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1. Introduction and Preliminaries

The existence of the fixed point theorem in Banach space was first investigated by
Banach himself who established the well known Banach contraction principle in 1922
[6]. Applications of the discovery play a major role in the existence theory of differential,
integral, partial differential and functional equations [11]. This theorem is a principle tool
for providing the existence of solutions in games theory, mathematical economic and some
biological models [3, 11]. Ever since the idea of the fixed point theorem was proposed,
many mathematicians have developed and extended a number of theories related to it.

In 1989, Bakhtin[5] (see also Czerwik [7]) introduced the concept of a b-metric space
and proved some fixed point theorems for some contraction mapping in b-metric spaces.
This apprehension generalizes Banach’s contraction principle in metric space. After that
Matthews[12] introduced the notion of a partial metric space and prolonged the con-
traction principle of Banach in that new framework in 1994. Shukla[20] combined both
concepts of b−metric and partial metric spaces and proposed the partial b−metric space
in 2014. The Kannan type fixed point theorem in partial b−metric spaces, which is an
analog of Banach contraction principle, was also suggested as well.
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In 2014, Asadi et al.[2] introduced M -metric space, which extends the partial metric
space and certain fixed point theorems obtained therein. In the later year, Khojasteh et
al.[10] established the concept of a simulation functions with a view to consider a new
class of the contractions, called Z-contractions. In 2016, Mlaiki et al. generalized concept
ofM -metric spaces toMb-metric spaces. The properties ofMb-metric space and the fixed
point results based on the space were presented [13]. In 2017, Mongkolkeha et al.[14]
proved some fixed point theorems for simulation functions in complete b-metric spaces
with partially ordered by using wt-distance. very recently, Abdullahi and Kumam [1]
introduced the concept of a partial bv(s)-metric space as a generalization of a partial
metric space and a bv(s)-metric space and established some topological properties of
the space and some fixed point results. Such understandings generalized, extended and
improved several results that have been developed in the previous years.

The main ambition proposed in this article is to extend some results of Mlaiki[13].
The concept of Zmb-contraction was introduced. The theorems which have results on the
existence and uniqueness of the fixed point in Mb-metric spaces were also explored.

2. Preliminaries

We begin with giving some notations and preliminaries that we shall need to state
our results. This section provides definitions, examples and some theorems related with
metric space, b-metric space, partial metric space, partial b-metric space,M -metric space,
Mb metric space and Z-contraction. From now on the letters R and N denote the set of
all real numbers and the set of all natural numbers, respectively.

Definition 2.1. (Metric space)[8] Let X be a nonempty set. A function d : X × X →
[0,∞) is said to be a metric on X if it satisfies the following conditions for all x, y, z ∈ X.

(m1) d(x, y) = 0 if and only if x = y;
(m2) d(x, y) = d(y, x);
(m3) d(x, y) ≤ d(x, z) + d(z, y).

Here the pair (X, d) is called a metric space.

Definition 2.2. (b-Metric space)[5] Let X be a nonempty set and let a real number s ≥ 1
be given. A function d : X ×X → [0,∞) is said to be a b-metric if for all x, y, z ∈ X the
following conditions are satisfied:

(b1) d(x, y) = 0 if and only if x = y;
(b2) d(x, y) = d(y, x);
(b3) d(x, y) ≤ s[d(x, z) + d(z, y)].

The pair (X, d) is called a b-metric space.

The given definition provides that every metric space is b-metric for s = 1 but not vice
versa.

Example 2.3. [18] Let the function d : R×R → [0,∞) be defined by d(x, y) = |x− y|2.
It is quite easy to figure out that d is a b-metric on R with s = 2. However it is not a
metric on R, as

d(1, 3) = 4 > 2 = d(1, 2) + d(2, 3).

Definition 2.4. (Partial metric space)[12] Let X be a nonempty set. A function p :
X×X → [0,∞) is said to be a partial metric if for all x, y, z ∈ X the following conditions
are satisfied:
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(p1) p(x, x) = p(y, y) = p(x, y) if and only if x = y;
(p2) p(x, x) ≤ p(x, y);
(p3) p(x, y) = p(y, x);
(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

The pair (X, p) is called a partial metric space.

Remark 2.5. [12] Any metric space is always a partial metric space.

Example 2.6. Let function p : [0,∞)×[0,∞) → [0,∞) be defined by p(x, y) = max{x, y}
for all x, y ∈ [0,∞). One can verify that p is a partial metric on [0,∞). However for any
x > 0 we have p(x, x) = x ̸= 0 then p is not a metric.

Definition 2.7. (Partial b-metric space)[20] Let X be a nonempty set. A function pb :
X×X → [0,∞) is said to be a partial b-metric if for all x, y, z ∈ X the following conditions
are satisfied:

(pb1) pb(x, x) = pb(y, y) = pb(x, y) if and only if x = y;
(pb2) pb(x, x) ≤ pb(x, y);
(pb3) pb(x, y) = pb(y, x);
(pb4) there exists a real number s ≥ 1 such that

pb(x, y) ≤ s [pb(x, z) + pb(z, y)]− pb(z, z).

The pair (X, pb) is called a partial b-metric space. Number s is called the coefficient of
(X, pb).

Remark 2.8. [20]

(1) For a partial b-metric space (X, pb), if x, y ∈ X and pb(x, y) = 0 then x = y
but the converse may not be true.

(2) Every partial metric space is a particular case of a partial b-metric space with
coefficient s = 1.

(3) Every b-metric space is a partial b-metric space with the same coefficient and
zero self-distance but not vice versa.

Example 2.9. Let X = [0,∞), q > 1 be a constant and pb : X ×X → [0,∞) be defined
by

pb(x, y) =

(
x+ y

2

)q

for all x, y ∈ X.

Even though (X, pb) is a partial b-metric space with coefficient s = 2q−1 > 1, the following
statements show that it is neither a b-metric nor a partial metric space.

Since we have pb(x, x) = xq ̸= 0 for any x > 0, then pb is not a b-metric on X.
Moreover, for the case that x = 5, y = 7, z = 1, we have pb(x, y) = pb(5, 7) = 6q and
pb(x, z) + pb(y, z)− pb(z, z) = 3q + 4q − 1. That is pb(x, y) > pb(x, z) + pb(y, z)− pb(z, z)
for all q > 1, which implies that pb is not a partial metric on X.

Notation 2.10. For the simplicity, the following notations are introduced.

• mx,y := min{m(x, x),m(y, y)}
• Mx,y := max{m(x, x),m(y, y)}
• mb x,y := min{mb(x, x),mb(y, y)}
• Mb x,y := max{mb(x, x),mb(y, y)}

Definition 2.11. (M -Metric space)[2] LetX be a nonempty set. A functionm : X×X →
[0,∞) is called an M−metric if for all x, y, z ∈ X the following conditions are satisfied:
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(m1) m(x, x) = m(y, y) = m(x, y) if and only if x = y;
(m2) mx,y ≤ m(x, y);
(m3) m(x, y) = m(y, x);
(m4) m(x, y)−mx,y ≤ [m(x, z)−mx,z] + [m(z, y)−mz,y].

The pair (X,m) is called an M -metric space.

Example 2.12. [2] Let X = [0,∞) and m : X ×X → [0,∞) be defined by

m(x, y) =
x+ y

2
for all x, y ∈ X.

Then m is an M -metric.

Example 2.13. [2] Let X = {1, 2, 3} and m : X ×X → [0,∞) be defined by

m(1, 1) = 1, m(2, 2) = 9, m(3, 3) = 4,

m(1, 2) = m(2, 1) = 10, m(1, 3) = m(3, 1) = 7, m(3, 2) = m(2, 3) = 7.

The given m is an M -metric but it is not a partial metric because m(2, 2) > m(3, 2).

Lemma 2.14. [2] Every partial metric is an M -metric.

Definition 2.15. (Mb-Metric space)[13] Let X be a nonempty set. A function mb :
X ×X → [0,∞) is called an Mb-metric if for all x, y, z ∈ X the following conditions are
satisfied:

(mb1) mb(x, x) = mb(y, y) = mb(x, y) if and only if x = y;
(mb2) mb x,y ≤ mb(x, y);
(mb3) mb(x, y) = mb(y, x);
(mb4) There exists a real number s ≥ 1 such that for all x, y, z ∈ X we have

mb(x, y)−mb x,y ≤ s[(mb(x, z)−mb x,z) + (mb(z, y)−mb z,y)]−mb(z, z).

Number s is called the coefficient of the Mb-metric space (X,mb).

Example 2.16. [13] Let X = [0,∞), p > 1 be constant and mb : X × X → [0,∞) be
defined by

mb(x, y) = (max{x, y})p + |x− y|p for all x, y ∈ X.

Then (X,mb) is an Mb-metric space with coefficient s = 2p, which is not an M -metric
space.

Definition 2.17. [13] Each Mb-metric generates a topology τmb on X whose base is the
family of open mb-balls {Bmb

(x, ε)|x ∈ X, ε > 0}, where Bmb
(x, ε) = {y ∈ X|mb(x, y)−

mb x,y < ε}.
Definition 2.18. [13] (Convergence, Cauchy sequence and Completeness) Let (X,mb)
be an Mb-metric space with coefficient s ≥ 1. Let {xn} be any sequence in X and x ∈ X.

• The sequence {xn} is said to be convergent with respect to τmb and converges
to x, if and only if

lim
n→∞

[mb(xn, x)−mb xn,x] = 0.

• The sequence {xn} is said to be mb-Cauchy sequence in (X,mb) if and only if
both

lim
m,n→∞

[mb(xn, xm)−mb xn,xm ] and lim
m,n→∞

[Mb xn,xm −mb xn,xm ]

exist and are finite.
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• An Mb-metric space is said to be complete if for every mb-Cauchy sequence
{xn} in X converges to a point x ∈ X, i.e.

lim
n→∞

[mb(xn, x)−mb xn,x] = 0 and lim
n→∞

[Mb xn,x −mb xn,x] = 0.

Definition 2.19. (Simulation function)[10] Let ζ : [0,∞)× [0,∞) → R. Then ζ is called
a simulation function if it satisfies the following conditions:

(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(t, s) < s− t for all t, s > 0;
(ζ3) if {tn}, {sn} are sequences in (0,∞) such that lim

n→∞
tn = lim

n→∞
sn > 0 then

lim sup
n→∞

ζ(tn, sn) < 0.

We denote the set of all simulation functions by Z.

Example 2.20. [10] Let λ ∈ [0, 1) be given and ζ : [0,∞)× [0,∞) → R be defined by

ζ(t, s) = λs− t,

for all t, s ∈ [0,∞). We can see that ζ satisfies all conditions in definition 2.19. Then ζ is
a simulation function.

Example 2.21. [10](Generalization of example 2.20) Let ζ1 : [0,∞) × [0,∞) → R be
defined by

ζ1(t, s) = ψ(s)− ϕ(t),

for all t, s ∈ [0,∞), where ψ, ϕ : [0,∞) → [0,∞) are two continuous functions such that

• ψ(t) = ϕ(t) = 0 if and only if t = 0; and
• ψ(t) < t ≤ ϕ(t) for all t > 0.

ζ in example 2.20 is a particular case of ζ1, where ζ1 is also a simulation function.

Example 2.22. [10] Let ζ2 : [0,∞)× [0,∞) → R be defined by

ζ2(t, s) = s− f(t, s)

g(t, s)
,

for all t, s ∈ [0,∞), where f, g : [0,∞) × [0,∞) → [0,∞) are two continuous functions
with respect to each variable such that g(t, s) ̸= 0 and f(t, s) > g(t, s) for all t, s > 0. ζ2
is also a simulation function.

Definition 2.23. [10](Z-contraction) Let (X, d) be a metric space, T : X → X be a
mapping and ζ ∈ Z. T is called a Z-contraction with respect to ζ if

ζ (d(Tx, Ty), d(x, y)) ≥ 0, for all x, y ∈ X.

If T is a Z-contraction with respect to ζ ∈ Z, then d(Tx, Ty) < d(x, y) for all distinct
x, y ∈ X.

Theorem 2.24. [10]Let (X, d) be a complete metric space and T : X → X be a Z-
contraction with respect to ζ ∈ Z. Then

• T has a unique fixed point u in X and
• for every x0 ∈ X, the Picard sequence {xn}, defined by xn = Txn−1 for all
n ∈ N, converges to the fixed point u of T .
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3. Main results

In this section, we define the Zmb-contraction and prove an existence of a fixed
point for such mapping in a complete Mb-metric space.

Definition 3.1. Let (X,mb) be an Mb-metric space with a constant s ≥ 1, T : X → X
be a mapping, and ζ ∈ Z. Mapping T is called Zmb-contraction with respect to ζ if the
following condition is satisfied

ζ (mb(Tx, Ty),mb(x, y)) ≥ 0 for all x, y ∈ X. (3.1)

Remark 3.2. If T is a Zmb-contraction with respect to ζ, then mb(Tx, Ty) < mb(x, y),
for all x, y ∈ X and mb(x, y) > 0.

Lemma 3.3. Let (X,mb) be an Mb-metric space with a constant s ≥ 1 and T : X → X
be a Zmb-contraction with respect to ζ ∈ Z. If {xn} is a Picard sequence with an initial
point x0 ∈ X then

lim
n→∞

mb(xn, xn+1) = 0.

Proof. Let x0 ∈ X be arbitrary and {xn} be a Picard sequence in X, i.e xn = Txn−1 for
all n ∈ N.
For the case that there exists mb(xn0

, xn0+1) = 0 for some n0 ∈ N, then xn0
= xn0+1 =

Txn0 so x0 is a fixed point of T . If we continue the process like xn0+2 = Txn0+1 =
Txn0 = xn0 , xn0+3 = Txn0+2 = xn0+2 and so on, we have

xn0
= xn0+1 = xn0+2 = · · · = xn0+k = · · · , ∀k ∈ N.

Suppose to the contrary that mb(xn0+1, xn0+2) > 0. By (3.1) and property (ζ2), we have

0 ≤ ζ (mb(Txn0+1, Txn0+2) ,mb (xn0+1, xn0+2))

< mb (xn0+1, xn0+2)−mb (Txn0+1, Txn0+2)

= mb (xn0 , xn0+1)−mb (Txn0+1, Txn0+2)

= −mb (Txn0+1, Txn0+2) . (3.2)

The obtained inequality provides that mb(Txn0+1, Txn0+2) < 0 which is a contradiction.
Hence we must have mb(xn, xn+1) = 0, ∀n ≥ n0.

Consequently, we shall assume that mb(xn, xn+1) > 0, ∀n ∈ N. By (3.1) and property
(ζ2), we have

0 ≤ ζ (mb(Txn−1, Txn),mb(xn−1, xn))

= ζ (mb(xn, xn+1),mb(xn−1, xn))

< mb(xn−1, xn)−mb(xn, xn+1).

This implies thatmb(xn, xn+1) < mb(xn−1, xn), ∀n ∈ N, and the sequence {mb(xn, xn+1)}
is a decreasing sequence of nonegative real numbers. Thus there exists r ≥ 0 such
that lim

n→∞
mb(xn, xn+1) = r. Assume that r > 0, applying the property (ζ3) with tn =

mb(xn, xn+1) and sn = mb(xn−1, xn) provides that

0 ≤ lim sup
n→∞

ζ(mb(xn, xn+1),mb(xn−1, xn)) < 0,

which contradicts to the assumption r > 0. So lim
n→∞

mb(xn, xn+1) = 0.
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Lemma 3.4. Let (X,mb) be an Mb-metric space with constant s ≥ 1 and T : X → X be
a Zmb-contraction with respect to ζ ∈ Z. If {xn} is a Picard sequence with initial point
x0 ∈ X then {xn} is an Mb-Cauchy sequence in (X,mb).

Proof. Recall that

- 0 ≤ mb xn,xn+1 ≤ mb(xn, xn+1) for all n ∈ N;
- lim

n→∞
mb(xn, xn+1) = 0; lim

n→∞
mb xn,xn+1 = 0;

- mb xn,xn+1
= min{mb(xn, xn),mb(xn+1, xn+1)}; lim

n→∞
mb(xn, xn) = 0;

- mb xn,xm
= min{mb(xn, xn),mb(xm, xm)}; lim

m,n→∞
mb xn,xm

= 0;

- lim
m,n→∞

(Mb xn,xm
−mb xn,xm

) = lim
m,n→∞

|mb(xn, xn)−mb(xm, xm)| = 0.

Next, we will show that lim
m,n→∞

(mb(xn, xm)−mb xn,xm
) = 0.

Define

M∗
b (x, y) = mb(x, y)−mb x,y, ∀x, y ∈ X.

If lim
m,n→∞

M∗
b (xn, xm) ̸= 0, then there exist ε > 0 and {lk} ⊂ N such that

M∗
b (xlk , xnk

) ≥ ε. (3.3)

Suppose that lk is the smallest integer which satisfies (3.3) such that

M∗
b (xlk−1, xnk

) < ε.

Now, we split the consideration into the following two cases:
Case (i): If s = 1, property (mb4) provides

ε ≤ M∗
b (xlk , xnk

) = mb(xlk , xnk
)−mb xlk

,xnk

≤ [mb(xlk , xlk−1)−mb xlk
,xlk−1

] + [mb(xlk−1, xnk
)−mb xlk−1,xnk

]

−mb(xlk−1, xlk−1)

< M∗
b (xlk , xlk−1) + ε−mb(xlk−1, xlk−1).

Since lim
k→∞

M∗
b (xlk , xnk

) = ε, therefore lim
k→∞

(mb(xlk , xnk
)−mbxlk

,xnk
) = ε. On the other

hand lim
k→∞

mb xlk
,xnk

= 0, so we have

lim
k→∞

mb(xlk , xnk
) = ε. (3.4)

Again by (mb4), we have

M∗
b (xlk , xnk

) ≤M∗
b (xlk , xlk+1) +M∗

b (xlk+1, xnk+1) +M∗
b (xnk+1, xnk

)

−mb(xlk+1, xlk+1)−mb(xnk+1, xnk+1), (3.5)

and

M∗
b (xlk+1, xnk+1) ≤M∗

b (xlk+1, xlk) +M∗
b (xlk , xnk

) +M∗
b (xnk

, xnk+1)

−mb(xlk , xlk)−mb(xnk
, xnk

). (3.6)
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From (3.5) and (3.6), we get

M∗
b (xlk , xnk

) ≤M∗
b (xlk , xlk+1) +M∗

b (xlk+1, xnk+1) +M∗
b (xnk+1, xnk

)

−mb(xlk+1, xlk+1)−mb(xnk+1, xnk+1)

≤M∗
b (xlk , xlk+1) +M∗

b (xlk+1, xlk) +M∗
b (xlk , xnk

)

+M∗
b (xnk

, xnk+1)−mb(xlk , xlk)−mb(xnk
, xnk

)

+M∗
b (xnk+1, xnk

)−mb(xlk+1, xlk+1)−mb(xnk+1, xnk+1). (3.7)

Letting k → ∞ in (3.7) and using lemma 3.3 and (3.4), we have

lim
k→∞

mb(xlk+1, xnk+1) = ε. (3.8)

Using property (ζ3) with tk = mb(xlk+1, xnk+1) and sk = mb(xlk , xnk
), we have

0 ≤ lim sup
k→∞

ζ(mb(xlk+1, xnk+1),mb(xlk , xnk
)) < 0,

which is a contradiction. Therefore {xn} is an Mb-Cauchy sequence.
Case (ii): If s > 1, property (mb4) provides

ε ≤M∗
b (xlk , xnk

)

=mb(xlk , xnk
)−mb xlk

,xnk

≤s[(mb(xlk , xlk−1)−mbxlk
,xlk−1

) + (mb(xlk−1, xnk
)−mb xlk−1,xnk

)]

−mb(xlk−1, xlk−1)

=sM∗
b (xlk−1, xnk

) + s[mb(xlk , xlk−1)−mb xlk
,xlk−1

]−mb(xlk−1, xlk−1)

<sε+ s[mb(xlk , xlk−1)−mb xlk
,xlk−1

]−mb(xlk−1, xlk−1).

As k → ∞, the limit is

ε ≤ lim
k→∞

M∗
b (xlk , xnk

) ≤ sε. (3.9)

Since lim
k→∞

mb xlk
,xnk

= 0, thus

ε ≤ lim
k→∞

mb(xlk , xnk
) ≤ sε. (3.10)

Again by (mb4), we have

M∗
b (xlk , xnk

) =mb(xlk , xnk
)−mbxlk

,xnk

≤s[(mb(xlk , xlk+1)−mbxlk
,xlk+1

) + (mb(xlk+1, xnk
)−mb xlk+1,xnk

)]

−mb(xlk+1, xlk+1)

≤s[(mb(xlk , xlk+1)−mb xlk
,xlk+1

)

+ s[(mb(xlk+1, xnk+1)−mb xlk+1,xnk+1
) + (mb(xnk+1, xnk

)−mb xnk+1,xnk
)]

−mb(xnk+1, xnk+1)]−mb(xlk+1, xlk+1)

=s[M∗
b (xlk , xlk+1) + s[M∗

b (xlk+1, xnk+1) +M∗
b (xnk+1, xnk

)]]

− smb(xnk+1, xnk+1)]−mb(xlk+1, xlk+1)

=sM∗
b (xlk , xlk+1) + s2M∗

b (xlk+1, xnk+1) + s2M∗
b (xnk+1, xnk

)

− smb(xnk+1, xnk+1)−mb(xlk+1, xlk+1). (3.11)
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Similar to the above, we find that

M∗
b (xlk+1, xnk+1) ≤ sM∗

b (xlk+1, xlk) + s2M∗
b (xlk , xnk

) + s2M∗
b (xnk

, xnk+1)

− smb(xnk
, xnk

)−mb(xlk , xlk). (3.12)

Using (3.11) and (3.12), then

ε ≤M∗
b (xlk , xnk

)

≤sM∗
b (xlk , xlk+1) + s2M∗

b (xlk+1, xnk+1) + s2M∗
b (xnk+1, xnk

)

− smb(xnk+1, xnk+1)−mb(xlk+1, xlk+1)

≤sM∗
b (xlk , xlk+1) + s2(sM∗

b (xlk+1, xlk) + s2M∗
b (xlk , xnk

)

+ s2M∗
b (xnk

, xnk+1)− smb(xnk
, xnk

)−mb(xlk , xlk))

+ s2M∗
b (xnk+1, xnk

)− smb(xnk+1, xnk+1)−mb(xlk+1, xlk+1). (3.13)

As k → ∞ in (3.13), we have

ε ≤ lim
k→∞

s2M∗
b (xlk+1, xnk+1) ≤ s4ε

ε

s2
≤ lim

k→∞
M∗

b (xlk+1, xnk+1) ≤ s2ε. (3.14)

Since lim
k→∞

mb xlk+1,xnk+1 = 0, (3.14) is derived to

ε

s2
≤ lim

k→∞
mb(xlk+1, xnk+1) ≤ s2ε. (3.15)

From (3.1) and property (ζ2), we obtain

0 ≤ ζ(mb(Txlk , Txnk
),mb(xlk , xnk

))

= ζ(mb(xlk+1, xnk+1),mb(xlk , xnk
))

< mb(xlk , xnk
)−mb(xlk+1, xnk+1).

Hence

0 ≤ lim sup
k→∞

(mb(xlk , xnk
)−mb(xlk+1, xnk+1))

≤ lim sup
k→∞

mb(xlk , xnk
)− lim inf

k→∞
mb(xlk+1, xnk+1)

≤ sε− s2ε

< 0,

which is a contradiction. This shows that {xn} is an Mb-Cauchy sequence.

Lemma 3.5. Let (X,mb) be an Mb-metric space with constant s ≥ 1 and T : X → X be
a Zmb-contraction with respect to ζ ∈ Z. If {xn} is a Picard sequence with initial point
x0 ∈ X and xn → x as n→ ∞, then Txn → Tx as n→ ∞.

Proof. If mb(Txn, Tx) = 0, then mb Txn,Tx ≤ mb(Txn, Tx) = 0 which implies that
lim
n→∞

(mb(Txn, Tx) − mbTxn,Tx) = 0. This means Txn → Tx as n → ∞. Otherwise, if

mb(Txn, Tx) > 0 then mb(Txn, Tx) < mb(xn, x) and mb(xn, x) > 0. Here, we consider
in two cases as the following:
Case (i) Because lim

n→∞
mb(xn, xn) = 0, mb(x, x) < mb(xn, xn) implies mb(x, x) = 0 . By

mb xn,x = min{mb(xn, xn),mb(x, x)}, lim
n→∞

mb xn,x = 0, and lim
n→∞

mb(xn, x) = 0, then
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lim
n→∞

mb(Txn, Tx) ≤ lim
n→∞

mb(xn, x) = 0. Therefore lim
n→∞

(mb(Txn, Tx)−mb Txn,Tx) = 0

and thus Txn → Tx as n→ ∞.
Case (ii) If mb(x, x) ≥ mb(xn, xn), then again lim

n→∞
mb(xn, xn) = 0 which implies that

lim
n→∞

mb xn,x = 0. Thus lim
n→∞

mb(xn, x) = 0.

As lim
n→∞

mb(Txn, Tx) ≤ lim
n→∞

mb(xn, x) = 0, we have lim
n→∞

(mb(Txn, Tx)−mbTxn,Tx) =

0 so that Txn → Tx as n→ ∞.

Theorem 3.6. Let (X,mb) be a complete Mb-metric space with constant s ≥ 1 and
T : X → X be a Zmb-contraction with respect to ζ ∈ Z. T has a unique fixed point u ∈ X
such that mb(u, u) = 0.

Proof. Let x0 ∈ X and {xn} be a Picard sequence with initial point x0. Now by lemma
3.4, the sequence {xn} is anMb-Cauchy. Here (X,mb) is complete, then there exists some
u ∈ X such that

lim
n→∞

(mb(xn, u)−mbxn,u) = 0 and lim
m,n→∞

(Mbxn,u −mbxn,u) = 0.

Since

Mb xn,u −mb xn,u = max {mb(xn, xn),mb(u, u)} −min {mb(xn, xn),mb(u, u)}
= |mb(xn, xn)−mb(u, u)|

and lim
n→∞

mb(xn, xn) = 0, so mb(u, u) = 0.

From xn → u as n→ ∞ and lemma 3.5, we have

lim
n→∞

(mb(Txn, Tu)−mb Txn,Tu) = 0 and lim
n→∞

(mb(xn+1, Tu)−mb xn+1,Tu) = 0.

By the properties

Mb xn+1,Tu −mb xn+1,Tu = |mb(xn+1, xn+1)−mb(Tu, Tu)|,
lim
n→∞

mb(xn+1, xn+1) = 0, lim
n→∞

mb xn+1,Tu = 0 and lim
n→∞

mb(xn+1, Tu) = 0,

now we get mb(Tu, Tu) = 0.
Next we will show that mb(u, Tu) = 0. Since xn → u as n→ ∞ and

|(mb(xn, Tu)−mb xn,Tu)− (mb(u, Tu)−mb u,Tu)|
≤ |s[(mb(xn, u)−mb xn,u) + (mb(u, Tu)−mb u,Tu)]−mb(u, u)

− (s[(mb(u, u)−mb u,u) + (mb(u, Tu)−mb u,Tu)]−mb u,u)|,

so lim
n→∞

|(mb(xn, Tu)−mb xn,Tu)− (mb(u, Tu)−mb u,Tu)| ≤ 0 and

lim
n→∞

(mb(xn, Tu)−mb xn,Tu) = mb(u, Tu)−mb u,Tu = mb(u, Tu).

By lemma 3.5 , we have lim
n→∞

(mb(xn, Tu)−mbxn,Tu) = 0, hencemb(u, Tu) = 0. Therefore,

mb(u, u) = mb(Tu, Tu) = mb(u, Tu) = 0. Property (mb1) gives Tu = u.
Finally, we will show that a fixed point of T is unique. Suppose that u, v ∈ X are two

fixed points of T. Then mb(u, u) = mb(v, v) = 0.
From property (mb3), we get

mb(u, v)−mb u,v ≤s[(mb(u, Tu)−mb u,Tu) + (mb(Tu, v)−mb Tu,v)]−mb(Tu, Tu)

=smb(Tu, v).
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If mb(u, v) > 0 then

0 ≤ ζ(mb(Tu, Tv),mb(u, v)) < mb(u, v)−mb(Tu, Tv) = 0,

which is a contradiction. Therefore mb(u, v) = 0, which means u = v.

Corollary 3.7. [13] Let (X,mb) be a complete Mb-metric space with a constant s ≥ 1
and T : X → X be a mapping. Suppose that there exists λ ∈ [0, 1) such that

mb(Tx, Ty) ≤ λmb(x, y) for all x, y ∈ X.

Then T has a unique fixed point u ∈ X and mb(u, u) = 0.

Proof. The result follows from theorem 3.6 by using simulation function

ζ(t, s) = λs− t,

for all t, s ≥ 0.

Example 3.8. Let X = [0, 1] and mb : X ×X → R be defined by

mb(x, y) =

(
x+ y

2

)2

.

Then (X,mb) is a complete Mb-metric space with s = 2. Define T : X → X by

Tx =
x

x+ 1
for all x ∈ X.

Let ζ : [0,∞) × [0,∞) → R be defined by ζ(t, s) =
s

s+ 1
− t. Then ζ is a simulation

function. Indeed, we obtain

ζ (mb(Tx, Ty),mb(x, y)) = ζ

(
mb

(
x

x+ 1
,

y

y + 1

)
,mb(x, y)

)
=

mb(x, y)

mb(x, y) + 1
−mb

(
x

x+ 1
,

y

y + 1

)

=

(
x+y
2

)2(
x+y
2

)2
+ 1

−

(
x

x+1 + y
y+1

2

)2

.

Since 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1,
x

x+ 1
≤ x

2
and

y

y + 1
≤ y

2
. Then

ζ(mb(Tx, Ty),mb(x, y)) ≥
(
x+y
2

)2(
x+y
2

)2
+ 1

− 1

4

(
x+ y

2

)2

=

(
x+y
2

)2 − 1
4

(
x+y
2

)4 − 1
4

(
x+y
2

)2(
x+y
2

)2
+ 1

=
3
4

(
x+y
2

)2 − 1
4

(
x+y
2

)4(
x+y
2

)2
+ 1

=

1
4

(
x+y
2

)2 (
3−

(
x+y
2

)2)(
x+y
2

)2
+ 1

≥ 0.
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Thus all the conditions of theorem 3.6 are satisfied. Hence T has a fixed point x = 0 and
mb(0, 0) = 0.

Example 3.9. Let X = [0, 1] and mb : X ×X → R be defined by

mb(x, y) = max{x, y}p + |x− y|p where p > 1.

Then (X,mb) is a complete Mb-metric space with s = 2p.
Define T : X → X by

Tx =
x

3
for all x ∈ X.

Let ζ : [0,∞)× [0,∞) → R be defined by ζ(t, s) =
s

2
− t. Then ζ is a simulation function.

Indeed, we obtain

ζ(mb(Tx, Ty),mb(x, y)) =
mb(x, y)

2
−mb(Tx, Ty)

=
max{x, y}p + |x− y|p

2
−max

{x
3
,
y

3

}p

− |x
3
− y

3
|p

=
max{x, y}p

2
+

|x− y|p

2
−max

{x
3
,
y

3

}p

− |x− y|p

3p

≥ 0.

Thus all the conditions of theorem 3.6 are satisfied. Hence T has a fixed point x = 0 and
mb(0, 0) = 0.
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