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Abstract The purpose of this paper to build up the concept of a Meir-Keeler condensing and integral type

condensing operators in partially ordered Banach spaces via the concept of a measure of noncompactness.

We also provide a characterization of a Meir-Keeler condensing operators using the notion of L-functions

in partially ordered Banach spaces. To attain these results, we relaxed the conditions of boundedness,

closeness, and convexity of the set at the expense that the operator is monotone and bounded. In

addition, as an application, we apply these results to obtain coupled and tripled fixed theorems. Our

results generalize and extend similar literature results.

MSC: 65J15; 47H05; 47J25; 47J20; 91B50

Keywords: Condensing operators; partially ordered Banach space; fixed point; coupled and tripled fixed

point

Submission date: 27.10.2019 / Acceptance date: 13.12.2019

1. Introduction

Fixed point theory is certainly a fascinating field of research in mathematics, which
offers a wide range of applications in various fields of science and technology. Poincare
initiated a study of fixed point theory, after which Brouwer′s [19] established influen-
tial Brouwer′s fixed point theorem for finite dimensional spaces. In addition, Banach
has presented its distinguished contraction theorem at 1922 for complete metric space,
that provide the assurances of a unique fixed point. Later, Schauder in 1930 prolonged
the Brouwer′s fixed point results [37] for infinite dimensional spaces by considering the
compactness requirement on the operator or on the feasible set. There are a number
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advancements in fixed point theory in several directions, among them single-valued map-
pings that have been a lot of work in the literature (see, [13, 15, 16, 25, 34, 35, 41–47]
and references therein). However, multi valued mappings have several direct applications
in the real world compared to single valued mappings (see [32, 33] and others). Fur-
thermore, Kakutani [28] in 1941, presented the Brouwer′s fixed point result for the case
of multi-valued mappings. Later in 1969, Nadler [31] extended the Banach contraction
theorem from the single-valued mapping to multi-valued mapping by adopting the notion
of Hausdorff metric. Thereafter, several authors have modified and generalized the con-
cept of the Banach contraction theorem in various directions (see [25, 26] and others).
Among the most key one generalizations of the Banach contraction is a Meir-Keeler type
contraction [30] introduced by Meir and Keeler in 1969.

On the other hand, in 1930, Kuratowski [29] suggested the idea of a measure of non-
compactness capable of for measuring the degree of noncompactness of a bounded set.
The measure of noncompactness is effective in the study of single and multi-valued fixed
point theory. The measure of noncompactness, together with some algebraic consider-
ations, is useful in examining the existence of solutions to certain non linear problems
under specific conditions. The definitions of a Kuratowski and Hausdorff′s measure of
noncompactness are both well-known in literature and, in general, Kuratowski′s mea-
sure of noncompactness is very useful in proving Darbo′s famous fixed point theorem for
noncompact operators. In order to investigate the fixed point properties of noncompact
operators, the Darbo′s fixed point theorem is particularly helpful in the sense that it
generalizes the Schauder′s fixed point theorem. The Darbo fixed point theorem is quite
helpful for solving differential and integral equations. That is why this research area is
truly interested in getting a convenient generalization of Darbo′s fixed point theorem and
addressing it to other abstract spaces. To date, numerous research papers have also been
published on the generalization of Darbo′s fixed point theorem using a technique of a
measure of noncompactness (see [3, 5, 9, 20, 38] and references therein). Furthermore,
the application of these fixed point results also established in the field of differential and
integral equations [2, 6, 12, 22].

Recently, Aghajani [30] present the notion of Meir-Keleer condensing operator and
proposed generalization of Darbo’s fixed point theorem comparatively as Meir-Keleer
contraction fixed point theorem is generalization of Banach fixed point theorem. Further,
also Aghajani [1] introduced integral type condensing operator and proposed Darbo’s fixed
point theorem for a large class of operators. Inspired from the above papers we seek the
validity of these results of above papers in partially ordered Banach space. In this paper,
we will extend the results of Theorem 2.10, and Theorem 2.11, into partially ordered
Banach spaces. By doing this, we also improve and generalize the works mentioned in
[23, 24, 39]. We utilize this notion of measure of noncompactness to prove some fixed
point theorems in partially ordered Banach spaces whose positive cone K is normal. To
accomplish this result, we relaxed the conditions of boundedness, closeness and convexity
of the set at the expense that the operator is monotone and bounded. Furthermore,
we apply the obtained fixed point theorems to prove some new coupled fixed point and
tripled fixed point results to seek the validity of our results.

The remainder of the paper is written up as follows: We have introductory concepts and
approaches to demonstrate our leading results. Section 2 sets out the proposed fixed point
theorems for both Meir-Keeler condensing operator and Meir-Keeler condensing operator
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through L-function. Section 3 presents the implication of these results in coupled and
tripled fixed points results.

2. Preliminaries

During this whole paper, we used the following notions:

• E : Banach space;
• ∥.∥ : norm on a Banach space;
• θ : zero element of a Banach space;
• B(x, r): closed ball having x as a center with radius r;
• λA and A+B: the algebraic operations on sets;
• A : closure of a set A;
• coA : convex hull of a set a set A;
• coA : closed convex hull of a set A;
• ME : set of all bounded subsets of a space E;
• NE : set of all relatively compact subsets of a space E;
• Ψ : class of function such that ψ : R+ → R+ is a nondecreasing function with
limn→∞ ψn(p) = 0 for all p ≥ 0;
• Φ : class of function such that ϕ : R+ → R+ is a Lebesgue-integrable mapping
which is summable on each compact subset of R+ and for each ϵ > 0,

∫ ϵ

0
ϕ(t)dt >

0.

Now, we recall the axiomatic definition of a measure of noncompactness.

Definition 2.1. [14] A function µ : ME −→ [0,+∞) is called to be a measure of non-
compactness on E if the following conditions have been met:

1. The set kerµ = {A ∈ ME : µ(A) = 0} is nonempty and kerµ ⊂ NE;
2. A ⊂ B =⇒ µ(A) ≤ µ(B);
3. µ(A) = µ(A);
4. µ(coA) = µ(A);
5. µ

(
κA+ (1− κ)B

)
≤ κµ(A) + (1− κ)µ(B), ∀κ ∈ [0, 1];

6. For any sequence An of closed sets inside ME so that An+1 ⊂ An for each
n = 1, 2, · · · , and if limn→∞ µ(An) = 0 then A∞ =

∩∞
n=1An ̸= ϕ.

Remark 2.2. The family Kerµ defined in the above definition serves as the kernel of
the measure of noncompactness of µ. We can also note that intersection set A∞ is an
element of the family Kerµ. Indeed, µ(A∞) ≤ µ(An) for all n, we can quickly conclude
that µ(A∞) = 0. In perspective of this, means that A∞ ∈ Kerµ.

Example 2.3. [7] Le a metric space X and the map defined by

ϕ(A) =

{
0, A is totally bounded;
1, otherwise

or

ϕ(A) = diam(A)

is a measure of noncompactness on X.

Definition 2.4. An operator F : X → Y is said to be a compact operator if, for every
A ⊂ X bounded, the image set F (A) is relatively compact in the Banach space Y.
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Theorem 2.5. (Darbo’s fixed point theorem)[21] Let C be a nonempty, bounded, closed
and convex subset of a Banach space E and F : C −→ C be a continuous mapping and
there is a constant k ∈ [0, 1) such that

µ(F (A)) ≤ kµ(A)

for every nonempty subset A of C. Then, there exits a fixed a point for mapping F in the
set C.

Remark 2.6. The above theorem extends the classical Brouwer′s fixed point theorems
to noncompact operators and it has a number of applications in the study of solutions
existence of the differential and integral equations.

Definition 2.7. [30] Suppose (X, d) be a metric space and F : X −→ X is said to be
Meir-Keeler contraction (MKC) if for any ε > 0 there exist an δ > 0 such that

ε ≤ d(x, y) < ε+ δ =⇒ d(Fx, Fy) < ε, ∀x, y ∈ X.

Theorem 2.8. [30] Suppose (X, d) be a complete metric space and F : X −→ X is a
Meir-Keeler contraction mapping. Then, there exits a fixed a point for mapping F in the
set C.

By definition of a Meir-Keeler condensing operator for self-mapping F : C → C has
recently been established in [3] and provides the fixed point theorems which are follows.

Definition 2.9. [3] Assume C to be a nonempty subset of a Banach space E and µ is
any measure of noncompactness on E. A continuous mapping F : C −→ E is called to
be a Meir-Keeler condensing operator if for every ε > 0 there exist an δ > 0 in such a
manner that

ε ≤ µ(A) < ε+ δ =⇒ µ(F (A)) < ε

for each bounded subset A of C.

Theorem 2.10. [3] Assume that F : C → C is a Meir-Keeler condensing operator on a
nonempty, closed, bounded and convex subset C of Banach space E. Then F must have
at least one fixed point, as well as the set of all fixed points of F in C is compact set.

The useful generalization of Darbo′s fixed point theorem given by Aghajani [1] in the
form of an integral form as follows.

Theorem 2.11. [1] Assume C be any nonempty, closed, bounded and convex subset of a
Banach space E. Let F : C → C is a continuous operator such that∫ µ(F (A))

0

ϕ(s)ds ≤ ψ

(∫ µ(A)

0

ϕ(s)ds

)
for every nonempty subset A of C, where µ is any measure of noncompactness and ψ ∈ Ψ
and ϕ ∈ Φ. Then, F has a fixed point.

Subsequently, we let (E, ∥.∥,⪯) be a partially ordered Banach space with the norm ||.||,
having a positive cone K defined by K = {x ∈ E : x ⪰ 0} , which one can use to define
an order relation on the Banach space. A cone K is called normal cone if there exist a
number M > 0, such that for every x, y ∈ E

0 ⪯ x ⪯ y =⇒ ∥x∥ ⪯M ∥y∥.
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In this paper, we will extend the results in Theorem 2.10 and Theorem 2.11 into partially
ordered Banach spaces. By doing this, we also rectify and generalize the work mentioned
in [23, 24]. We use this approach of measure of noncompactness to prove some fixed
point theorems in partially ordered Banach spaces whose positive cone K is normal. To
accomplish these result, we relaxed the conditions of boundedness, closedness and convex-
ity of the set at the expense that the operator is monotone and bounded. Furthermore,
we apply the obtained fixed point theorems to prove some new coupled fixed point and
tripled fixed point results to see the effectiveness of our results.

3. An fixed point theorems for Meir-Keeler condensing opera-
tor

Theorem 3.1. Assume that (E, ∥.∥,⪯) is a partially ordered Banach space with a positive
normal K cone and µ referred to be any measure of noncompactness on E. If F : E → E
is a continuous, non-decreasing, bounded with Meir-Keeler condensing operator and there
is an element x0 ∈ E such as x0 ⪯ Fx0. Then F has a fixed point x∗ and the monotone
successive iterations sequence {Fnx0} converges to x∗. Moreover, the fixed point set of F
is compact set.

Proof. Choose x0 ∈ E and establish a sequence {xn} in E by xn+1 = F (xn), for alln ∈
N∗ := N ∪ {0} . Due to our hypothesis on F is nondecreasing and x0 ⪯ F (x0) such that

x0 ⪯ x1 ⪯ x2 ⪯ · · · ⪯ xn ⪯ · · · (3.1)

Moreover, we construct a sequence of subsets of E from the use (3.1) along the fol-
lowing lines i.e. S0 = co {x0, x1, . . .}, S1 = co {x1, x2, . . .} and inductively we have
Sn = co {xn, xn+1, . . .} . From the construction of Sn it is simply to see that each Sn is
closed, bounded and convex with the following inclusion S0 ⊃ S1 ⊃ S2 ⊃ · · · ⊃ Sn ⊃ · · · .
Next, we define a sequence of numbers as ϵn = µ(Sn) and δn = δ(ϵn) > 0. By defini-
tion of Meir-Keeler condensing operator we have ϵn ≤ µ(Sn) < ϵn + δn =⇒ µ(Sn+1) ≤
µ(F (Sn)) < ϵn = µ(Sn). This implies that ϵn = µ(Sn) is a positive decreasing sequence
of a real numbers and there is a r ≥ 0 such that ϵn −→ r as n −→ ∞. Moreover, we show
that r = 0. If r ̸= 0 then there is an n0 such that r ≤ ϵn = µ(Sn) < r + δ(r) whenever
n > n0. By definition of Meir-Keeler condensing operator we have µ(F (Sn)) < r which is
a contradiction, so r = 0. So µ(Sn) → 0 as n→ ∞ and Sn+1 ⊂ Sn, we have

S∞ =

∞∩
n=1

̸= ϕ and µ(S∞) = 0.

By using the following fact

µ(S0) = µ{co{x0, x1, x2, · · · }}

= µ
{
co
{
co{x0, x1, · · · , xn−1} ∪ co(Sn)

}}
= max{co{x0, x1, · · · , xn−1}, co(Sn)}
= µ(Sn).

(3.2)

We get µ(S0) = µ(Sn) = 0, for every n ∈ N. This implies that µ(S0) = 0, and S0 forms
a compact chain in E. Hence {xn} has a convergent subsequence. Using the monotone
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property of F and normality of cone the sequence {xn} = {Fnx0}monotonically converges
to a point say x∗ ∈ S0. At the end using the continuity of F we have

Fx∗ = F ( lim
n→∞

xn) = lim
n→∞

Fxn = lim
n→∞

xn+1 = x∗.

Next, let Ω = {x ∈ E : Fx = x} and µ(Ω) = b then there exist δ > 0 such that b ≤ µ(Ω) <
b + δ =⇒ µ(F (Ω)) < b, but this is impossible as F (Ω) = Ω, so µ(Ω) = 0. Now taking
into account any convergent sequence {xn} ⊂ Ω and xn → x∗, we have x∗ ∈ S0 because
S0 is closed. Thus, by continuity of F on xn = Fxn → Fx∗ and Fx∗ = x∗ which means
that x∗ ∈ Ω, i.e. Ω is a compact set.

Lim [40] introduced the following notion of L-function.

Definition 3.2. [40] Let a function θ : [0,∞) → [0,∞) is called an L-function if θ(0) = 0,
θ(s) > 0 for s ∈ (0,∞) and for each s ∈ (0,∞) over here is an δ > 0 so that θ(t) ≤ s for
every t ∈ [s, s+ δ].

Example 3.3. Let θ(t) = ϱt, where ϱ ∈ [0, 1).

Definition 3.4. A function ϑ : [0,∞) → [0,∞) is called a strictly L-function if ϑ(0) = 0,
ϑ(s) > 0 for s ∈ (0,∞) and for each s ∈ (0,∞) over here is an δ > 0 so that ϑ(t) < s for
any t ∈ [s, s+ δ].

Analogous to the proof of Proposition 1 as in [36], we prove the following theorem in
the framework of partially ordered Banach spaces.

Theorem 3.5. Let (E, ∥.∥,⪯) be a partially ordered Banach space with a positive normal
cone K. Suppose that F : E −→ E is a nondecreasing, continuous, and bounded mapping.
Then, F is Meir-Keeler condensing operator if and only if there is an L-function θ so
that

µ(F (A)) < θ(µ(A)) (3.3)

for any bounded subsets A of E.

Proof. For sufficiency: Let θ be an L-function and satisfy expression (3.3) for any bounded
subsets A ⊂ E. For any ϵ > 0 there is an δ(ϵ) > 0 such that θ(t) ≤ ϵ for ϵ ≤ t < ϵ+ δ(ϵ).
Let A be a bounded subset of E such that ϵ ≤ µ(A) < ϵ + δ(ϵ) using (3.3), we have
µ(F (A)) < θ(µ(A)) ≤ ϵ. Thus, F is a Meir-Keeler condensing operator.
For necessity: Suppose that F is a Meir-Keeler condensing operator. Next, we have set
out a function α : (0,∞) −→ (0,∞) such that

ϵ ≤ µ(A) < ϵ+ 2α(ϵ) ⇒ µ(F (A)) < ϵ (3.4)

for ϵ ∈ (0,∞). By using above function α we define a nondecreasing function β :
(0,∞) −→ [0,∞) as β(t) = inf {ϵ > 0 : t ≤ ϵ+ α(ϵ)} , t ∈ (0,∞). For t ≤ t + α(t),
we have β(t) ≤ t. Now define θ1 : [0,∞) =⇒ [0,∞) by

θ1(t) =


0 if t = 0,
β(t) if t > 0, and min {ϵ > 0 : t ≤ ϵ+ α(ϵ)} exists,
β(t)+t

2 otherwise.

From above it is clear that θ1(0) = 0 and 0 < θ1(s) ≤ s for s ∈ (0,∞). Fix s ∈ (0,∞). In
the case of θ1(t) ≤ s for all t ∈ (s, s+α(s)], we can put δ = α(s). In the other case, there
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exist ρ ∈ (s, s + α(s)] with θ1(ρ) > s. As ρ ≤ s + α(s), we have β(ρ) ≤ s. If β(ρ) = s,
then θ1(ρ) = β(ρ) = s < θ1(ρ), which is a contradiction. Thus, we have

β(ρ) < s < θ1(ρ) =
β(ρ) + ρ

2
.

We can choose u ∈ (β(ρ), s) with ρ ≤ u+α(u), and we put δ = s−u > 0. Fix t ∈ [s, s+δ]
as

t ≤ s+ δ = 2s− u < 2
β(ρ) + ρ

2
− β(ρ) = δ ≤ u+ α(u),

we have β(t) ≤ u. Hence

θ1(t) ≤
β(t) + t

2
≤ u+ s+ δ

2
= s.

Therefore, θ1 is an L-function. Let A be any bonded subset of E with non-zero measure
of noncompactness. By definition of L-function θ1, for every t ∈ (0,∞) there exists
ϵ ∈ (0, θ1(t)) such that t ≤ ϵ+α(s). So, there exists ϵ ∈ (0, µ(A)) such that µ(A) ≤ ϵ+α(ϵ).
Therefore µ(F (A)) < ϵ ≤ θ1(µ(A)), which complete the proof.

As the obvious consequence of Theorems 3.1 and 3.5, we shall obtain the following
fixed point results.

Corollary 3.6. Let (E, ∥.∥,⪯) be a partially ordered Banach space with a positive normal
cone K and µ is an arbitrary measure of noncompactness on E. Suppose that F : E −→ E
is a nondecreasing, continuous and bounded mapping in a such a way that

µ(F (A)) < θ(µ(A))

for each bounded subset A ⊂ E where θ is an L-function. If there is an element x0
such that x0 ⪯ F (x0), then F has a fixed point x∗ and monotone sequence {Fn(x0)} of
consecutive iterations converges to x∗. In addition, the set of all fixed points of F in E is
compact set.

Corollary 3.7. Let (E, ∥.∥,⪯) be a partially ordered Banach space with a positive normal
cone K and µ is an arbitrary measure of noncompactness on E. Suppose that F : E −→ E
is a nondecreasing, continuous and bounded mapping in a such a way that

µ(F (A)) ≤ ϑ(µ(A))

for any bounded subset A ⊂ E where ϑ is a strictly L-function. If there is an element x0
such that x0 ⪯ F (x0), then F has a fixed point x∗ and monotone sequence {Fn(x0)} of
consecutive iterations converges to x∗. In addition, the set of all fixed points F in E is
compact set.

Remark 3.8. We observe that by substituting ϑ(t) = ϱt in Corollary 3.7 where ϱ ∈ [0, 1),
provides the Darbo′s fixed point theorem.

Corollary 3.9. Let (E, ∥.∥,⪯) be a partially ordered Banach space with a positive normal
cone K and T : E → E is a nondecreasing, continuous, bounded and also satisfying the
following inequality

∥T (x)− T (y)∥ ≤ ϑ(∥x− y∥),
where ϑ is a right continuous nondecreasing and strictly L-function. Assume that G :
E → E is a continuous an compact operator. Next, define F (x) := T (x) +G(x), ∀x ∈ E
and further assume that there is an element x0 ∈ E such that x0 ⪯ T (x0) +G(x0). Then,
F has a fixed point in E and additionally the fixed points set of F in E is compact set.
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Proof. Assume µ : ME → R+ be an Kuratowski measure of noncompactness as defined
in the paper [29]. In addition, from our assumptions and ϑ to be a nondecreasing, we can
write

∥T (x)− T (y)∥ ≤ sup
x,y∈A

ϑ(∥x− y∥) ≤ ϑ( sup
x,y∈A

∥x− y∥),

implies that

diam(T (A)) ≤ ϑ(diamA). (3.5)

Due to Kuratowski measure of noncompactness for each β > 0, there exist A1, A2, · · · , An

such that A ⊂
∪n

i=1Ai and diamAi ≤ µ(A) + β. As T (A) ⊂
∪n

i=1 T (Ai) and ϑ is a
nondecreasing srictly L-function with expression (3.5), we obtain

µ(T (x)) ≤ diam(T (Ai)) ≤ ϑ(diam(Ai)) ≤ ϑ(µ(A) + β)

above inequality holds for every β > 0, implies that

µ(T (A)) ≤ ϑ(µ(A)).

Finally, G is compact and with above inequality we get

µ(F (A)) = µ((T +G)(A)) ≤ µ(T (A) +G(A)) ≤ µ(T (A)) + µ(G(A)) ≤ ϑ(µ(A))

with hypothesis x0 ⪯ F (x0), implies the required result as in Corollary 3.7.

3.1. Integral-type Darbo’s theorem generalization in partially or-

dered Banach spaces

Theorem 3.10. Assume (E, ∥.∥,⪯) be a partially ordered Banach space whose positive
normal cone is K and µ take as an any measure of noncompactness on E. Consider
F : E → E to be a nondecreasing, continuous and bounded with the following∫ µ(F (A))

0

ϕ(t)dt ≤ ψ

(∫ µ(A)

0

ϕ(t)dt

)
(3.6)

for every bounded A ⊂ E where ϕ ∈ Φ and ψ ∈ Ψ. Moreover, if there is an element
x0 ∈ E such that x0 ⪯ F (x0), then F has a fixed point x∗ and the sequence {Fn(x0)} of
successive iterations converges monotonically to x∗.

Proof. Let choose x0 ∈ E and define a sequence {xn} in E by xn+1 = F (xn) ∀n ∈ N∗ =
N ∪ {0} . From given F is nondecreasing and x0 ⪯ F (x0), we can write as

x0 ⪯ x1 ⪯ x2 ⪯ · · · ⪯ xn ⪯ · · · (3.7)

By using (3.7) we construct a sequence of subsets of E as A0 = co {x0, x1, ...} , A1 =
co {x1, x2, ...} , and inductively we can achieve An = co {xn, xn+1...} . From the above
discussion we see that An is closed, bounded and convex set for all n. We can easily get
the following inclusion A0 ⊃ A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ · · · , and also we can obtain

µ(An+1) = µ(co{xn+1, xn, · · · }) = µ(F{xn, xn−1, · · · })
≤ µ(F{co{xn, xn−1, · · · }}) = µ(An).
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From expression (3.6) and from above inequality, we have∫ µ(An+1)

0

ϕ(t)dt ≤
∫ µ(F (An))

0

ϕ(t)dt ≤ ψ

(∫ µ(An)

0

ϕ(t)dt

)

≤ ψ2

(∫ µ(An−1)

0

ϕ(t)dt

)
...

≤ ψn

(∫ µ(A1)

0

ϕ(t)dt

)
.

So by using that fact that for every every δ > 0,
∫ δ

0
ϕ(t)dt > 0, we conclude that µ(An) →

0, as n → ∞ and An+1 ⊂ An implies that A∞ =
∩∞

n=1 ̸= ϕ and µ(A∞) = 0. Further,
form the following fact

µ(A0) = µ
{
co
{
co{x0, x1, · · · , xn−1} ∪ co(An)

}}
= µ(An),

we get µ(A0) = µ(An) = 0 for every n ∈ N. This implies that µ(A0) = 0 and A0

forms a compact chain in E. Hence {xn} has a convergent subsequence. Using the
monotone property of F and normality of cone the sequence {xn} = {Fnx0} converges
monotonically to a point say x∗ ∈ A0. At the end, using the continuity of F we get
F (x∗) = F (limn→∞ xn) = limn→∞ F (xn) = limn→∞ xn+1 = x∗, which is required.

Corollary 3.11. Let (E, ||.||,⪯) be a partially ordered Banach space with a positive nor-
mal cone K and T : E → E is a continuous, nondecreasing, bounded and satisfying the
following inequality∫ ∥Tx−Ty∥

0

ϕ(t)dt ≤ ψ

(∫ ∥x−y∥

0

ϕ(t)dt

)
, (3.8)

for every bounded S ⊂ E where ϕ ∈ Φ, ψ ∈ Ψ. Moreover, if there exists an element
x0 ∈ E such that x0 ⪯ Tx0, then T has a fixed point x∗ and the sequence {Tnx0} of
successive iterations converges monotonically to x∗.

Proof. Define µ : ME → R+ and by taking µ(X) = diamX, X ∈ ME, we obtain the
required result.

Remark 3.12. By letting ϕ(t) = 1 and ψ(t) = k, k ∈ [0, 1), in Theorem 3.10, then we

have
∫ µ(TS)

0
ϕ(t)dt = µ(TS) ≤ kµ(S) =

∫ µ(S)

0
ϕ(t)dt. So in that case the Darbo’s theorem

is obtained.

4. Some applications

In this section in order to understand the effectiveness of the results presented in the
above section, we include two cases where our results can be applied, particularly the
existence of a coupled and tripled fixed point in partially ordered Banach spaces.
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4.1. Coupled Fixed Point Theorem

Next, we explain some coupled fixed point theorems using Meir-Keeler condensing
operator and other Darbo′s type generalization in partially ordered Banach spaces. Before
that, let′s recall some necessary definitions and notions.

Definition 4.1. [18] An element (x, y) in E2 is said to be a coupled fixed point of a
mapping T : E2 → E provided T (x, y) = x and T (y, x) = y.

Example 4.2. Let X = [0,∞) and a mapping T : X ×X → X can be defined by

T (x, y) = x2 + y2,

for all x, y ∈ X. We can easily see that T has a unique coupled fixed point (0, 0).

Definition 4.3. Assume that (E, ∥.∥,⪯) is a partially ordered Banach space and a map-
ping T : E2 → E is said to be the monotone property on both variables x and y such that
for every x, y ∈ E provided that the following conditions are satisfied

z1, z2 ∈ E, z1 ⪯ z2 =⇒ T (z1, y) ⪯ T (z2, y),

z1, z2 ∈ E, z1 ⪯ z2 =⇒ T (x, z1) ⪯ T (x, z2).

Lemma 4.4. [7] Let µ1, µ2, · · · , µn are the measures of noncomapctness on Banach
spaces E1,E2, · · · ,En respectively. Let a function F : [0,∞)n −→ [0,∞) is convex and
F (x1, x2, · · · , xn) = 0 if and only if each xi = 0 for all i = 1, 2, · · · , n. Next, we define a
measure of noncompactness on E1 × E2×, · · · ,×En as follows:

µ(A) = F
(
µ1(A1), µ2(A2), · · · , µn(An)

)
,

where Ai denotes the natural projection of A onto Ei for i = 1, 2, · · · , n.

Now, as a result of Lemma 4.4, we are going to present the following examples.

Example 4.5. Let µ be a measure of noncompactness on a Banach space E, and the
function Γ : [0,+∞)2 → [0,+∞) is convex and Γ(x1, x2) = 0 if and only if xi = 0 for
i = 1, 2. Then µ∗(S) = Γ(µ(S1), µ(S2)) defines a measure of noncompactness on E × E.

Example 4.6. Let µ be a measure of noncompactness on a Banach space E, and consider
a map Γ(x, y) = x+y for all (x, y) ∈ [0,+∞)2.We can see that Γ is convex and Γ(x, y) = 0
if and only if x = y = 0 and all the conditions of Lemma 4.4 are satisfied. Thus,
µ∗(S) = µ(S1) + µ(S2) define a measure of noncompactness on the space E× E.

Example 4.7. Assume µ be a measure of noncompactness on a Banach space E and
a map Γ(x, y) = x + y for any (x, y) ∈ [0,+∞)2. Then we see that Γ is convex and
Γ(x, y) = 0 if and only if x = y = 0, hence all the conditions of Lemma 4.4, are satisfied.
Thus, µ∗(S) = µ(S1) + µ(S2), defines a measure of noncompactness in the space E × E.

Example 4.8. Let µ be a measure of noncompactness on a Banach space E. If we define
J(x, y) = max{x, y} for any (x, y) ∈ [0,+∞)2, then all the conditions of Lemma 4.4, are
satisfied, and µ∗(S) = max{µ(S1), µ(S2)} is a measure of noncompactness in the space
E × E.

Theorem 4.9. Let (E, ∥.∥,⪯) be a partially ordered Banach space with a positive normal
cone K and µ be an arbitrary measure of noncompactness on E. Suppose that T : E2 −→ E
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is a continuous and bounded mapping having monotone property and for any ϵ > 0 there
exist δ > 0 so that for every bounded subsets S1, S2 in E the following holds:

ϵ ≤ max {µ(S1), µ(S2)} < ϵ+ δ =⇒ µ(T (S1 × S2)) < ϵ. (4.1)

If there exists two elements x0, y0 ∈ E such that x0 ⪯ T (x0, y) and y0 ⪯ T (y0, x) for all
x, y ∈ E. Then T has atleast one coupled fixed point.

Proof. Define a mapping G : E2 → E2 by G(x, y) = (T (x, y), T (y, x)), since T is contin-
uous, bounded with monotone property, it follows that G is also a continuous, bounded
and monotone mapping. Let the measure of noncompactness on E2 be as µ∗(S) =
max {µ(S1, µ(S2)} , where S1 and S2 are the natural projections of S on E. Let S
be a nonempty bounded subset of E2 and for ϵ > 0 there exist δ(ϵ) > 0, such that
ϵ ≤ µ∗(S) = max {µ(S1), µ(S2)} < ϵ+ δ(ϵ), we have

µ∗(G(S)) ≤ µ∗(G(S1 × S2)
)
= µ∗(T (S1 × S2)× T (S2 × S1)

)
= max

{
µ
(
T (S1 × S2)), µ(T (S2 × S1)

)}
< ϵ.

(4.2)

Further, an element x∗ = (x0, y0) ∈ E2 such that

x∗ = (x0, y0) ⪯
(
T (x0, y0), T (y0, x0)

)
= G(x0, y0) = Gx∗.

At last G satisfy all conditions of Theorem 3.1, therefore G has a fixed point which is
actually the coupled fixed point of the mapping T .

Corollary 4.10. Let (E, ∥.∥,⪯) be a partially ordered Banach space with a positive normal
cone K and µ be an arbitrary measure of noncompactness on E. Suppose that T : E2 −→ E
is a continuous and bounded mapping having monotone property. Moreover, for any L-
function θ and every bounded subsets S1, S2 in E the following holds

µ
(
T (S1 × S2)

)
<

1

2
θ
(
µ(S1) + µ(S2)

)
,

or

µ
(
T (S1 × S2)

)
< θ
(
max

{
µ(S1), µ(S2)

})
.

If there exists two elements x0, y0 ∈ E such that x0 ⪯ T (x0, y) and y0 ⪯ T (y0, x) for all
x, y ∈ E. Then T has atleast one coupled fixed point.

Corollary 4.11. Let (E, ∥.∥,⪯) be a partially ordered Banach space with a positive normal
cone K and µ be an arbitrary measure of noncompactness on E. Suppose that T : E2 −→ E
is a continuous and bounded mapping having monotone property. Moreover, for any
strictly L-function ϑ and every bounded subsets S1, S2 in E the following holds

µ
(
T (S1 × S2)

)
≤ 1

2
ϑ
(
µ(S1) + µ(S2)

)
,

or

µ
(
T (S1 × S2)

)
≤ ϑ

(
max

{
µ(S1), µ(S2)

})
.

If there exists two elements x0, y0 ∈ E such that x0 ⪯ T (x0, y) and y0 ⪯ T (y0, x) for all
x, y ∈ E. Then T has atleast one coupled fixed point.
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Corollary 4.12. Let (E, ∥.∥,⪯) be a partially ordered Banach space with a positive normal
cone K and F : E× E → E is a continuous, nondecreasing, bounded and also satisfy the
following inequality

∥F (x, y)− F (u, v)∥1
2
≤ ϑ(∥x− u∥, ∥y − v∥),

where ϑ is a nondecreasing and right continuous strictly L-function. Assume that G :
E × E → E is a compact and continuous operator. Define T (x, y) := F (x, y) + G(x, y),
∀ (x, y) ∈ E × E and also assume that there exists an elements x0, y0 ∈ E such that
x0 ≤ F (x0, y) +G(x0, y) and y0 ≤ F (y0, x) +G(y0, x), ∀ x, y ∈ E. Then T has a coupled
fixed point.

Proof. Let µ : ME → R+ be the Kuratowski measure of noncompactness defined in [29].
Moreover, assume that S1 and S2 be nonempty subsets of E and from above hypothesis
we have

∥F (x, y)− F (u, v)∥ ≤ 1

2
ϑ(∥x− u∥, ∥y − v∥) ≤ 1

2
ϑ(diam∥x− u∥, diam∥y − v∥),

implies that

diam(F (S1 × S2)) ≤
1

2
ϑ(diam(S1) + diam(S2)).

As ϑ is right continuous and by definition of Kuratowski measure of noncompactness,
similar to the proof of Corollary 3.9, we have

µ(F (S1 × S2)) ≤
1

2
ϑ(µ(S1) + µ(S2)). (4.3)

Also as G is compact and from (4.3) we obtain

µ(T (S1 × S2)) = µ((F +G)(S1 × S2)) ≤ µ(F (S1 × S2) +G(S1 × S2))

≤ µ(F (S1 × S2)) + µ(G(S1 × S2))

≤ 1

2
ϑ(µ(S1) + µ(S2)).

(4.4)

Further, we also have x0 ⪯ T (x0, y) and y0 ⪯ T (y0, x) for all x, y ∈ E. Finally, from
Corollary 4.11, completes the proof.

Theorem 4.13. Let (E, ∥.∥,⪯) be a partially ordered Banach space with a positive normal
cone K and µ be an arbitrary measure of noncompactness on E. Suppose that T : E2 −→ E
is a continuous, bounded and monotone mapping, which for all bounded subsets S1, S2 ⊂ E
satisfy the following inequality∫ µ

(
T (S1×S2)

)
0

ϕ(t)dt ≤ ψ

(∫ max{µ(S1),µ(S2)}

0

ϕ(t)dt

)
, (4.5)

where ϕ ∈ Φ and ψ ∈ Ψ. If there exists two elements x0, y0 ∈ E such that x0 ⪯ T (x0, y)
and y0 ⪯ T (y0, x) for all x, y ∈ E. Then T has atleast one coupled fixed point.

Proof. Define a mapping G : E2 → E2 by G(x, y) =
(
T (x, y), T (y, x)

)
. Since T is

continuous and bounded with monotone property, it follows that G is also continu-
ous, bounded and monotone mapping. Let the measure of noncompactness on E2 be
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µ∗(S) = max
{
µ(S1), µ(S2)

}
, where S1 and S2 are the natural projections of S on E. By

taking S be a nonempty bounded subset of E2∫ µ∗(G(S))

0

ϕ(t)dt ≤
∫ µ∗(G(S1×S2)

0

ϕ(t)dt =

∫ µ∗(T (S1×S2)×T (S2×S1))

0

ϕ(t)dt

=

∫ max{µ(T (S1×S2)), µ(T (S2×S1))}

0

ϕ(t)dt.

(4.6)

Now by hypothesis
∫ µ(T (S1×S2))

0
ϕ(t)dt ≤ ψ

( ∫max{µ(S1),µ(S2)}
0

ϕ(t)dt
)
and also we have∫ µ(T (S2×S1))

0
ϕ(t)dt ≤ ψ

( ∫max{µ(S2),µ(S1)}
0

ϕ(t)dt
)
, therefore we conclude∫ µ∗(G(S))

0

ϕ(t)dt ≤ ψ
( ∫ µ∗(S)

0

ϕ(t)dt
)
.

As same from the previous proof we have

x∗ = (x0, y0) ⪯
(
T (x0, y0), T (y0, x0)

)
= G(x0, y0) = Gx∗.

Now all conditions of Theorem 3.10, are satisfied and G has a fixed point.

4.2. Tripled Fixed Point Theorem

In this section, we prove some tripled fixed point theorem using Meir-Keeler condensing
operator. Before that, let’s recall some basic definitions and notions.

Definition 4.14. [17] An element (x, y, z) in E3 is called a tripled fixed point of a mapping
T : E3 → E if T (x, y, z) = x, T (y, x, y) = y and T (z, y, x) = z.

Definition 4.15. Let (E, ∥.∥,⪯) be a partially ordered Banach space and T : E3 → E be
a mapping. Then T is said to have the monotone property if T is monotone nondecreasing
in all three variables x, y, z ∈ E the following holds:

u1, u2 ∈ E, u1 ⪯ u2 =⇒ T (u1, y, z) ⪯ T (u2, y, z),

v1, v2 ∈ E, v1 ⪯ v2 =⇒ T (x, v1, z) ⪯ T (x, v2, z),

w1, w2 ∈ E, w1 ⪯ w2 =⇒ T (x, y, w1) ⪯ T (x, y, w2).

Theorem 4.16. Let (E, ∥.∥,⪯) be a partially ordered Banach space with a positive normal
cone K and µ be an arbitrary measure of noncompactness on E. Suppose that T : E3 −→ E
is a continuous and bounded mapping having monotone property. For any ϵ > 0 there
exist δ > 0 such that for all bounded subsets S1, S2, S3 in E the following holds

ϵ ≤ max
{
µ(S1), µ(S2), µ(S3)

}
< ϵ+ δ =⇒ µ

(
T (S1 × S2 × S3)

)
< ϵ. (4.7)

If there are three elements x0, y0, z0 ∈ E such that x0 ⪯ T (x0, y, z), y0 ⪯ T (y0, x, z) and
z0 ⪯ T (z0, y, x) for all x, y, z ∈ E. Then T has atleast one tripled fixed point.

Proof. For proving this theorem we just follow the same procedure as in Theorem 4.9.
By define a mapping G : E3 → E3 by G(x, y, z) =

(
T (x, y, z), T (y, x, y), T (z, y, z)

)
, and

the measure of noncompactness on E3 as follows:

µ∗(S1 × S2,×S3) = max
{
µ(S1), µ(S2), µ(S3)

}
.
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Corollary 4.17. Let (E, ∥.∥,⪯) be a partially ordered Banach space with a positive normal
cone K and µ be an arbitrary measure of noncompactness on E. Suppose that T : E3 −→ E
is a continuous and bounded mapping having monotone property. Moreover, for any L-
function θ and every bounded subsets S1, S2, S3 in E the following holds

µ
(
T (S1 × S2 × S3)

)
<

1

3
θ
(
µ(S1) + µ(S2) + µ(S3)

)
,

or

µ
(
T (S1 × S2 × S3)

)
< θ
(
max

{
µ(S1), µ(S2), µ(S3)

})
.

If there exists three elements x0, y0, z0 ∈ E such that x0 ⪯ T (x0, y, z), y0 ⪯ T (y0, x, z)
and z0 ⪯ T (z0, y, x) for all x, y, z ∈ E. Then T has atleast one tripled fixed point.

Corollary 4.18. Let (E, ∥.∥,⪯) be a partially ordered Banach space with a positive normal
cone K and µ be an arbitrary measure of noncompactness on E. Suppose that T : E3 −→ E
is a continuous and bounded mapping having monotone property. Moreover, for any
strictly L-function ϑ and every bounded subsets S1, S2, S3 in E the following holds

µ
(
T (S1 × S2 × S3)

)
≤ 1

3
ϑ
(
µ(S1) + µ(S2) + µ(S3)

)
,

or

µ
(
T (S1 × S2 × S3)

)
≤ ϑ

(
max

{
µ(S1), µ(S2), µ(S3)

})
.

If there exists three elements x0, y0, z0 ∈ E such that x0 ⪯ T (x0, y, z), y0 ⪯ T (y0, x, z)
and z0 ⪯ T (z0, y, x) for all x, y, z ∈ E. Then T has atleast one tripled fixed point.

Corollary 4.19. Let (E, ∥.∥,⪯) be a partially ordered Banach space with a positive normal
cone K and F : E× E× E → E is a continuous, nondecreasing, bounded and also satisfy
the following inequality

∥F (x, y, z)− F (u, v, w)∥1
3
≤ ϑ(∥x− u∥, ∥y − v∥), ∥z − w∥,

where ϑ is a nondecreasing and upper semi continuous strictly L-function. Assume
that G : E × E × E → E is a compact and continuous operator. Define T (x, y, z) :=
F (x, y, z) + G(x, y, z), ∀ (x, y, z) ∈ E × E × E and also assume that there exists an ele-
ments x0, y0, z0 ∈ E such that x0 ≤ F (x0, y, z)+G(x0, y, z), y0 ≤ F (y0, x, z)+G(y0, x, z),
and z0 ≤ F (z0, y, z) +G(z0, y, z), ∀ x, y, z ∈ E. Then T has a tripled fixed point.

Proof. Follow the same steps as in corollary 4.12.

Theorem 4.20. Let (E, ∥.∥,⪯) be a partially ordered Banach space with a positive nor-
mal cone K and µ be an arbitrary measure of noncompactness on E. Suppose that T :
E3 −→ E is a continuous, bounded and monotone mapping, which for all bounded subsets
S1, S2, S3 ⊂ E satisfy the following inequality∫ µ

(
T (S1×S2×S3)

)
0

ϕ(t)dt ≤ ψ

(∫ max
{
µ(S1),µ(S2),µ(S3)

}
0

ϕ(t)dt

)
, (4.8)

where ϕ ∈ Φ and ψ ∈ Ψ. If there exists three elements x0, y0, z0 ∈ E such that x0 ⪯
T (x0, y, z), y0 ⪯ T (y0, x, z) and z0 ⪯ T (z0, y, x) for all x, y, z ∈ E. Then T has atleast
one tripled fixed point.

Proof. Follow the proof of Theorem 4.13.
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5. Conclusion

This paper has suggested some results about the generalization of the Darbo’s fixed
point theorem which is obtained by using Meir-Keeler condensing operator in partially
ordered Banach spaces. The main advantage of these results that these results attain
without the conditions of boundedness, closeness, and convexity of the set, but by taking
condition of boundedness and monotonocity on the operator. Further, we also discuss
a characterization of a Meir-Keeler condensing operator using the notion of L-functions
and strictly L-function in partially ordered Banach spaces. At the last section, we apply
these results to obtain a few coupled and tripled fixed theorems.
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