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1. Introduction and Preliminaries

Many generalizations of metric space and metric fixed point theory are given in different
direction with a sole goal in mind; to promote and developed science and technology (See
[1–3, 5, 6, 11–14]). The concept of 0-complete partial metric spaces is one among such
generalizations and was established by Romaguera [12] and was further studied by Shukla
and Radenovic [13] and others.

In this article, we will continue in this direction to broaden the applicability of fixed
point results. We will present the concept of 0-complete partial bv(s)-metric spaces and
study some fixed point results involving Jungck type contraction in the introduced space
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and finally give some corollaries as consequences of our main theorems. The obtained
results in this paper generalize many results in the literature as will be highlighted later.

From now on, R,R+,R+ and N, will denote the set of real numbers, positive real
numbers, non-negative real numbers and natural numbers respectively. Let us recall the
definitions of the b-metric spaces, the partial b-metric spaces, bv(s)-metric spaces and
partial bv(s)-metric spaces.

Definition 1.1. [5, 6]. Let X be a nonempty set. A b-metric on X is a function d :
X×X −→ R+, if there exists a real number s ≥ 1 such that the following conditions hold

b1. d(x, y) = 0 ⇐⇒ x = y for all x, y ∈ X;
b2. d(x, y) = d(y, x) for all x, y ∈ X;
b3. d(x, y) ≤ s[d(x, z) + d(z, y)] for all x, y, z ∈ X.

Then d is called a b-metric on X and (X, d) is called a b-metric space.

Definition 1.2. [14]. Let X be a nonempty set. A partial b-metric on a nonempty set
X is a function b : X ×X −→ R+, such that

Pb1. x = y ⇐⇒ b(x, x) = b(x, y) = b(y, y) for all x, y ∈ X;
Pb2. b(x, x) ≤ b(x, y) for all x, y ∈ X;
Pb3. b(x, y) = b(y, x) for all x, y ∈ X;
Pb4. there exists a real number s ≥ 1 such that for all x, y, z ∈ X, b(x, y) ≤

s[b(x, z) + d(z, y)]− b(z, z).

Then b is called a partial b-metric on X and (X, b) is called a partial b-metric space.

Definition 1.3. [11]. Let X be a nonempty set, bv : X ×X −→ R+ and v ∈ N such that
if for all x, y ∈ X and for all distinct points u1, u2, . . . , uv ∈ X\{x, y} the following hold:

bv1. bv(x, y) = 0 ⇐⇒ x = y;
bv2. bv(x, y) = bv(y, x);
bv3. there is s ∈ R with s ≥ 1 such that
bv(x, y) ≤ s[bv(x, u1) + bv(u1, u2) + · · ·+ bv(uv, y)].

Then bv is called a bv(s)-metric on X and (X, bv) is called a bv(s)-metric space with a
coefficient s.

Definition 1.4. [3]. Let X be a nonempty set, pbv : X ×X −→ R+ and v ∈ N such that
if for all x, y ∈ X and for all distinct points u1, u2, . . . , uv ∈ X\{x, y} the following hold:

Pbv1. x = y ⇐⇒ pbv (x, x) = pbv (x, y) = pbv (y, y);
Pbv2. pbv (x, x) ≤ pbv (x, y);
Pbv3. pbv (x, y) = pbv (y, x);
Pbv4. there is s ∈ R with s ≥ 1 such that

pbv (x, y) ≤ s[pbv (x, u1) + pbv (u1, u2) + · · ·+ pbv (uv, y)]−
∑v

i=1 pbv (ui, ui).

Then pbv is called a partial bv(s)-metric on X and (X, pbv ) is called a partial bv(s)-metric
space with a coefficient s.

Example 1.5. [3]. Let X = {a, b, c, d} and pbv : X ×X −→ R+ be defined by:

pbv (x, y) =

 0, if x = y = a;
2, if x, y ∈ {a, b}, x ̸= y;
1, otherwise.

for all x, y ∈ X.
Then (X, pbv ) is a partial b2(

4
3 )-metric space which is neither a b2(

4
3 )-metric space nor
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a partial b2(1)-metric space, due to the fact that, pbv (b, b) ̸= 0 and pbv (a, b) = 2 > 1 =
pbv (a, c) + pbv (c, d) + pbv (d, b)− pbv (c, c)− pbv (d, d) respectively.

Remark 1.6.

R1. A partial b1(1)-metric space is the partial metric space of [9];
R2. A partial b1(s)-metric space is the partial b-metric space with coefficient s of
[14];

R3. A partial b2(1)-metric space is the partial rectangular metric space of [15];
R4. A partial b2(s)-metric space is the partial rectangular b-metric space with co-
efficient s;

R5. A partial bv(1)-metric space is the partial v-generalized metric space.

In the following, we illustrate that in agreement with the other generalized metric the
topology on partial bv(s)-metric is not compatible with the usual metric topology [16].

Example 1.7. [3] Let X = A ∪ B, where A = { 1
n : n ∈ N} and B = {0, 2, 4}. If

pbv : X ×X −→ R+ is defined by:

pbv (x, y) =


1
3 , if x = y;
3, if x ̸= y and x, y ∈ A;
2
3 , if x ̸= y and x, y ∈ B;
1
3 + 1

n , if x ̸= y, x ∈ A and y ∈ B.

for all x, y ∈ X.
Then (X, pbv ) is a partial b3(2)-metric space which is neither a b3(2)-metric space nor a
partial b3(1)-metric space, due to the fact that, pbv (0, 0) ̸= 0 and pbv (

1
2 ,

1
4 ) = 3 > 7

4 =

pbv (
1
2 , 0) + pbv (0, 2) + pbv (2, 4) + pbv (4,

1
4 )− pbv (0, 0)− pbv (2, 2)− pbv (4, 4), respectively.

In what follows, we give definitions of the convergence of a sequence, Cauchy sequence,
completeness, 0-Cauchy sequence and 0-completeness in partial bv(s)-metric spaces.

Definition 1.8. Let (X, pbv ) be a partial bv(s)-metric space with coefficient s ≥ 1. Let
{xn} be a sequence in (X, pbv ) and x ∈ X. Then,

i.) {xn} is said to converge to x with respect to τpbv
if and only if

limn→∞ pbv (xn, x) = pbv (x, x) = 0. Moreover, x is called the limit point of {xn};
ii.) {xn} is called Cauchy if limn,m→∞ pbv (xn, xm) exists (and is finite);
iii.) {xn} is called 0-Cauchy if limn,m→∞ pbv (xn, xm) = 0;
iv.) (X, pbv ) is called 0-complete if for every 0-Cauchy sequence {xn} inX converges
with respect to τpbv

to a point x ∈ X such that pbv (x, x) = 0.

Lemma 1.9. [3]. Let (X, pbv ) be a partial bv(s)-metric space with coefficient s ≥ 1, then
for any n ∈ N the couple (X, pbv ) is a partial bnv(s

n)-metric space.

Lemma 1.10. Let (X, pbv ) be a partial bv(s)-metric space with coefficient s ≥ 1 and
T, I : X −→ X. If {Ixn} is a sequence in X defined by Ixn+1 = Txn for all n ≥ 0 with
Ixn ̸= Ixn+1. Let k ∈ [0, 1) such that

pbv (Ixn+1, Ixn) ≤ k pbv (Ixn, Ixn−1) for all n ∈ N. (1.1)

Then, either T and I have a common fixed point or Ixn ̸= Ixm for all distinct n,m ∈ N.

Proof. If Ixn = Ixn+1 then xn is a common fixed point for T and I. Now it suffices to
prove the case when Ixn ̸= Ixn+t for all n,m ∈ N with n ≥ 0 and t ≥ 1. Let Ixn = Ixn+t
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for some n ≥ 0 and t ≥ 1, then Ixn+1 = Ixn+t+1 and Txn = Txn+t. Inequality (1.1)
implies that

pbv (Ixn+1, Ixn) = pbv (Ixn+t+1, Ixn+1) ≤ kt pbv (Ixn+1, Ixn) < pbv (Ixn+1, Ixn)

which is a contradiction. Therefore, Ixn ̸= Ixm for all distinct n,m ∈ N.

The next result is a generalization of Lemma 1.12 given in [10].

Lemma 1.11. Let (X, pbv ) be a partial bv(s)-metric space with coefficient s ≥ 1 and
{Ixn} be a sequence in X such that for all n ≥ 0, Ixn ̸= Ixn+1. Let κ ∈ [0, 1) and
α, β, τ, δ ∈ R+ such that

pbv (Ixn, Ixm) ≤ κ pbv (Ixn−1, Ixm−1) + (α+ sτ)κn + (β + sδ)κm (1.2)

for all n,m ∈ N. Then {Ixn} is 0-Cauchy.

Proof. It is easy to see that the proof holds if κ = 0. For κ ∈ (0, 1), since limn→∞ κn = 0,
there exists n0 ∈ N such that 0 < κn0s < 1 holds. Using (1.2) we have

pbv (Ixn+1, Ixn) ≤ κ pbv (Ixn, Ixn−1) + (α+ sτ)κn + (β + sδ)κm

≤ κ2 pbv (Ixn−1, Ixn−2) + 2(α+ sτ)κn+1 + 2(β + sδ)κn

...

≤ κn pbv (Ix1, Ix0) + n[(α+ sτ)κn+1 + (β + sδ)κn]

= κn pbv (Ix1, Ix0) + nκnΘ1.

where Θ1 = (α+ sτ)κ+ (β + sδ). Similarly,

pbv (Ixn+r, Ixm+r) ≤ κ pbv (Ixn+r−1, Ixm+r−1) + (α+ sτ)κn+r + (β + sδ)κm+r

≤ κ2 pbv (Ixn+r−2, Ixm+r−2) + 2(α+ sτ)κn+r + 2(β + sδ)κm+r

...

≤ κr pbv (Ixn, Ixm) + r[(α+ sτ)κn+r + (β + sδ)κm+r]

= κr pbv (Ixn, Ixm) + rκrΘ2.

where Θ2 = (α+ sτ)κn + (β + sδ)κm and r ≥ 1.
Now, we will consider the followings two cases:

• v ≥ 2 and
• v = 1
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For v ≥ 2, we have

pbv (Ixn, Ixm) ≤ s[pbv (Ixn, Ixn+1) + pbv (Ixn+1, Ixn+2) + · · ·+ pbv (Ixn+v−2, Ixn+n0
)

+ pbv (Ixn+n0 , Ixm+n0) + pbv (Ixm+n0 , Ixm)]−
v−2∑
k=1

pbv (Ixn+k, Ixn+k)

− pbv (Ixn+n0
, Ixn+n0

)− pbv (Ixn+m0
, Ixn+m0

)

≤ s[pbv (Ixn, Ixn+1) + pbv (Ixn+1, Ixn+2) + · · ·+ pbv (Ixn+v−3, Ixn+v−2)

+ pbv (Ixn+v−2, Ixn+n0
) + pbv (Ixn+n0

, Ixm+n0
) + pbv (Ixm+n0

, Ixm)]

≤ s[(κn + κn+1 + · · ·+ κn+v−3)pbv (Ix1, Ix0)

+ (nκn + (n+ 1)κn+1 + · · ·+ (n+ v − 3)κn+v−3)Θ1

+ κn pbv (Ixv−2, Ixn0
) + nκnΘ2 + κn0 pbv (Ixn, Ixm) + n0κ

n0Θ2

+ κm pbv (Ixn0 , Ix0) +mκmΘ2].

(1.3)

As n,m → ∞ in (1.3), we obtain pbv (Ixn, Ixm) → 0. Therefore, {Ixn} is a 0-Cauchy
sequence in X.
For v = 1, the proof holds using Lemma 1.9.

2. Fixed Point Theorems

Definition 2.1. Let (X, pbv ) be a 0-complete partial bv(s)-metric space with coefficient
s ≥ 1 and S, T : X −→ X. Then, a point x ∈ X is called a common fixed point of S and
T if x = Sx = Tx.

In the sequel we present a variant of Jungck fixed point result [8] in a 0-complete partial
bv(s)-metric space.

Theorem 2.2. Let (X, pbv ) be a 0-complete partial bv(s)-metric space with coefficient
s ≥ 1 and T, I : X −→ X be commuting mappings satisfying the following inequality

pbv (Tx, Ty) ≤ k pbv (Ix, Iy) (2.1)

for all x, y ∈ X, where k ∈ (0, 1) and s ≥ 1. If I(X) ⊆ T (X) and I is continuous then T
and I have a unique common fixed point.

Proof. (Existence:) Let x0 ∈ X be arbitrary, since Tx0 ∈ I(X) there exists an x1 ∈ X
such that Ix1 = Tx0. Thus, generally for any xn ∈ X chosen, we have xn+1 ∈ X such
that Ixn+1 = Txn. Now, we show that {Ixn} is a 0-Cauchy sequence in X. By (2.1), we
have

pbv (Ixn+1, Ixn) = pbv (Txn, Txn−1) ≤ k pbv (Ixn, Ixn−1). (2.2)

It follows from (2.2) that

pbv (Ixn+1, Ixn) ≤ kn pbv (Ix1, Ix0), for all n ∈ N.

If Ixn = Ixn+1 then xn is a fixed point of T and we have nothing more to prove. So,
we shall suppose that Ixn ̸= Ixn+1 for all n ≥ 0. Then from Lemma 1.10 we obtain
Ixn ̸= Ixm for all distinct n,m ∈ N. From (2.1), we have

pbv (Ixn, Ixm) = pbv (Txn−1, Txm−1) ≤ k pbv (Ixn−1, Ixm−1).
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First method: Similar to one in [11].

Using Lemma 1.11, {Ixn} is a 0-Cauchy sequence in X. Since X is 0-complete then
there exists x∗ ∈ X such that

lim
n→∞

Ixn = lim
n→∞

Txn−1 = x∗. (2.3)

By (2.1) and the continuity of I, T is also continuous. Since T and I commute, we have

Ix∗ = I( lim
n→∞

Txn) = lim
n→∞

ITxn = lim
n→∞

TIxn = T ( lim
n→∞

Ixn) = Tx∗. (2.4)

Now we suppose that y∗ = Ix∗ = Tx∗, then

Ty∗ = TIx∗ = ITx∗ = Iy∗.

If Tx∗ ̸= Ty∗, using (2.1) we have

pbv (Tx
∗, T y∗) ≤ kpbv (Ix

∗, Iy∗) = kpbv (Tx
∗, T y∗) < pbv (Tx

∗, T y∗) (2.5)

which is a contradiction. Hence Tx∗ = Ty∗, therefore y∗ = Iy∗ = Ty∗ implying that y∗

is a unique common fixed point for T and I.

Second Method: Without using the continuity of I and commuting property of the map-
pings.

Using Lemma 1.11, {Ixn} is a 0-Cauchy sequence in X. Since X is 0-complete then
there exists x∗ ∈ X such that

lim
n,m→∞

pbv (Ixn, Ixm) = lim
n→∞

pbv (Ixn, Ix
∗) = 0. (2.6)

Now we show that x∗ is a common fixed point for T and I.

pbv (Ix
∗, Tx∗) ≤ s[pbv (Ix

∗, Ixn) + pbv (Ixn, Ixn+1) + · · ·+ pbv (Ixn+v−1, Ixn+v)

+ pbv (Ixn+v, Tx
∗)]−

v∑
k=1

pbv (Ixn+k, Ixn+k)

= s[pbv (Ix
∗, Ixn) + pbv (Ixn, Ixn+1) + · · ·+ pbv (Ixn+v−1, Ixn+v)

+ pbv (Txn+v−1, Tx
∗)]−

v∑
k=1

pbv (Ixn+k, Ixn+k)

≤ s[pbv (Ix
∗, Ixn) + pbv (Ixn, Ixn+1) + · · ·+ pbv (Ixn+v−1, Ixn+v)

+ kpbv (Ixn+v−1, Ix
∗)]−

v∑
k=1

pbv (Ixn+k, Ixn+k).

(2.7)

From (2.6), as n −→ ∞ in (2.7), we get pbv (Ix
∗, Tx∗) = 0 i.e. Ix∗ = Tx∗. Hence x∗ is a

common fixed point for T and I.
(Uniqueness:) Let x∗, y∗ ∈ X be two distinct common fixed points of T and I i.e.
x∗ ̸= y∗, such that Tx∗ = Ix∗ = x∗ and Ty∗ = Iy∗ = y∗. Then, it follows from (2.1) that

pbv (x
∗, y∗) = pbv (Tx

∗, T y∗) ≤ k pbv (Ix
∗, Iy∗) = k pbv (x

∗, y∗) < pbv (x
∗, y∗)

which is a contradiction. Hence pbv (x
∗, y∗) = 0 implying x∗ = y∗.
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From Theorem 2.2, we obtain the following variant of Banach fixed point theorem in
partial bv(s)-metric space.

Corollary 2.3. Let (X, pbv ) be a 0-complete partial bv(s)-metric space with coefficient
s ≥ 1 and T : X −→ X be a mappings satisfying the following inequality

pbv (Tx, Ty) ≤ k pbv (x, y) (2.8)

for all x, y ∈ X, where k ∈ (0, 1) and s ≥ 1. Then T has a unique fixed point.

Remark 2.4. Corollary 2.3 provides a complete solution to an open problem 1 raised by
George et al. [7].

We obtain the following result as a consequence of Theorem 2.2 if we put c = 1
k and

let T be the identity map.

Corollary 2.5. Let (X, pbv ) be a 0-complete partial bv(s)-metric space with coefficient
s ≥ 1 and I : X −→ X. Let there exists a c > 1 such that

pbv (Ix, Iy) ≥ c pbv (x, y) (2.9)

for all x, y ∈ X. If I is continuous and onto then I has a unique fixed point.

Remark 2.6. Corollary 2.5 is a generalization of Theorem 3.4 given in [11].

Lemma 2.7. Let (X, b) be a partial b-metric space with coefficient s ≥ 1. Then, (X, pbv )
is partial bv(s)-metric space with coefficient sv > 1.

Proof. Suppose that (X, pbv ) is a partial b-metric space with coefficient s ≥ 1. Let
u1, u2, . . . , uv be distict points in X such that u1, u2, . . . , uv ∈ X\{x, y}. Then

pbv (x, y) ≤ s[pbv (x, u1) + pbv (u1, y)]− pbv (u1, u1)

≤ s[pbv (x, u1) + s[pbv (u1, u2) + pbv (u2, y)]]−
2∑

i=1

pbv (ui, ui)

...

≤ sv[pbv (x, u1) + pbv (u1, u2) + · · ·+ pbv (uv, y)]−
v∑

i=1

pbv (ui, ui).

(2.10)

Hence (X, pbv ) is a partial bv(s)-metric space with coefficient sv > 1.

* Let (X, pbv ) be a 0-complete partial b-metric space with coefficient s ≥ 1 and
T, I : X −→ X be commuting mappings satisfying the following inequality

pbv (Tx, Ty) ≤ k pbv (Ix, Iy) (2.11)

for all x, y ∈ X, where k ∈ (0, 1). If I(X) ⊆ T (X) and I is continuous then T and I have
a unique common fixed point.

* Let (X, pbv ) be a 0-complete partial b-metric space with coefficient s ≥ 1 and
T : X −→ X be mapping satisfying the following inequality

pbv (Tx, Ty) ≤ k pbv (x, y) (2.12)

for all x, y ∈ X, where k ∈ (0, 1) and s ≥ 1. Then T have a unique fixed point.
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* Let (X, pbv ) be a 0-complete partial b-metric space with coefficient s ≥ 1 and
I : X −→ X. Let there exists a k > 1 such that

pbv (Ix, Iy) ≥ k pbv (x, y) (2.13)

for all x, y ∈ X. If I is continuous and onto then I has a unique fixed point.

Conclusion

In this paper, the notion of 0-complete partial bv(s)-metric space has been introduced
and used to establish a variant of Jungck common fixed point theorem. Consequently the
obtained theorem generalized various results due to Aleksić et al. [4].
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