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1. Introduction

Let H be a real Hilbert space with the inner product ⟨·, ·⟩ and the induced norm ∥ · ∥.
Suppose that C is a nonempty closed and convex of H. A mapping T : C → C is said to
be nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥,
for all x, y ∈ C. The set of fixed points of a mapping T : C → C is defined by F (T ) :=
{x ∈ C : Tx = x}.

A significant body of work on iteration methods for fixed points problems has accu-
mulated in literature (for example, see [2–5]). Specifically, the Mann algorithm [6, 7]:

xn+1 = αnxn + (1− αn)Txn, (1.1)
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for some suitably chosen scalars αn ∈ [0, 1]. The iterative sequence {xn} converges weakly
to a fixed point of T provided that αn ∈ [0, 1] satisfies

∞∑
n=1

αn(1− αn) = ∞. (1.2)

Combettes [8] therefore considers the convergence of the inexact KrasnoselskiiMann iter-
ation

xn+1 = (1− αn)xn + αn(Txn + εn), (1.3)

with a given starting point x1 ∈ H, where εn represents an error in the evaluation of Txn.
He proves weak convergence of the sequence {xn} under the assumptions that F (T ) is
nonempty, αn ∈ (0, 1) satisfies (1.2), and the additional error condition

∞∑
n=1

αnεn <∞.

Apart from the error due to the inexact evaluation of T, implementations of the Kras-
noselskiiMann iteration produce an additional error due to the finite precision arithmetic
of the computer. To get a complete picture of the practical numerical behaviour of the
Krasnoselskii-Mann iteration, we are therefore forced to analyse the convergence proper-
ties of a scheme like

xn+1 := (1− αn)xn + αn(Txn + εn) + ε̃n, (1.4)

where, again, εn represents the error in the evaluation of Txn, whereas ε̃n denotes the
error resulting from the finite precision arithmetic. To keep the notation simple, we can
write this as

xn+1 := (1− αn)xn + αnTxn + rn, (1.5)

for some vector rn that we call the residual since it represents the difference between the
exact Krasnoselskii-Mann iteration and its inexact counterpart.

Kanzow and Shehu [9] consider the more general inexact scheme

xn+1 := αnxn + βnTxn + rn, (1.6)

where αn, βn ∈ [0, 1] are suitable numbers satisfying αn+βn ≤ 1, hence these two numbers
do not necessarily sum up to one, and rn is again called the residual vector. Despite the
fact that this generalizes existing choices, it turns out in their subsequent analysis that,
to some extent, the particular choice αn + βn < 1 also bridges the gap between weak and
strong convergence results.

In 2008, Mainge [10] introduced the following inertial Mann algorithm by unifying the
Mann algorithm and the inertial extrapolation:{

wn = xn + αn(xn − xn−1)

xn+1 = wn + λn(Twn − wn),
(1.7)

for each n ≥ 1. He showed that the iterative sequence {xn} converges weakly to a fixed
point of T under the following conditions:

(A1) αn ∈ [0, α) for any α ∈ [0, 1);
(A2)

∑∞
n=1 αn∥xn − xn−1∥2 <∞;

(A3) 0 < infn≥1 λn ≤ supn≥1 λn < 1.
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To satisfy the summability condition (A2) of the sequence {xn}, one needs to calculate
{αn} at each step (see [16]).

Very recently, Bot and Csetnek [12] got rid of the condition (A2) and replaced (A1)
and (A3) by the following conditions, respectively:

(B1) δ > α2(1+α)+ασ
1−α2 ;

(B2) 0 < λ ≤ λn ≤ δ−α[α(1+α)+αδ+σ]
δ[1+α(1+α)+αδ+σ] .

Inspired by the above work, in this article, we propose the inertial modified Krasnoselskii-
Mann iteration, analyze the convergence of the proposed algorithms and give some appli-
cation to image recovery.

2. Preliminaries

Lemma 2.1. Let X be a real inner product space. Then the following statements hold:

(a) ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩, ∀x, y ∈ X;
(b) ∥x− y∥2 = ∥x∥2 − ∥y∥2 − 2⟨x− y, y⟩, ∀x, y ∈ X;
(c) ∥αx+βy∥2 = α(α+β)∥x∥2+β(α+β)∥y∥2−αβ∥x−y∥2, ∀x, y ∈ X, ∀α, β ∈ R.

Lemma 2.2 (see [1]). Let {ζn} and {γn} be nonnegative sequences satisfying
∞∑

n=1
ζn <∞

and γn+1 ≤ γn + ζn, n = 1, 2, . . .. Then, {γn} is a convergent sequence.

Lemma 2.3 (see [17], Lemma 3). Let {µn}, {ψn} and {αn} be sequences in [0,∞) such
that µn+1 ≤ µn + αn(µn − µn+1) + ψn for all n ≥ 1,

∑∞
n=1 ψn < ∞ and there exists a

real number α with 0 ≤ αn ≤ α < 1 for all n ≥ 1. Then the following hold:

(a)
∑∞

n=1[µn − µn−1]+ <∞, where [t]+ = max{t, 0};
(b) there exists µ∗ ∈ [0,∞) such that limn→∞ µn = µ∗.

Lemma 2.4. (Opial) Let C be a nonempty set of H and {xn} be a sequence in H such
that the following two conditions hold:

(a) for every x ∈ C, limn→∞ ∥xn − x∥ exists;
(b) every sequential weak cluster point of {xn} is in C.

Then {xn} converges weakly to a point in C.

Lemma 2.5 (see [18], Corollary 4.18). Let C be a nonempty closed convex subset of a
real Hilbert space H,T : C → H be a nonexpansive mapping. Let {xn} be a sequence in
C and x ∈ H such that xn ⇀ x and Txn − xn → 0 as n→ ∞. Then x ∈ F (T ).

3. Main Results

Theorem 3.1. Suppose that T : H → H is a nonexpansive mapping such that its set
of fixed points F (T ) is nonempty. Let the sequence {xn} in H be generated by choosing
x0 = x1 ∈ H and using the recursion{

wn = xn + αn(xn − xn−1)

xn+1 = βnwn + δnTwn + rn,
(3.1)

where rn denotes the residual vector (which represents the difference between the exact
Krasnoselskii-Mann iteration and its inexact counterpart), {αn} is chosen such that given
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α ∈ [0, 1), we have 0 ≤ αn ≤ ᾱn with ᾱn defined by

ᾱn :=

{
min

{
α, ϵn

∥xn−xn−1∥

}
if xn ̸= xn−1,

α otherwise,
(3.2)

{βn}, {δn} are sequences in [0, 1] and {ϵn} is a positive sequence satisfying

(a) βn + δn ≤ 1,
∑∞

n=1 δnβn = ∞;
(b)

∑∞
n=1(1− βn − δn) <∞;

(c)
∑∞

n=1 ∥rn∥ <∞;
(d)

∑∞
n=1 ϵn <∞.

Then the following statements are true:

(i) {xn} is bounded;
(ii) the sequence {xn} converges weakly to a point of F (T ).

Proof. (i) Note that αn∥xn − xn−1∥ ≤ ϵn and this implies that
∑∞

n=1 αn∥xn − xn−1∥ ≤∑∞
n=1 ϵn <∞.
Taking arbitrarily x∗ ∈ F (T ). We obtain

∥xn+1 − x∗∥ = ∥βnwn + δnTwn + rn − x∗∥
= ∥βn(wn − x∗) + δn(Twn − x∗) + rn − (1− βn − δn)x

∗∥
≤ ∥βn(wn − x∗) + δn(Twn − x∗)∥+ ∥rn∥+ (1− βn − δn)∥x∗∥
≤ βn∥wn − x∗∥+ δn∥Twn − x∗∥+ ∥rn∥+ (1− βn − δn)∥x∗∥
≤ (βn + δn)∥wn − x∗∥+ ∥rn∥+ (1− βn − δn)∥x∗∥
≤ ∥wn − x∗∥+ ∥rn∥+ (1− βn − δn)∥x∗∥
= ∥xn − x∗ + αn(xn − xn−1)∥+ ∥rn∥+ (1− βn − δn)∥x∗∥
≤ ∥xn − x∗∥+ αn∥xn − xn−1∥+ ∥rn∥+ (1− βn − δn)∥x∗∥.

(3.3)

Take ζn := αn∥xn − xn−1∥ + ∥rn∥ + (1 − βn − δn)∥x∗∥. Then
∑∞

n=1 δn < ∞ and (3.3)
becomes

∥xn+1 − x∗∥ ≤ ∥xn − x∗∥+ ζn.

By Lemma 2.2, we get that limn→∞ ∥xn − x∗∥ exists and consequently, {xn} is bounded.
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(ii)Since T is nonexpansive, it follows from Lemma 2.1 that

∥xn+1 − x∗∥2

= ∥βnwn + δnTwn + rn − x∗∥2

= ∥βn(wn − x∗) + δn(Twn − x∗) + rn − (1− βn − δn)x
∗∥2

≤ ∥βn(wn − x∗) + δn(Twn − x∗)∥2 + 2⟨rn − (1− βn − δn)x
∗, xn+1 − x∗⟩

= βn(βn + δn)∥wn − x∗∥2 + δn(βn + δn)∥Twn − x∗∥2

− δnβn∥wn − Twn∥2 + 2⟨rn − (1− βn − δn)x
∗, xn+1 − x∗⟩

≤ (βn + δn)
2∥wn − x∗∥2 − δnβn∥wn − Twn∥2

+ 2⟨rn − (1− βn − δn)x
∗, xn+1 − x∗⟩

≤ ∥wn − x∗∥2 − δnβn∥wn − Twn∥2 + 2⟨rn − (1− βn − δn)x
∗, xn+1 − x∗⟩

= ∥wn − x∗∥2 − δnβn∥wn − Twn∥2 + 2(1− βn − δn)⟨rn − x∗, xn+1 − x∗⟩
+ 2(βn + δn)⟨rn, xn+1 − x∗⟩

≤ ∥wn − x∗∥2 − δnβn∥wn − Twn∥2 + 2[(1− βn − δn)∥rn − x∗∥
+ (βn + δn)∥rn|]∥xn+1 − x∗∥

≤ ∥wn − x∗∥2 − δnβn∥wn − Twn∥2 + 2[(1− βn − δn)∥rn − x∗∥
+ ∥rn|]∥xn+1 − x∗∥

= ∥wn − x∗∥2 − δnβn∥wn − Twn∥2 + φn,

(3.4)

where φn := 2[(1 − βn − δn)∥rn − x∗∥ + ∥rn|]∥xn+1 − x∗∥. Observe that
∑∞

n=1 φn < ∞
by Conditions (b)and (c) above. By using Lemma 2.1 and equation(3.1), we get

∥wn − x∗∥2 = ∥xn + αn(xn − xn−1)− x∗∥2

= ∥(1 + αn)(xn − x∗)− αn(xn−1 − x∗)∥2

= (1 + αn)∥xn − x∗∥2 − αn∥xn−1 − x∗∥2 + αn(1 + αn)∥xn − xn−1∥2.
(3.5)

Using equation (3.5) in (3.4), we get

∥xn+1 − x∗∥2 − (1 + αn)∥xn − x∗∥2 + αn∥xn−1 − x∗∥2

≤ −δnβn∥wn − Twn∥2 + αn(1 + αn)∥xn − xn−1∥2 + φn.
(3.6)

Observe that

αn(1 + αn)∥xn − xn−1∥2 = αn∥xn − xn−1∥
(
(1 + αn)∥xn − xn−1∥

)
≤ αn∥xn − xn−1∥M∗,

(3.7)

where M∗ := supn≥1

(
(1 + αn)∥xn − xn−1∥

)
. Observe that M∗ exists since {xn} is

bounded. Hence,

∞∑
n=1

αn(1 + αn)∥xn − xn−1∥2 ≤
∞∑

n=1

αn∥xn − xn−1∥M∗ <∞. (3.8)
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Therefore,

lim
n→∞

αn(1 + αn)∥xn − xn−1∥ = 0. (3.9)

From (3.6), we obtain

δnβn∥wn − Twn∥2

≤ ∥xn − x∗∥2 − ∥xn+1 − x∗∥2 + αn(∥xn − x∗∥2 − ∥xn−1 − x∗∥2)
+ αn(1 + αn)∥xn − xn−1∥2 + φn.

(3.10)

Observe that limn→∞ φn = 0 in view of
∑∞

n=1(1 − βn − δn) < ∞,
∑∞

n=1 ∥rn∥ < ∞ and
{xn} is bounded. Therefore, we get from (3.10) that

∞∑
n=1

δnβn∥wn − Twn∥2 <∞.

Therefore,

lim inf
n→∞

∥wn − Twn∥ = 0.

Furthermore,

∥wn − xn∥ = αn∥xn − xn−1∥ → 0, n→ ∞,

since
∑∞

n=1 αn∥xn − xn−1∥ <∞.

We show that limn→∞ ∥wn − Twn∥ = 0. Observe from (3.1), we get

wn − Twn

= xn + (wn − xn)− Twn

= βn−1(wn−1 − Twn−1) + (δn−1 + βn−1)Twn−1 + rn−1 + (wn − xn)− Twn

= βn−1(wn−1 − Twn−1) + (wn − xn) + rn−1 + (δn−1 + βn−1)Twn−1 − Twn

= βn−1(wn−1 − Twn−1) + (wn − xn) + rn−1 + (δn−1 + βn−1)Twn−1

− (δn−1 + βn−1)Txn + (δn−1 + βn−1)Txn − (δn−1 + βn−1)Twn

+ (δn−1 + βn−1)Twn − Twn.

(3.11)

Hence,

∥wn − Twn∥
≤ βn−1∥wn−1 − Twn−1∥+ (δn−1 + βn−1)∥xn − wn−1∥+ ∥wn − xn∥
+ (δn−1 + βn−1)∥wn − xn∥+ (1− δn−1 − βn−1)∥Twn∥+ ∥rn−1∥

≤ βn−1∥wn−1 − Twn−1∥+ (δn−1 + βn−1)∥xn − wn−1∥+ 2∥wn − xn∥
+ (1− δn−1 − βn−1)∥Twn∥+ ∥rn−1∥.

(3.12)

Observe that

xn − wn−1 = (βn−1 − 1)wn−1 + δn−1Twn−1 + rn−1

= (δn−1 + βn−1 − 1)wn−1 + δn−1(Twn−1 − wn−1) + rn−1.
(3.13)
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So,

∥xn − wn−1∥
≤ (1− δn−1 − βn−1)∥wn−1∥+ δn−1∥wn−1 − Twn−1∥+ ∥rn−1∥
≤ (1− δn−1 − βn−1)∥wn−1∥+ (1− βn−1)∥wn−1 − Twn−1∥+ ∥rn−1∥

(3.14)

Also,

∥wn − xn∥ = θn∥xn − xn−1∥. (3.15)

Putting (3.14) and (3.15) into (3.12), we have for some M̄ > 0,

∥wn − Twn∥
≤ βn−1∥wn−1 − Twn−1∥+ (1− δn−1 − βn−1)∥wn−1∥
+ (1− βn−1)∥wn−1 − Twn−1∥+ 2∥rn−1∥+ 2θn∥xn − xn−1∥
+ (1− δn−1 − βn−1)∥Twn∥

= ∥wn−1 − Twn−1∥+ 2θn∥xn − xn−1∥+ (1− δn−1 − βn−1)(∥Twn∥+ ∥wn−1∥)
+ 2∥rn−1∥

≤ ∥wn−1 − Twn−1∥+ 2θn∥xn − xn−1∥+ (1− δn−1 − βn−1)M̄ + 2∥rn−1∥.
(3.16)

Take ζn := 2θn∥xn − xn−1∥+ (1− δn−1 − βn−1)M̄ +2∥rn−1∥, we see that
∑∞

n=1 ζn <∞.
Using Lemma 2.2, we obtain that limn→∞ ∥wn − Twn∥ exists. Since lim infn→∞ ∥wn −
Twn∥ = 0, we obtain that limn→∞ ∥wn − Twn∥ = 0.

We conclude by using the result of Opial given in Lemma 2.4. We have proven in (i)
above that for an arbitrary x∗ ∈ F (T ), limn→∞ ∥xn − x∗∥ exists and {xn} is bounded.
On the other hand, let x be a sequential weak cluster point of {xn}, that is, the latter
has a subsequence {xnk

} which converge weakly to x. Since limn→∞ ∥wn − xn∥ = 0, we
get wnk

⇀ x as k → ∞. Furthermore, we obtain Twnk
− wnk

as k → ∞. Applying now
Lemma 2.5 for the sequence {wnk

}, we conclude that x ∈ F (T ). From Lemma 2.4, it
follows that the sequence {xn} converges weakly to a point in F (T ).

4. Application to the Douglas-Rachford splitting method

Let us first recall the basics that are required to derive and analyze the Douglas-
Rachford splitting method; for the corresponding details, we refer, for example, to the
monograph by Bauschke and Combettes [18].

Let γ > 0 be a fixed parameter, and let us denote by

JA
γ := (I + γA)−1 and JB

γ := (I + γB)−1

the resolvents of A and B, respectively, which are known to be firmly nonexpansive.
Furthermore, let us write

RA
γ := 2JA

γ − I and RA
γ := 2JB

γ − I

for the corresponding reflections (also called Cayley operators), and note that the firm
nonexpansiveness of the resolvents implies immediately that these reflections are nonex-
pansive operators.
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Since one can show that 0 ∈ Tx for T = A+B if and only if x = JB
γ (y), where y is a

fixed point of the nonexpansive mapping RA
γ R

B
γ , a natural way to find a zero of T = A+B

is therefore to apply the Krasnoselskii-Mann iteration to this operator, which yields the
iteration

xn+1 := (1− λn)yn + λnR
A
γ R

B
γ yn, n ≥ 1, (4.1)

which in turn gives an approximation in the original variables by setting xn := JB
γ yn. Note

that this iteration requires only the evaluation of the resolvents of A and B separately,
not of their sum T = A+B. Recall that equation (4.1) is known as the Douglas-Rachford
splitting method, whereas the special case λn = 1 for all n ≥ 1 gives the PeacemanRach-
ford splitting method.

Using the definitions of the reflection operators, we can rewrite the iteration equation
(4.1) as

yn+1 : = (1− λn)yn + λn(2J
A
γ (2JB

γ yn − yn)− 2JB
γ yn + yn)

= yn + 2λn(J
A
γ (2JB

γ yn − yn)− JB
γ yn).

(4.2)

Following Combettes [8], we also allow errors an and bn in the evaluation of the resolvents
JA
γ and JB

γ , which generalized Douglas-Rachford splitting method:

yn+1 : = yn + 2λn(J
A
γ (2(JB

γ yn + bn)− yn) + an − (JB
γ yn + bn)). (4.3)

Next, we want to investigate the weak convergence property for inertial generalized
Douglas-Rachford splitting algorithm in the following theorem.

Theorem 4.1. Let H be a real Hilbert space. Let γ ∈ (0,∞), let {βn} and {δn} be
real sequences in [0, 1] such that βn + δn ≤ 1 for all n ≥ 1. Suppose {an} and {bn} are
sequences in H. Assume that 0 ∈ ran(A + B). Let the sequence {yn} in H be generated
by choosing y0 = y1 ∈ H and using the recursion{

wn = yn + αn(yn − yn−1)

xn+1 = βnwn + 2δn(J
A
γ (2(JB

γ yn + bn)− wn) + an)− 2δn(J
B
γ yn + bn) + δnwn

(4.4)

where {αn} is chosen such that given α ∈ [0, 1), we have 0 ≤ αn ≤ ᾱn with ᾱn defined by

ᾱn :=

{
min

{
α, ϵn

∥yn−yn−1∥

}
if yn ̸= yn−1,

α otherwise,
(4.5)

{βn}, {δn} are sequences in [0, 1] and {ϵn} is a positive sequence satisfying

(a) βn + δn ≤ 1,
∑∞

n=1 δnβn = ∞;
(b)

∑∞
n=1(1− βn − δn) <∞;

(c)
∑∞

n=1 δn
(
∥an∥+ ∥bn∥

)
<∞;

(d)
∑∞

n=1 ϵn <∞.

Then the sequence {yn} generated by (4.4) converges weakly to some point y ∈ H such
that JB

γ y ∈ (A+B)−1(0), i.e. x := JB
γ y is a solution of the monotone inclusion problem

for the operator T := A+B.
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Proof. Using the notation of the reflection operator, we set and define T := RA
γ R

B
γ .

Now, following the same line of arguments given in the proof of Theorem 25.6 of [18]
and Corollary 5.2 of [8] and applying Theorem 3.1, it is not difficult to show that {yn}
converges weakly to a fixed point of T .

5. Numerical results on Image recovery

Let us suppose that we have a noisy image of dimension n×n with missing pixels. Our
goal is to find the closest image to the original one. General image recovery problem can
be formulated by the inversion of the following observation model:

g = Ky + b,

where g is the observed image, y is the unknown image, matrix K is a linear operation
and b is the noise.

A regularization method should be used in the image restoration process. In the
literature, there is the growing interest in using l1 norm for solving these types of problems.
The l1 regularization can remove noise in the restoration process that it is given by

min
y

1

2
∥ky − g∥2 + µ∥y∥1, (5.1)

where ∥ · ∥ denotes the Euclidean norm, µ is a positive regularization parameter which
measures the trade-off between a good fit and a regularized solution, and ∥ · ∥1 is the l1
regularization term.

We are considering the real Hilbert spaces H. For a function f : H → R := R∪{±∞},
we denote by domf := {x ∈ H : f(x) < +∞} its effective domain and say that f is
proper if domf ̸= ∅ and f(x) > −∞ for all x ∈ H. We denote by Γ(H) the family of
proper, convex and lower semi-continuous extended real-valued functions defined on H.

The subdifferential of f at x ∈ H, with f(x) ∈ R, is the set

∂f(x) := {u ∈ H|∀z ∈ H, ⟨y − x, u⟩+ f(x) ≤ f(z)}.

The Moreau envelope of index γ ∈ (0,+∞) of a function f ∈ Γ(H) is the continuous
convex function

γf : H → R such that x 7→ inf
z∈H

{f(z) + 1

2γ
∥z − x∥2}.

The operator

proxγf : H → H such that x 7→ argmin
z∈H

{f(z) + 1

2γ
∥z − x∥2}

is called the proximity operator of γf. We know that the notion of a proximity operator
was introduced by Moreau in 1962 [20]. Notice that J∂f

γ = (I + γ∂f)−1 = proxγf and
proxγf is nonexpansive: (∀x ∈ H)(∀y ∈ H) ∥proxγfx− proxγfy∥ ≤ ∥x− y∥.

From (5.1), we set f(y) = 1
2∥Ky − g∥2 and g = µ∥y∥1. Let B = ∂f and A = ∂g. In

this case the proximal mapping with respect to f is

J∂f
γ y = proxγf (y)

= argmin
z∈H

{1
2
∥Kz − g∥2 + 1

2γ
∥z − y∥2}

= (KTK + γ−1I)−1(KT g + γ−1y),
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while J∂g
γ y = proxγg(y) is the following soft-thresholding operator,

[proxγg(y)]i = sign(yi) ·max{|yi| − γµ, 0}, i = 1, 2, 3, . . . , n.

we consider two blurring functions from MATLAB: a motion blur (Matlab function is,
“fspecial(‘motion’,15,60)”) and a Gaussian blur (Matlab function is, “fspecial(‘gaussian’,5,5)”)
respectively, then add random noise. We compare our algorithm (IMDR) in Theorem 4.1

with α ∈ {0.01, 0.05, 0.6, 0.9}, εn = 100n−
3
2 , βn = 0.61, δn = 0.39, γ = 14, µ = 10−62

and Douglas-Rachford splitting (DRS) method [8] with λn = 0.29, γ = 14, µ = 10−62,
since sequence {proxγf (yn)} converges to a solution and bn → 0 in (4.3) and (4.4), ), we
obtain the following result, which is immediately relevant to digital image recovery. In
our paper, the comparison is done in terms of the relative error (relerr) defined as

∥xn − y∥2

∥y∥2
,

the quality of image recovery is measured by the improvement in signal to noise ratio
(ISNR). Note that ISNR defined as

ISNR = 10 log
∥y − g∥2

∥y − xn∥2
,

where y, g, and xn are the original image, the observed image, and estimated image
at iteration n, respectively. All algorithms are implemented under Windows 10 and
MATLAB 2017b running on a Dell laptop with Intel(R) Core(TM) i5 CPU and 4 GB of
RAM. The stopping criterion of the algorithm is

∥xn+1 − xn∥
∥xn+1∥

< 10−4.

The test images are Parot (256×256), Castle (512×512), Pepper (256×256) and Kitkuan
(222×222),which show in Fig. 1. We can see from Table 1 and the Figures 1-6 that
our proposed algorithm (IMDR) in Theorem 4.1 is competitive with Douglas-Rachford
splitting (DRS) method in [8] in terms of relative error (relerr) and signal to noise ratio
(ISNR). We see from Table 1 that our proposed algorithm (IMDR) behaves better as the
initial factor αn approaches 1.

(a) Parrot (b) Castle (c) Pepper (d) Kitkuan

Figure 1. Test images
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Table 1. Restoration comparison

Image Blur
DRS IMDR

Time ISNR Relerr αn Time ISNR Relerr

Parrot motion 2.8556 11.6268 1.3257×10−3

0.01 2.7314 11.6354 1.3230×10−3

0.05 2.7234 11.6573 1.3164×10−3

0.6 2.6513 12.0903 1.1915×10−3

0.9 2.5279 12.3824 1.1140×10−3

Castle Gaussian 7.2906 10.7766 5.6223×10−4

0.01 7.8061 10.7834 5.6135×10−4

0.05 7.6866 10.8135 5.5748×10−4

0.6 7.4510 11.1924 5.1090×10−4

0.9 7.2898 11.4593 4.8045×10−4

Pepper motion 2.6250 12.4976 1.1623×10−3

0.01 2.7144 12.5073 1.1597×10−3

0.05 2.6241 12.5284 1.1540×10−3

0.6 2.5235 12.9858 1.0387 ×10−3

0.9 2.5033 13.2938 9.6759×10−4

Kitkuan Gaussian 2.8338 9.9770 9.0492×10−4

0.01 2.7971 9.9848 9.0328×10−4

0.05 2.7886 10.0140 8.9723×10−4

0.6 2.6593 10.4018 8.2059×10−4

0.9 2.5978 10.6692 7.7159×10−4

(a) Relerr for DRS (b) Relerr for IMDR

(c) ISNR for DRS (d) ISNR for IMDR

Figure 2. Result for DRS and IMDR with αn = 0.9.
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(a) Parrot (b) motion (c) DRS (d) IMDR

(e) zoom (A) (f) zoom (B) (g) zoom (C) (h) zoom (D)

(i) 1-D (E) (j) 1-D (F) (k) 1-D (G) (l) 1-D (H)

(m) 3-D (E) (n) 3-D (F) (o) 3-D (G) (p) 3-D (H)

Figure 3. Result for Parrot image with motion blur and random noise
(IMDR with αn = 0.9).
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(a) Castle (b) Gaussian (c) DRS (d) IMDR

(e) zoom (A) (f) zoom (B) (g) zoom (C) (h) zoom (D)

(i) 1-D (E) (j) 1-D (F) (k) 1-D (G) (l) 1-D (H)

(m) 3-D (E) (n) 3-D (F) (o) 3-D (G) (p) 3-D (H)

Figure 4. Result for Castle image with Gaussian blur and random noise
(IMDR with αn = 0.9).
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(a) Pepper (b) motion (c) DRS (d) IMDR

(e) zoom (A) (f) zoom (B) (g) zoom (C) (h) zoom (D)

(i) 1-D (E) (j) 1-D (F) (k) 1-D (G) (l) 1-D (H)

(m) 3-D (E) (n) 3-D (F) (o) 3-D (G) (p) 3-D (H)

Figure 5. Result for Pepper image with motion blur and random noise
(IMDR with αn = 0.9).
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(a) Kitkuan (b) Gaussian (c) DRS (d) IMDR

(e) zoom (A) (f) zoom (B) (g) zoom (C) (h) zoom (D)

(i) 1-D (E) (j) 1-D (F) (k) 1-D (G) (l) 1-D (H)

(m) 3-D (E) (n) 3-D (F) (o) 3-D (G) (p) 3-D (H)

Figure 6. Result for Kitkuan image with Gaussian blur and random
noise (IMDR with αn = 0.9).

6. Conclusions

In this paper, we propose a generalized Krasnoselskii-Mann iteration with inertial ex-
trapolation term for approximation of fixed point of nonexpansive mapping and obtain
weak convergence result in real Hilbert spaces. We give some application of our result to
image recovery problem and compare our proposed method with the Douglas-Rachford
Algorithm. The numerical implementations and comparisons of our proposed method and
Douglas-Rachford Algorithm show that our proposed method outperform the Douglas-
Rachford Algorithm in terms of relative error (relerr) and signal to noise ratio (ISNR).
In the next project, we give some rates of convergence of the proposed method and its
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variant with applications to inverse problems and comparison with the forward-backward
method and Nesterov accelerations.
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