{n} + \delta_{n})\alpha_{n}]||x_{n} - \bar{x}||^{2} + (1 - 2\rho)(\gamma_{n} + \delta_{n})\alpha_{n}]||x_{n} - \bar{x}||^{2}$$

$$+ (1 - 2\rho)(\gamma_{n} + \delta_{n})\alpha_{n}\frac{2[\langle K\bar{x} - \bar{x}, x_{n} - \bar{x}\rangle + ||Kx_{n} - \bar{x}|||y_{n} - \bar{x}||]}{1 - 2\rho}.$$
(3.56)

Note that $\liminf_{n\to\infty} (1-2\rho)(\gamma_n+\delta_n) > 0$. It follows that $\sum_{n=0}^{\infty} (1-2\rho)(\gamma_n+\delta_n)\alpha_n = \infty$. It is clear that

$$\limsup_{n \to \infty} \frac{2[\langle K\bar{x} - \bar{x}, x_n - \bar{x} \rangle + ||Kx_n - \bar{x}|| ||y_n - \bar{x}||]}{1 - 2\rho} \le 0$$
(3.57)

because $\limsup_{n\to\infty} \langle K\bar x - \bar x, x_n - \bar x \rangle \leq 0$ and $\lim_{n\to\infty} \|x_n - y_n\| = 0$. Therefore, all conditions of Lemma 2.2 are satisfied. Consequently, we immediately deduce that $x_n \to \bar x$. This completes the proof.

4. Consequently results

* Let H_1 and H_2 be two real Hilbert spaces and let $C \subseteq H_1$ and $Q \subseteq H_2$ be nonempty closed convex subsets. Let $A: H_1 \to H_2$ be a bounded linear operator and $D_i: C \to H$ be η_i -inverse strongly monotone for i=1,2. Let $S: C \to C$ be a k-strictly pseudocontractive mapping such that $Fix(S) \cap \overline{\Gamma} \cap \mathcal{G} \neq \emptyset$. Let $K: C \to C$ be ρ -contraction with $\rho \in [0, \frac{1}{2})$. For fixed $u \in C$ and given $x_0 \in C$ arbitrarily, let the sequences $\{x_n\}, \{y_n\}$ and $\{z_n\}$ be generated iteratively by

$$\begin{cases}
z_n = J_{\lambda}^{B_1}(x_n + \xi A^*(J_{\lambda}^{B_2} - I)Ax_n), \\
y_n = \alpha_n u + (1 - \alpha_n)P_C[P_C(z_n - \mu_2 D_2 z_n) - \mu_1 D_1 P_C(z_n - \mu_2 D_2 z_n)] \\
x_{n+1} = \beta_n x_n + \gamma_n y_n + \delta_n Sy_n, \forall n \ge 0,
\end{cases} (4.1)$$

where $\mu_i \in (0, 2\eta_i)$ for $i = 1, 2, \{\alpha_n\}, \{\beta_n\}, \{\gamma_n\} \subset [0, 1], \lambda > 0$ and $\xi \in (0, \frac{1}{L}), L$ is the spectral radius of the operator A^*A , A^* is the adjoint of A. Assume that the following conditions are satisfied:

(i)
$$\beta_n + \gamma_n + \delta_n = 1$$
 and $(\gamma_n + \delta_n)k \leq \gamma_n$ for all $n \geq 0$;

(ii)
$$\lim_{n\to\infty} \alpha_n = 0$$
, $\sum_{n=1}^{\infty} \alpha_n = \infty$;

Then, the sequence $\{x_n\}$ generated by (4.1) converges strongly to $\bar{x} \in P_{Fix(S) \cap \bar{\Gamma} \cap \mathcal{G}} u$ if and only if $\lim_{n\to\infty} ||y_n-z_n||=0$. Furthermore (\bar{x},\bar{y}) is a solution of the general system (1.5) of variational inequalities, where $\bar{y} = P_C(\bar{x} - \mu_2 D_2 \bar{x})$.

* Let H_1 and H_2 be two real Hilbert spaces and let $C \subseteq H_1$ and $Q \subseteq H_2$ be nonempty closed convex subsets. Let $A: H_1 \to H_2$ be a bounded linear operator and $D_i: C \to H$ be η_i -inverse strongly monotone for i=1,2. Let $S:C\to C$ be a nonexpansive mapping such that $Fix(S) \cap \Gamma \cap \mathcal{G} \neq \emptyset$. Let $K: C \to C$ be ρ -contraction with $\rho \in [0, \frac{1}{2})$. For given $x_0 \in C$ arbitrarily, let the sequences $\{x_n\}, \{y_n\}$ and $\{z_n\}$ be generated iteratively by

$$\begin{cases}
z_n = J_{\lambda}^{B_1}(x_n + \xi A^*(J_{\lambda}^{B_2} - I)Ax_n), \\
y_n = \alpha_n K x_n + (1 - \alpha_n) P_C[P_C(z_n - \mu_2 D_2 z_n) - \mu_1 D_1 P_C(z_n - \mu_2 D_2 z_n)] \\
x_{n+1} = \beta_n x_n + \gamma_n y_n + \delta_n S y_n, \ \forall n \ge 0,
\end{cases}$$
(4.2)

where $\mu_i \in (0, 2\eta_i)$ for $i = 1, 2, \{\alpha_n\}, \{\beta_n\}, \{\gamma_n\} \subset [0, 1], \lambda > 0$ and $\xi \in (0, \frac{1}{L}), L$ is the spectral radius of the operator A^*A , A^* is the adjoint of A. Assume that the following

- (i) $\beta_n + \gamma_n + \delta_n = 1$ and $(\gamma_n + \delta_n)k \le \gamma_n$ for all $n \ge 0$;
- (ii) $\lim_{n\to\infty} \alpha_n = 0$, $\sum_{n=1}^{\infty} \alpha_n = \infty$; (iii) $0 < \liminf_{n\to\infty} \beta_n \le \limsup_{n\to\infty} \beta_n < 1$; and $\liminf_{n\to\infty} \delta_n > 0$; (iv) $\lim_{n\to\infty} (\gamma_{n+1}/(1-\beta_{n+1}) \gamma_n/(1-\beta_n)) = 0$.

Then, the sequence $\{x_n\}$ generated by (4.2) converges strongly to $\bar{x} \in P_{Fix(S) \cap \bar{\Gamma} \cap \mathcal{G}} K \bar{x}$ if and only if $\lim_{n\to\infty} ||y_n-z_n|| = 0$. Furthermore (\bar{x},\bar{y}) is a solution of the general system (1.5) of variational inequalities, where $\bar{y} = P_C(\bar{x} - \mu_2 D_2 \bar{x})$.

Corollary 4.1. Let H_1 and H_2 be two real Hilbert spaces and let $C \subseteq H_1$ and $Q \subseteq H_2$ be nonempty closed convex subsets. Let $A:H_1\to H_2$ be a bounded linear operator and $D_i: C \to H$ be η_i -inverse strongly monotone for i=1,2. Let $S: C \to C$ be a nonexpansive mapping such that $Fix(S) \cap \bar{\Gamma} \cap \mathcal{G} \neq \emptyset$. Let $K: C \to C$ be ρ -contraction with $\rho \in [0, \frac{1}{2})$. For fixed $u \in C$ and given $x_0 \in C$ arbitrarily, let the sequences $\{x_n\}, \{y_n\}$ and $\{z_n\}$ be generated iteratively by

$$\begin{cases} z_n = J_{\lambda}^{B_1}(x_n + \xi A^*(J_{\lambda}^{B_2} - I)Ax_n), \\ y_n = \alpha_n u + (1 - \alpha_n)P_C[P_C(z_n - \mu_2 D_2 z_n) - \mu_1 D_1 P_C(z_n - \mu_2 D_2 z_n)] \\ x_{n+1} = \beta_n x_n + \gamma_n y_n + \delta_n Sy_n, \ \forall n \ge 0, \end{cases}$$

$$(4.3)$$

where $\mu_i \in (0, 2\eta_i)$ for $i = 1, 2, \{\alpha_n\}, \{\beta_n\}, \{\gamma_n\} \subset [0, 1], \lambda > 0$ and $\xi \in (0, \frac{1}{L}), L$ is the spectral radius of the operator A^*A , A^* is the adjoint of A. Assume that the following conditions are satisfied:

(i)
$$\beta_n + \gamma_n + \delta_n = 1$$
 and $(\gamma_n + \delta_n)k \leq \gamma_n$ for all $n \geq 0$;

(ii)
$$\lim_{n \to \infty} \alpha_n = 0$$
, $\sum_{n=1}^{\infty} \alpha_n = \infty$;

Then, the sequence $\{x_n\}$ generated by (4.3) converges strongly to $\bar{x} \in P_{Fix(S) \cap \bar{\Gamma} \cap \mathcal{G}}u$ if and only if $\lim_{n\to\infty} ||y_n-z_n|| = 0$. Furthermore (\bar{x},\bar{y}) is a solution of the general system (1.5) of variational inequalities, where $\bar{y} = P_C(\bar{x} - \mu_2 D_2 \bar{x})$.

Acknowledgements

This research was funded by King Mongkut's University of Technology North Bangkok. Contract no. KMUTNB-61-NEW-009.

References

- [1] L.C. Ceng, J.C. Yao, An extragradient like approximation method for variational inequality problems and fixed point problems, Appl. Math. Comput. 190(2007) 205-215.
- [2] R. Wangkeeree, R. Wangkeeree, A general iterative methods for variational inequality problems and mixed equilibrium problems and fixed point problems of strictly pseudocontractive mappings in Hilbert spaces, Fixed Point Theory Appl. 32(2007), Article ID 519065.
- [3] S.S. Zeng, N.C. Wong, J.C. Yao, Convergence of hybrid steepest-descent methods for generalized variational inequalities, Acta Math. Sin. English Ser. 22(1)(2006) 1–12.
- [4] W. Takahashi, M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, Journal of Optimization Theory and Applications 118(2)(2003) 417-428.
- [5] N. Nadezhkina, W. Takahashi, Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings, Journal of Optimization Theory and Applications 128(1)(2006) 191-201.
- [6] L.C. Zeng, J.C. Yao, Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems, Taiwanese Journal of Mathematics 10(5)(2006) 1293-1303.
- [7] G.M. Korpelevič, An extragradient method for finding saddle points and for other problems, E'konomikai Matematicheskie Metody 12(4)(1976) 747–756.
- [8] R.U. Verma, On a new system of nonlinear variational inequalities and associated iterative algorithms, Mathematical Sciences Research Hot-Line 3(8)(1999) 65–68.
- [9] L.C. Ceng, C. Wang, J.C. Yao, Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities, Mathematical Methods of Operations Research 67(3)(2008) 375-390.
- [10] Y. Yao, Y.C. Liou, S.M. Kang, Approach to common elements of variational inequality problems and fixed point problems via a relaxed extragradient method, Computers & Mathematics with Applications 59(11)(2010) 3472–3480.
- [11] A. Moudafi, Split monotone variational inclusions. J. Optim. Theory Appl. 150(2011) 275 - 283.
- [12] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numerical Algorithms 8(1994) 221–239.

- [13] C. Byrne, Y. Censor, A. Gibali and S. Reich, The split common null point problem. J. Nonlinear Convex Anal. 13(4)(2012) 759–775.
- [14] K.R. Kazmi, S.H. Rizvi, An iterative method for split variational inclusion problem and fixed point problem for a nonexpansive mapping. Optim. Lett. 2013; https://doi.org/10.1007/s11590-013-0629-2.
- [15] G.L. Acedo, H.K. Xu, Iterative methods for strict pseudo-contractions in Hilbert spaces, Nonlinear Analysis: Theory, Methods & Applications 67(7)(2007) 2258–2271.
- [16] T. Suzuki, Strong Convergence of Krasnoselskii and Mann's Type Sequences for One-Parameter Nonexpansive Semigroups Without Bochner Integrals, Journal of Mathematical Analysis and Applications 305(2005) 227–239.
- [17] H.K. Xu, T.H. Kim, Convergence of hybrid steepest-descent methods for variational inequalities, J. Optim. Theory Appl. 119(2003) 659–678.
- [18] K. Geobel, W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, cambridge University Press, 1990.
- [19] G. Marino, H.K. Xu, Weak and strong convergence theorems for strict pseudocontractions in Hilbert spaces, Journal of Mathematical Analysis and Applications 329(1)(2007) 336–346.