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1. Introduction

The concept of the variational inequality problem, denoted V I(C,A), is to find
x∗ ∈ C such that

⟨A(x∗), y − x∗⟩ ≥ 0, ∀y ∈ C (1.1)

where C is a nonempty closed convex subset of a real Hilbert space H, A : C → H is a
continuous, and ⟨·, ·⟩ denotes the inner product in H. Let SOL(C,A) be the solution set
of V I(C,A) and SOL(C,A)D be the solution set of the dual variational inequality:

SOL(C,A)D := {x ∈ C | ⟨A(y), y − x⟩ ≥ 0,∀y ∈ C}. (1.2)

There are a lot of iterative processes for finding SOL(C,A) such as Goldstein-Levitin-
Polyak projection methods [1, 2]; proximal point methods [18]; extragradient projection
methods [5, 7, 10–15]; double projection methods [9, 16, 21]. These iterative processes
assume the assumption either the monotonicity of A or SOL(C,A) ⊂ SOL(C,A)D which
means that

∀x∗ ∈ SOL(C,A), ⟨A(y), y − x∗⟩ ≥ 0,∀y ∈ C. (1.3)
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Karamardian [19] showed that the assumption SOL(C,A) ⊂ SOL(C,A)D is a straightway
consequence of pseudomonotonicity of A on C, and indicated that a monotone mapping
can imply a pseudomonone mapping. In 2015, Ye and He [9], suggested a new method
which is called a double projection method under the only assumption SOL(C,A)D ̸= ∅.
This assumption is equivalent to the following inequality :

∃x̂ ∈ SOL(C,A), ⟨A(y), y − x̂⟩ ≥ 0,∀y ∈ C. (1.4)

Clearly, if SOL(C,A) ⊂ SOL(C,A)D then SOL(C,A)D ̸= ∅, but not converse. They
proved that their method can find SOL(C,A) without the monotonicity of A, and gave
some numerical experiments.

The problem for finding a common element of the set of fixed point of a nonexpansive
mapping and the solution set of the variational inequality problem for an inverse strongly-
monotone mapping was presented by Takahashi and Toyoda [20]. A mapping S of C into
itself is called nonexpansive if

∥Sx− Sy∥ ≤ ∥x− y∥ ∀x, y ∈ C. (1.5)

We denote by F (S) the set of fixed point of S. By the way, their process obtained
a weak convergence theorem for two sequences. Later, mathematicians were interested
to establish iterative processes for solving a previous problem (see in [4, 22]). In 2006,
Nadezhkina and Takahashi [17] introduced an iterative process for finding a common
element of F (S) ∩ SOL(C,A) in a real Hilbert space H, and showed that any inverse
strongly-monotone is monotone and k-Lipschitz continuous. Their process follows the
idea of an extragradient method [7] by setting A : C → H is k-Lipschitz continuous
monotone, and S : C → C is nonexpansive. They constructed

x0 = x ∈ C
yn = PC(xn − λnAxn)
xn+1 = αnxn + (1− αn)SPC(xn − αnAyn)

for every n = 0, 1, 2, ..., where {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ), and proved that {xn}

and {yn} converge weakly to a point in F (S) ∩ SOL(C,A).
In this article, we establish an iterative process for finding a common element of F (S)

for a nonexpansive mapping S, and SOL(C,A) without the monotonicity of A by setting
SOL(C,A)D ̸= ∅, and A : C → H is only k-Lipschitz continuous. Furthermore, we
prove a weak convergence theorem, and give a numerical experiment for support in an
our result.

2. Preliminaries

This section contains definitions that will be used in this work. Note that H is a real
Hilbert space, C ⊂ H is a nonempty closed and convex set, and A : C → H is a continuous
operator. The projection from x ∈ H onto C is defined by PC := argmin{∥y−x∥ | y ∈ C}.
The natural residual function rµ(·) is defined by rµ(x) := x−PC(x−µA(x)), where µ > 0
is a parameter. If µ = 1, we write r(x) for rµ(x).

Lemma 2.1. [3] For any x ∈ H and z ∈ C,
(A) ∥PC(x)− z∥2 ≤ ∥x− z∥2 − ∥PC(x)− x∥2;
(B) ⟨PC(x)− x, z − PC(x)⟩ ≥ 0.

Lemma 2.2. [8] Let H be a real Hilbert space, h be a real-valued function on H, and
K := {x ∈ H : h(x) ≤ 0}. If K is nonempty and h is Lipschitz continuous with modulus
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θ > 0, then

dist(x,K) ≥ θ−1h(x), ∀x ∈ H, (2.1)

where dist(x,K) denotes the distance from x to K.

Remark 2.3. If we set K := K ∩ C and K ∩ C ̸= ∅, then (2.1) holds. Note that
C and K ∩ C are closed, so there exist miny∈K∩C ∥x − y∥ and miny∈K ∥x − y∥ which
miny∈K∩C ∥x− y∥ ≤ miny∈K ∥x− y∥, that is, dist(x,K) ≤ dist(x,C ∩K)

Lemma 2.4. x∗ ∈ SOL(C,A) if and only if ∥rµ(x∗)∥ = 0.

Proof. The proof is similar with Proposition 1.5.8 in [6].

Lemma 2.5. For every x ∈ C,

⟨A(x), rµ(x)⟩ ≥ µ−1∥rµ(x)∥2. (2.2)

Proof. The proof is similar with Lemma 2.1 in [16].

Lemma 2.6. Let the function hn be defined by (3.2) and {xn} be generated by Algorithm
in Theorem 3.1. If SOL(C,A)D ̸= ∅, then hn(xn) ≥ (1− σ)∥rλn

(xn)∥2 > 0 for every n.
If x∗ ∈ SOL(C,A)D, then hn(x

∗) ≤ 0 for every n.

Proof. The proof is similar with Lemma 2.8 in [9].

Lemma 2.7. If {xn} is an infinite sequence generated by Algorithm in Theorem 3.1 and
x̃ is any accumulation point of {xn}, then x̃ ∈ ∩∞

n=1Hn.

Proof. Let l be a nonnegative integer and x̃ be an accumulation point of {xn}. There
is a subsequence {xnm

} of {xn}, so limm→∞ xnm
= x̃. By the definition of xnm

=

αnm−1xnm−1+(1−αnm−1)SPC∩H̃nm−1
(xnm−1−λnm−1A(ynm−1)) and H̃nm−1 = ∩j=nm−1

j=1 Hj ,

we obtain xnm
∈ Hl for every m ≥ l + 1. Since Hl is closed and limm→∞ xnm

= x̃, we
have x̃ ∈ Hl.

Lemma 2.8. [17] Let {αn} be a sequence of real numbers such that 0 < a ≤ αn ≤ b < 1
for every n = 0, 1, 2, . . . , and {vn}, {wn} sequences in H such that

lim sup
n→∞

∥vn∥ ≤ c, lim sup
n→∞

∥wn∥ ≤ c, and lim
n→∞

∥αnvn + (1− αn)wn∥ = c, (2.3)

for some c ≥ 0. Then limn→∞ ∥vn − wn∥ = 0.

Lemma 2.9. [17] Let {xn} be a sequence in H. Suppose that for each u ∈ C,

∥xn+1 − u∥ ≤ ∥xn − u∥ (2.4)

for every n = 0, 1, 2, . . .. Then, the sequence {PCxn} converges strongly to some z ∈ C.

3. Main results

In this section, we propose the algorithm for finding a common point of F (S) ∩
SOL(C,A) under the assumption SOL(C,A)D ̸= ∅, A is only a k-Lipschitz continuous
mapping, and S is a nonexpansive mapping. We call the following method that an
extragradient method without monotonicity.
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Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H. Let A be a
k-Lipschitz continuous mapping of C onto H, SOL(C,A)D ̸= ∅ and S be a nonexpansive
mapping of C into itself such that F (S) ∩ SOL(C,A) ̸= ∅. Let {xn}, {yn} be sequences
generated by
Algorithm For every n = 0, 1, 2, . . . , choose x0 ∈ C as an initial point, σ ∈ (0, 1), γ ∈
(0, 1), {λn} ⊂ [a, b], ∃ a, b ∈ (0, 1

k ) and {αn} ∈ [c, d], ∃ c, d ∈ (0, 1). Compute

zn := PC(xn − λnA(xn))

Step 1. Compute rλn
(xn) = xn − zn. If rλn

(xn) = 0, stop.
Other, go to Step 2.

Step 2. Compute yn = xn − ηnrλn
(xn), where ηn = γmn

, with mn being the
smallest nonnegative integer satisfying

⟨A(xn)−A(xn − γmrλn(xn)), rλn(xn)⟩ ≤ σ∥rλn(xn)∥2. (3.1)

Step 3. Compute xn+1 = αnxn + (1− αn)SPC∩H̃n
(xn − λnA(yn)), where

H̃n :=
∩j=n

j=0 Hj with Hj := {v : hj(v) ≤ 0} is a halfspace defined by

hj(v) := ⟨A(yj), v − yj⟩. (3.2)

Let n = n+ 1 and return to Step 1.
Then, the sequences {xn}, {yn} converge weakly to the point z ∈ F (S)∩SOL(C,A), where
z = limn→∞ PF (S)∩SOL(C,A)(xn).

Proof. Let bn = PC∩H̃n
(xn − λnA(yn)) for every n = 0, 1, 2, . . .. Let u ∈ F (S) ∩

SOL(C,A). From Lemma 2.1 (A), we have

∥bn − u∥2 ≤ ∥xn − λnA(yn)− u∥2 − ∥xn − λnA(yn)− bn∥2

= ∥xn − u∥2 − ∥xn − bn∥2 + 2λn⟨A(yn), u− bn⟩
= ∥xn − u∥2 − ∥xn − bn∥2 + 2λn(⟨A(yn)−A(u), u− yn⟩

+⟨A(u), u− yn⟩+ ⟨A(yn), yn − bn⟩)
≤ ∥xn − u∥2 − ∥xn − bn∥2 + 2λn⟨A(yn), yn − bn⟩
= ∥xn − u∥2 − ∥xn − yn∥2 − 2⟨xn − yn, yn − bn⟩ − ∥yn − bn∥2

+2λn⟨A(yn), yn − bn⟩
= ∥xn − u∥2 − ∥xn − yn∥2 − ∥yn − bn∥2 + 2⟨xn − λnA(yn)− yn, bn − yn⟩.

Thank to Lemma 2.1 (B), we receive

⟨xn − λnA(yn)− yn, bn − yn⟩ = ⟨xn − λnA(xn)− yn, bn − yn⟩
+⟨λnA(xn)− λnA(yn), bn − yn⟩

≤ ⟨λnA(xn)− λnA(yn), bn − yn⟩
≤ λnk∥xn − yn∥ ∥bn − yn∥.
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This implies that

∥bn − u∥2 ≤ ∥xn − u∥2 − ∥xn − yn∥2 − ∥yn − zn∥2

+2λnk∥xn − yn∥ ∥zn − yn∥
≤ ∥xn − u∥2 − ∥xn − yn∥2 − ∥yn − zn∥2

+λ2
nk

2∥xn − yn∥2 + ∥yn − zn∥2

≤ ∥xn − u∥2 + (λ2
nk

2 − 1)∥xn − yn∥t2

≤ ∥xn − u∥2.

We also have

∥xn+1 − u∥2 = ∥αnxn + (1− αn)Sbn − u∥2

= ∥αn(xn − u) + (1− αn)(Sbn − u)∥2

≤ αn∥xn − u∥+ (1− αn)∥Sbn − u∥2

≤ αn∥xn − u∥2 + (1− αn)∥bn − u∥2

≤ αn∥xn − u∥2 + (1− αn)(∥xn − u∥2 + (λ2
nk

2 − 1)∥xn − yn∥2)
= ∥xn − u∥2 + (1− αn)(λ

2
nk

2 − 1)∥xn − yn∥2

≤ ∥xn − u∥2.

So, there is c = limn→∞ ∥xn − u∥ and the sequence {xn}, {bn} are bounded. By the
previuos relations, we observe that

∥xn − yn∥2 ≤ 1

(1− αn)(1− λ2
nk

2)
(∥xn − u∥2 − ∥xn+1 − u∥2). (3.3)

Therefore, xn − yn → 0, n → ∞. Moreover, we have

∥yn − bn∥2 ≤ ∥yn − ηnbn∥2

= ∥xn − ηn(xn − PC(xn − λnA(xn)))− ηnPC∩H̃n
(xn − λnA(yn))∥2

≤ ∥xn − ηn(xn − PC(xn − λnA(xn)))− ηnPC(xn − λnA(yn))∥2

≤ ∥xn − ηnxn∥2 + (ηnλnk)
2∥yn − xn∥2

= (1− η2n)∥xn∥2 + (ηnλnk)
2∥yn − xn∥2

≤ (1− η2n)∥xn∥2 +
(ηnλnk)

2

(1− αn)(1− λ2
nk

2)
(∥xn − u∥2 − ∥xn+1 − u∥2).

Thus yn − bn → 0, n → ∞. It obtains that xn − bn → 0, n → ∞. Since A is k-Lipschitz
continuous, it follows that

A(yn)−A(bn) → 0 as n → ∞. (3.4)

We know that {xn} is bounded. There is a subsequence {xni
} of {xn} which converges

weakly to some z ∈ F (S) ∩ SOL(C,A). We are going to show that z ∈ SOL(C,A). Let
x∗ ∈ ∩∞

n=1(Hn ∩ C). We follow the previous proof of {∥xn − u∥2} by setting x∗ = u. It
can imply that the sequence {∥xn − x∗∥2} is nonincreasing and convergent. Therefore

lim
n→∞

dist(xn, C ∩ H̃n) = 0. (3.5)

By the hypothesis, A(x) and rλn
(x) are continuous.

So the sequence {zn}, {rλn(xn)}, and {yn} are bounded.
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Likewise, {A(yn)} is bounded by the continuity of A. For some W > 0,

∥A(yn)∥ ≤ W, ∀n. (3.6)

By the definition of H̃n, we obtain that H̃ ⊆ Hn for every n. Thus

dist(xn, C ∩Hn) ≤ dist(xn, C ∩ H̃n). (3.7)

From (3.5), it follows that

lim
n→∞

dist(xn, C ∩Hn) = 0. (3.8)

Obviously, every function hn is Lipschitz continuous on C with modulus W .
By Lemmas 2.2 and 2.6, it follows

dist(xn, C ∩Hn) ≥ W−1hn(xn) ≥ W−1(1− σ)ηn∥rλn(xn)∥2. (3.9)

In accordance with (3.8) and (3.9), we can obtain that limn→∞ ηn∥rλn(xn)∥2 = 0. If
limn→∞ sup ηn > 0, then we must have limn→∞ inf ∥rλn

(xn)∥ = 0. Since {rλn
(x)} is

continuous and {xn} is bounded, there is an accumulation point x̂ of {xn} such that
rλn

(x̂) = 0. From Lemmas 2.4 and 2.7, it implies that x̂ ∈ ∩∞
n=1(Hn ∩ SOL(C,A)).

Replace x∗ by x̂, it follows that {∥xn − x̂∥2} is nonincreasing and convergent. Since x̂ is
an accumulation point of {xn}, we have xn → x̂ := z ∈ SOL(C,A) If limn→∞ sup ηn =
0. then limn→∞ ηn = 0. Suppose that x̄ is an accumulation point of {xn}. There is a
subsequence {xnj

} converges to x̄. By the choice of ηn, (3.1) is not satisfied for mn − 1,
that is,

⟨A(xnj
)−A(xnj

− γ−1ηnj
), rλn

(xkj
)⟩ > σ∥rλn

(xnj
)∥2. (3.10)

Since rλn
(x) and A(x) are continuous, taking the limit in (3.10), we obtain

0 ≤ σ∥rλn
(x̄)∥2 ≤ 0. (3.11)

By (3.11), it implies that rλn
(x̄) = 0. So x̄ ∈ ∩∞

n=1(Hn ∩ SOL(C,A)). By the primal
case, {xn} → x̄ := z ∈ SOL(C,A). Onwards, we are going to show that z ∈ F (S). Let
u ∈ F (S) ∩ SOL(C,A). Consider

∥xn − u∥ ≥ ∥bn − u∥ ≥ ∥Sbn − u∥, (3.12)

it follows limn→∞ sup ∥Sbn − u∥ ≤ c. Moreover,

lim
n→∞

∥αn(xn − u) + (1− αn)(Sbn − u)∥ = lim
n→∞

∥xn+1 − u∥ = c. (3.13)

Lemma 2.8 yields limn→∞ ∥Sbn − xn∥ = 0. Consider

∥Sxn − xn∥ ≤ ∥Sxn − Sbn∥+ ∥Sbn − xn∥ ≤ ∥xn − bn∥+ ∥Sbn − xn∥, (3.14)

it follows that limn→∞ ∥Sxn − xn∥ = 0. The demiclosedness of I − S yields {xni
} ⇀ z

and limn→∞ ∥Sxn − xn∥ = 0. This implies that z ∈ F (S). Assume that {xnj
} is another

subsequence of {xn} such that {xnj} ⇀ z′ ∈ F (S)∩SOL(C,A). We will show that z = z′.
Let z ̸= z′. The Opial condition yields

lim
n→∞

∥xn − z∥ = lim inf
n→∞

∥xni
− z∥ < lim inf

n→∞
∥xni

− z′∥

= lim
n→∞

∥xn − z′∥ = lim inf
n→∞

∥xnj − z′∥

< lim inf
n→∞

∥xnj − z∥ = lim
n→∞

∥xn − z∥.

It is a contradiction. So z = z′. Since xn − yn → 0, and xn ⇀ z ∈ F (S) ∩ SOL(C,A),
it receives yn ⇀ z ∈ F (S) ∩ SOL(C,A). Putting un = PF (S)∩SOL(C,A)xn. We will show
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that z = limn→∞ un. Note that z ∈ F (S) ∩ SOL(C,A) and un = PF (S)∩SOL(C,A)xn.
It is obvious that ⟨z − un, un − xn⟩ ≥ 0. Thus {un} converges strongly to some z0 ∈
F (S) ∩ SOL(C,A) by Lemma 2.9. That is ⟨z − z0, z0 − z⟩ ≥ 0. Hence z = z0. This proof
is complete.

4. Applications

In this section, we assume that C = H, SOL(H,A)D ̸= ∅, and A : H → H is only a
k-Lipschitz continuous mapping in Theorems 4.1 and 4.2 in [17]. By using Theorem 3.1,
it can obtain two following theorems.

Theorem 4.1. Suppose that S : H → H is a nonexpansive mapping such that F (S) ∩
A−10 ̸= ∅. Let {xn} be a sequence generated by x0 = x ∈ H and let

xn+1 = αnxn + (1− αn)S(xn − λnA(xn − λnA(xn))) (4.1)

For every n = 0, 1, 2, . . . , where σ ∈ (0, 1), γ ∈ (0, 1), {λn} ⊂ [a, b],∃ a, b ∈ (0, 1
k ) and

{αn} ∈ [c, d], ∃ c, d ∈ (0, 1). Then, the sequence {xn} converges weakly to some point
z ∈ F (S) ∩A−10 where z = limn→∞ PF (S)∩A−10xn.

Proof. Setting A−10 = SOL(H,A) and PH = I. According to Theorem 3.1, we receive
the wistful result.

Theorem 4.2. Let B : H → 2H be a maximal monotone mapping such that A−10 ∩
B−10 ̸= ∅. Let JB

r be the resolvent of B for each r > 0. Let {xn} be a sequence generated
by

x0 = x ∈ H
xn+1 = αnxn + (1− αn)J

B
r (xn − λnA(xn − λnA(xn)))

For every n = 0, 1, 2, . . . , where σ ∈ (0, 1), γ ∈ (0, 1), {λn} ⊂ [a, b],∃ a, b ∈ (0, 1
k ) and

{αn} ∈ [c, d], ∃ c, d ∈ (0, 1). Then, the sequence {xn} converges weakly to some point
z ∈ A−10 ∩B−10 where z = limn→∞ PA−10∩B−10xn.

Proof. Setting A−10 = SOL(H,A), F (JB
r ) = B−10 and PH = I. By Theorem 3.1, we

receive the wistful result.

5. A numerical experiment

Example 5.1. Let H = R, C = [1, 10], and A : C → H be defined by A(x) = −2x. Let
S(x) = x for every x ∈ C. We are going to show that A is not a monotone mapping. For
all x, y ∈ C, it obtains

⟨Ax, x− y⟩ = −2(x− y)2

So, we can choose x, y ∈ C such that ⟨Ax, x − y⟩ < 0. Hence A is not a monotone map-
ping. It easy to check that SOL(C,A)D ̸= ∅. Choose σ = 0.5, γ = 0.01, 0.1, 0.5, 0.9, λn =
1
2 (

4n+1
n ), and αn = 2+3n

6n . The assumptions in Theorem 3.1 are satisfied. We have con-
summated all processes in Matlab R2015 running on a Desktop with Intel(R) Core(TM)
i5-7200u CPU 2.50 GHz, and 4 GB RAM. We give the stopping criteria ∥xn+1 − xn∥ < ε
with ε = 10−9 is a tolerance to cease the algorithms. The commutation results reported
in the following table:
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Table : The results computed on the algorithm in Theorem 3.1

N.P. γ Average iteration Average times

5 0.01 1401 690.5656

5 0.1 229 26.7586

5 0.5 106 8.1406

5 0.9 97 6.4202

where

• N.P: the number of the tested problems.
• Average iteration: the average number of iterations.
• Average times: the average CPU-computation times (in s).
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