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Mathematical modeling of piezoelectric
thin plates and slender beams

through functional analysis

D. Viriyasrisuwattana , C. Licht , T. Weller and S. Koonprasert

Abstract : A simplified but accurate modeling of linearly piezoelectric thin plates
or slender beam are derived by a rigorous study of the asymptotic behavior of a
three-dimensional body when some of its dimensions, considered as parameters,
tend to zero. The study is carried out by some tools of applied functional analysis
like singular perturbations in variational equations.

1 Introduction

A modeling of thin linearly piezoelectric plates was proposed in [1], [2]. This
modeling, as previously done in [3] for thin linearly elastic plates, is derived by a
rigorous study of the asymptotic behavior of a three-dimensional body when its
thickness, considered as a parameter, tends to zero. The obtained model is sim-
pler that the genuine three-dimensional one because it involves two-dimensional
problems set over the mean surface of the plate. But this model is also accu-
rate because of some convergence results of the fields when the thickness goes to
zero. The derivation of these models is as follows. First, the linear boundary
value problem associated with the equilibrium of the plate of thickness 2ε is trans-
formed in a variational equation whose existence and uniqueness of a solution sε

is obtained by the Lions-Stampacchia theorem. This problem set on a variable set
Ωε = ω× (−ε, ε) is transformed by a suitable scaling S(ε) (a change of coordinates
and of unknowns) in an equivalent problem set on a fixed domain Ω = ω× (−1, 1)
with s(ε) = S(ε)sε as unique solution. Next, a technique of singular perturbations
in variational equations permits the determination of the limit s̄ of s(ε) when ε
goes to zero. Finally, the proposal of model is the problem, set on Ωε , solved
by the inverse scaling s̄ε of s̄ . Actually, depending on the boundary conditions,
two types of models are obtained: they correspond to the cases of sensors or of
actuators.

Here, we try to extend this modeling to the case of slender linearly piezoelec-
tric rods. As it is known for slender linearly elastic rods, the models and their
derivations are more complex, thus we confine to the case of a rod working as a
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sensor and made of a particular class of monoclinic piezoelectric material.

2 Setting the problem

For all ζ = (ζ1, ζ2, ζ3) in R3 we denote (ζ1, ζ2) by ζ̂ and H stands for the space S3×
R3 where S3 denotes 3× 3 the space of all symmetric matrices. The greek indices
run in {1, 2} while the latin ones run in {1, 2, 3} . The reference configuration of
a linearly piezoelectric slender rod is the closure in R3 of the set Ωε := εω× (0, L)
, where L is a real positive number , ε a small one and ω is a bounded domain of
R2 with a Lipschitz boundary ∂ω and such that:

Figure 1: A piezoelectric slender beam

∫

ω

xαdx̂ =
∫

ω

x1x2dx̂ = 0 (2.1)

The lateral part of the boundary of the plate ε∂ω × (0, L) is denoted by Γε
lat

while its basis areΓε
0 = ε∂ω × {0} and Γε

L = ε∂ω × {L}. Let (Γε
mD, Γε

mN ) and
(Γε

eD, Γε
eN ) two suitable partitions of ∂Ωε with both Γε

mD and Γε
eD of strictly

positive surface measure. The beam is, one hand, clamped along Γε
mD and at an

electrical potential jε
0 on Γε

eD , on the other hand, subjected to body forces fε in
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Ωε . Furthermore, the rod is subjected to surface forces gε and electrical loading
dε on Γε

mN and Γε
eN respectively. We denoted the outward unit normal to ∂Ωε

by nε and assume that Γε
mD = Γε

0. Then the equations determining the state
sε = (uε, φε) at equilibrium read as:





divσε + fε = 0 in Ωε, σε · nε = gε on Γε
m,N, uε = 0 on Γε

m,D

divDε = 0 in Ωε, Dε · nε = dε on Γε
e,N, ϕε = ϕε

0 on Γε
e,D

(σε, Dε) = Mε (x) (e(uε),∇ϕε) in Ωε

(2.2)

where uε, ϕε, e (uε) , σε and Dε respectively denote the displacement and electrical
fields, the linearized strain tensor, the stress tensor and the electrical displacement.
As previously Mε , is an element of L (H,H) such that:

{
σε = aεe(uε) − bε∇ϕε ,

Dε = ( bε)T
e(uε) + cε∇ϕε

(2.3)

with (bε)T the transpose of bε , aε , and cε symmetric and positive. To give a
variational formulation of (2.3) we make the following regularity hypothesis on
the exterior loading:

(H1)

{
(fε, gε, dε) ∈ L2 (Ωε)3 × L2 (Γε

mN )3 × L2 (Γε
eN )

ϕε
0 has an H1 (Ωε) extension into Ωε, still denoted by ϕε

0

and define on the space of electromechanical states

V ε :=
{

r = (v, ψ) ∈ H1
Γε

mD
(Ωε)3 ×H1

Γε
eD

(Ωε)
}

(2.4)

a bilinear form mε :

mε (r, q) = mε ((v, ψ) , (w, ϕ)) :=
∫

Ωε

Mε (e (v) ,∇ψ) · (e (w) ,∇ϕ) dxε (2.5)

and a linear form Lε

Lε = Lε ((v, ψ)) :=
∫

Ωε

fε · vdxε +
∫

Γε
m,N

gε · vdsε +
∫

Γε
e,N

dεψdsε (2.6)

℘ (Ωε) :

{
Find sε = (uε, φε) ∈ (0, φε

0) + V ε such that
mε (sε, r) = Lε (r) , ∀r ∈ V ε.

Then, the physical problem, set on the real beam aε, bε, cε takes the form:
Thus, with the additional and realistic assumptions of boundedness of and of
uniform ellipticity of aε and cε :

(H2)
{

Mε ∈ L∞ (Ωε,L (H))
∃κε > 0; Mε (xε) h · h > κε |h|2H , ∀h ∈ H, a.e. x ∈ Ωε

the theorem of Lions-Stampacchia implies the
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Theorem 2.1. Under assumptions (H1)− (H2) the problem ℘ (Ωε) has a unique
solution.

To derive a simplified and accurate model, the very question is to study
the behavior of sε when ε , considered as a parameter, tends to 0.

3 The scaling operation

Classically we come down to a fixed domain Ω = ω× (0, L) through the mapping
Πε :

(a) Real world (b) Abstract world

Figure 2: (a) Real state, physical state, defined on Ωε

(b) Abstract state or scaled state defined on Ω

x = (x̂, x3) ∈ Ω̄ 7→ Πεx = (εx̂, x3) ∈ Ω̄ε (3.1)

Also, we drop the index ε for the images by (Πε)−1 of the previous geometric
sets. We make the following assumptions concerning i) the electromechanical
coefficients:

(H3)

{∃M ∈ L∞ (0, L;L (H)) such that Mε (Πεx) = M (x) = M (x3) , ∀x ∈ Ω

and ∃κ > 0 : M (x3)h · h > κ |h|2H ∀h ∈ H a.e. x ∈ Ω.
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Moreover the material is monoclinic: a3 = a333 = b3 = b33 = 0.
ii) the electromechanical loading:

(H4)





there exist (f, g, d) ∈ L2 (Ω)3 × L2 (ΓmN )3 × L2 (ΓeN ) such that

fε
α (πεx) = ε2fα (x) , fε

3 (πεx) = εf3 (x) , ∀x ∈ Ω,

gε
α (πεx) = ε2gα (x) , gε

3 (πεx) = εg3 (x) , ∀x ∈ ΓL,

gε
α (πεx) = ε3gα (x) , gε

3 (πεx) = ε2g3 (x) , ∀x ∈ ΓmN ∩ Γlat,

dε (πεx) = εd (x) , ∀x ∈ ΓeN ∩ (Γ0 ∪ ΓL) ,

dε (πεx) = ε2d (x) ,∀x ∈ ΓeN ∩ Γlat,

ϕε
0 (πεx) = εϕ0 (x) ,∀x ∈ ΓeD

iii) the boundedness of the exterior electrical loading:

(H5)

{
the extension of ϕ0 into Ω does not depend on x̂ and ΓeD ⊂ Γ0 ∪ ΓL

with meas (ΓeD ∩ Γ0) > 0

(this implies that ϕ0 may take two different constant values on ΓeD ∩ Γ0 and
ΓeD ∩ ΓL whenever the last set is of positive surface measure).

Also, we associate a scaled electromechanical state s (ε) := (u (ε) , ϕ (ε)) de-
fined on Ω with the true physical electromechanical state sε = (uε, ϕε) defined on
Ωε. This scaled electromechanical state, without any physical meaning , is defined
by:

û (xε) = û (ε) (x) , uε
3 (xε) = εu (ε)3 (x) , ϕε (xε) = εϕ (ε) (x) (3.2)

for all xε = Πεx in Ωε. This allows us to introduce the scaling operator Sε :

Sεsε(xε) := s(ε)(x), ∀xε = Πεx ∈ Ωε (3.3)

Assumptions (H3) , (H4) together with the scaling mapping from equation (3.2)
are classical. Actually, they are justified by the convergence results they lead to.
If we just consider the displacement these hypotheses are the ones made in [4]
and supply a mathematical justification of the Bernoulli-Navier theory of slender
linearly elastic beams.

4 Variational formulation of the scaled problem

Let V be the space of the scaled electromechanical states:

V :=
{

r = (v, ψ) ∈ H1
ΓmD

(Ω)3 ×H1
ΓeD

(Ω)
}

(4.1)

of course , r ∈ V ε if and only if Πεr ∈ V . Now , for all r = (v, ψ) ∈ V , we define
the scaled strain tensor e (ε, v) and the scaled electrical potential gradient ∇ (ε, ψ)
by:

eαβ(ε, v) := ε−2eαβ(v), eα3(ε, v) := ε−1eα3(v), e33(ε, v) := e33(v)
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∇(ε, ψ)α := ε−1∂αψ, ∇(ε, ψ)3 := ∂3ψ (4.2)

To simplify the notations, we set

k (r) := (e (v) ,∇ψ) , k (ε, r) := (e (ε, v) ,∇ (ε, ψ)) (4.3)

and, as in (2.5) and (2.6), we introduce a bilinear form m (ε) and a linear form L
on V :

m(ε)(r, q) : =
∫

Ω

M(x)k(ε, r).k(ε, q) dx,

L(r) : =
∫

Ω

f.v dx +
∫

ΓmN

g.v ds +
∫

ΓeN

dψ ds (4.4)

so that, under the assumptions (H1) − (H4) the scaled electromechanical state
s (ε) = (u (ε) , φ (ε)) is the unique solution of the mathematical problem

℘ (ε, Ω) :

{
Find s (ε) ∈ (0, φ0) + V such that
m (ε) (s (ε) , r) = L (r) ∀r ∈ V.

5 Asymptotic behavior of the scaled electromechan-
ical state

5.1 The method

We will proceed in a similar way as in the case of plates by first introducing a
suitable orthogonal decomposition of H in three subspaces H1 , H2 and H3:
{

H1 := {h = (e, g) ∈ H; ei3 = g3 = 0} , H2 := {h = (e, g) ∈ H; eαβ = e33 = gi = 0}
H3 := {h = (e, g) ∈ H; eαβ = eα3 = gα = 0}

(5.1)
We denote the projection of any element h of H on H1 , H2 , H3 by h1, h2, h3

respectively and consider the operators Mkl ∈ L (
Hl, Hk

)
generated by M . The

Hypothesis (H3) implies that M11 and M33 are positive invertible operators on
H1 and H3 , this same assumption also implies:

(Mh)1 = M11h1 + M13h3

(Mh)3 = M31h1 + M33h3

and consequently:

(Mh)3 =
(
M33 −M31

(
M11

)−1
M13

)
h3 + M31

(
M11

)−1
(Mh)1 (5.2)

The operator (again a kind of Schur complement!) of L (
H3, H3

)

M̃ := M33 −M31
(
M11

)−1
M13 (5.3)



Mathematical modeling of piezoelectric thin plates and slender beams... 31

can be represented by a 2×2 matrice while h3 can be represented by an element of
R2 , this will be done from now on. Note that neither M33 nor M̃ are necessarily
symmetric but nevertheless

κ
∣∣h3

∣∣2 6 M̃ (x)h3 · h3 ,∀h3 ∈ R2 a.e. x ∈ Ω (5.4)

this is implied by the coercivity of and by the fundamental relation:

h2 = 0, (Mh)1 = 0 ⇒ M̃h3 = (Mh)3

M̃h3 · h3 = (Mh)3 · h3 = Mh · h > κ |h|2 > κ
∣∣h3

∣∣2
(5.5)

As in the case of plates, the key point of the asymptotic study will be to show that if
k̄ is the limit (in a suitable topology) of k (ε, s (ε)) , then

∫
ω

(
M (x3) k̄ (x)

)1
dx̂ = 0.

This will enable us to show that M̃ supplies the limit constitutive equations.

5.2 The functional framework

We will show that the limit displacements live in the space VBN of Bernoulli Navier
displacements:

VBN :=
{

v ∈ H1
ΓmD (Ω)3 ; eαβ (v) = eα3 (v) = 0

}
(5.6)

while the limit electrical potential belongs to

Φ :=
{

ψ ∈ H1
ΓeD

(Ω) ; ∇̂ψ = 0
}

=

{
ψ; ψ (x) = ψ (x3) , ψ ∈ H1 (0, L) ,

ψ (0) = 0 and ψ (L) = 0 if meas (ΓeD ∩ ΓL) > 0

}

(5.7)
We recall that for all v in VBN , there exists a unique couple

(
vb, vs

)
in H1,0 (0, L)2×

H2,0 (0, L)2 such that:

v̂ (x) = vb (x3) , v3 (x) = vs (x3)− xα
dvb

α

dx3
(x3) (5.8)

with

H1,0 (0, L) =
{
v ∈ H1 (0, L) ; v (0) = 0

}
,H2,0 (0, L) =

{
v ∈ H1 (0, L) ;

dv

dx3
∈ H1,0 (0, L)

}

and note that for all v in VBN :

e33 (v) =
dvs

dx3
(x3)− xα

d2vb
α

dx2
3

(x3) (5.9)

Finally, let
S := VBN × Φ, X := H1

ΓmD
(Ω)3 ×H1

ΓeD
(Ω) (5.10)
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the Korn and Poincaré inequality allows us to define on S and X the following
hilbertian norms:

|(v, ψ)|2S = |e (v)|2L2(Ω,S3) + |∇ψ|2L2(Ω)3

|(v, ψ)|2X = |e (v)|2L2(Ω,S3) + |ψ|2L2(Ω) + |∇ψ|2L2(Ω)3

(5.11)

The set (0, φ0)+S will appear to be the limit set of scaled electromechanical states.

5.3 The limit scaled problem

We define the following linear and bilinear forms:

· (vs, ψ) ∈ H1,0
(0,L) × Φ 7→ Ls (vs, ψ) =

L∫

0




∫

ω

f3 (x̂, x3) dx̂ +
∫

∂ω

g3 (x̂, x3) dl̂


 vs (x3) dx3

+

L∫

0




∫

∂ω

d (x̂, x3) dl̂


ψ (x3) dx3

+




∫

ω

g3 (x̂, L) dl̂


 vs (L) + θLψ (L) (5.12)

θL =





0 if meas (ΓeD ∩ ΓL) > 0∫

ω

d (x̂, L) dx̂ if meas (ΓeD ∩ ΓL) = 0

·vb
α ∈ H2,0 (0, L) 7→ Lb

α

(
vb

α

)
=

L∫

0




∫

ω

f̂ (x̂, x3) dx̂ +
∫

∂ω

ĝ (x̂, x3) dl̂


 vb

α (x3) dx3

−



∫

ω

xαf3 (x̂, x3) dx̂+
∫

ω

xαg3 (x̂, x3) dl̂


 dvb

α

dx3
(x3) dx3

+




∫

ω

ĝ (x̂, L) dx̂


 vb

α (L)−



∫

∂ω

xαg3 (x̂, x3) dl̂


 dvb

α

dx3
(L)

(5.13)

· ((us, ϕ) , (vs, ψ)) ∈ (
H1,0 (0, L)× Φ

)2 7→ ms ((us, ϕ) , (vs, ψ))

|ω|
L∫

0

M̃ (x3)
(

dus

dx3
,

dφ

dx3

)
(x3) ·

(
dvs

dx3
,

dψ

dx3

)
(x3) dx3 (5.14)
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· (ub
α, vb

α

) ∈ H2,0 (0, L)2 7→ mb
α

(
ub

α, vb
α

)
:= I2

α (ω)

L∫

0

M̃22 (x3)
d2ub

α

dx2
3

(x2)
d2vb

α

dx2
3

(x3) dx3

(5.15)

where the convention of summation on the repeated indices is not used and
I2
α(ω) =

∫
ω

x2
α dx̂. We have the following convergence result :

Theorem 5.1. Under the assumptions and when ? tends to 0, the family of the
unique solutions of strongly converges in X to the unique solution of :

℘̄ (Ω) :





Find s ∈ (0, φ0) + S such that

ms ((us, φ) , (vs, ψ)) = Ls (vs, ψ) ∀ (vs, ψ) ∈ H1,0 (0, L)× Φ

mb
(
ub

α, vb
α

)
= Lb

α

(
vb

α

) ∀vb
α ∈ H2,0 (0, L) α = 1, 2

Proof. 1st step: The family (s (ε))ε>0 is bounded in X and, therefore, there exists
a subsequence, not relabeled, such that

(s (ε) , k (ε, s (ε))) ⇀
(
s̄, k̄

)
in X × L2 (Ω,H) kα (s (ε)) → 0 in L2 (Ω,Hα)

k (s̄)3 = k̄3. (5.16)

where the ⇀ and → symbols stand for the weak and strong convergence respec-
tively. This is an obvious consequence of the assumptions (H3) , (H5) the Poincaré
and Korn inequalities and of the trace theory in Sobolev spaces.

2nd step: If
(
Mk̄

)1 =
(
σ̄αβ , D̄α

)
, then

∫

ω

σ̄αβ(x) dx̂ =
∫

ω

xγ σ̄αβ(x) dx̂ =
∫

ω

D̄α(x) dx̂ =
∫

ω

xγD̄α(x) dx̂ = 0 (5.17)

Indeed let h arbitrary in C∞0 (0, L) and α, β = { 1, 2} and consider the element
Eαβ of the space S2 of 2× 2 symmetric matrices such that

(
Eαβ

)
µν

=
1
2

(δµαδγβ + δγαδµβ)

δ being the Kronecker symbol (δµγ = 0 if µ 6= γ, δµγ = 1 if µ = γ). Let v defined
by v̂ (x) = ε2

(
Eαβ x̂

)
h (x3) , v3 (x) = 0 , we note that

eαβ (ε, v) (x) = Eαβh (x3) , eα3 (ε, v) =
ε

2
(
Eαβ x̂

) dh

dx3
(x3) , e33 (ε, v) = 0

So that taking r = (v, 0) in the formulation of ℘ (ε, Ω) and letting ε go to zero
yield

L∫

0




∫

ω

σ̄αβ (x) dx̂


h (x3) dx3 = 0, ∀h ∈ C∞0 (0, L)
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that is to say
r (x) = (0, εxαh (x3))

Next, we use r (x) = (0, εxαh (x3)) and r(x) = (0, εx2
γh(x3)) to deduce

∫

ω

D̄α(x) dx̂ =
∫

ω

xγD̄α(x) dx̂ =0

We obtain the remaining of (6.6) by using scaled displacement fields like(
ε2x2

γ (Eααx̂) h (x3) , 0
)

associated with vanishing scaled electrical potential fields.

3rd step: the limit problem
Choosing r = (v, ψ) arbitrary in S in ℘ (ε, Ω) the formulation of ℘ (ε, Ω) and going
to the limit imply that s ∈ (0, ϕ0) + S and

L (r) =
∫

Ω

(
Mk̄

)3
k (r)3, ∀r ∈ S

But, (2.1), ( H3), (4.2), (4.3), (5.2), (5.3), (5.8), (5.9), (5.12)-(5.15) and fun-
damentally (5.17) yield

L (r) = Ls (vs, ψ) +
2∑

i=1

Lb
α

(
vb

α

)

∫

Ω

(
Mk̄

)3
k(r)3 = ms((ūs, ϕ̄), (vs, ψ)) +

2∑
α=1

mb
a

(
ūb

a, vb
a

)

which proves that s solves the problem ℘̄ (Ω) . As previously noted M̃ can be
considered as a 2× 2 positively defined matrix, hence the Lions-Stampacchia the-
orem implies that ℘̄ (Ω) has a unique solution and, consequently, the whole family
(s (ε))ε>0 converges to it!

4th step: strong convergence
It suffices to proceed as in the case of plates (see [1],[2]) by taking h =

k (ε, s (ε))− k̄ in (H3).

6 Back to the problem ℘ (Ωε) : a proposal of a
simplified and accurate model

We come back to the reference configuration Ω̄ε of the real slender beam
through the operators Πε and (Sε)−1. With the solution s̄ of ℘̄ (Ω) is associated
a physical electromechanical state s̄ε defined on Ωε by :

s̄ε(Πεx) = (Sε)−1s̄(x), ∀x ∈ Ω
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This electromechanical state is the solution of a problem posed over Ωε which is
the transportation by Πε of the (limit scaled) problem ℘̄ (Ω). This transported
problem, set on Ωε , is our proposal to model slender piezoelectric beams of cross-
section εω and length L. This model is simplified because the kinematics of the
competing fields are simplified: Bernoulli-Navier displacements with electrical po-
tential depending only of x3 . It is also accurate due to the previous convergence
result.

Remark 6.1. The assumptions (2.1) and (H3) yield a decoupling between the
(stretch-electric) behavior and the two bending ones.

Remark 6.2. It is possible to consider other electrical boundary conditions to
get a model in the spirit of the case p = 2 for the plates, but the model and its
derivation is rather more complex (see [5]).

7 Conclusion

We have presented various models of structures with one or two small dimensions
(thin flat plates and slender rods) and made of piezoelectric materials. These
models are derived from the classical three-dimensional ones by a rigorous math-
ematical analysis of their asymptotic behaviors when the small dimensions, con-
sidered as parameters, tend to zero. These models are simpler than the genuine
ones because they involve two-dimensional or one-dimensional problems and, con-
sequently, are easier to implement numerically. They also are accurate because of
some convergence results: the thinner the plate or the more slender the rod the
sharper the model! This study demonstrates the power of applied functional or
variational analysis to deal with problems stemming from continuum physics or
engineering. In the case of a plate and depending on the boundary conditions, two
models are obtained. They correspond to the physical situations where the plate
acts as a sensor or as an actuator. For a slender rod, we confined to the sensor
case.
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