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Abstract In this paper, we introduce a novel forward-backward algorithm involving linesearches for

solving nonsmooth optimization problems in Hilbert spaces. The convergence including the complexity

are proved under mild conditions. Further, some numerical experiments are tested to show the efficiency

and the implementation of our algorithms. It reveals that the proposed method has a good convergence

in terms of CPU time and number of iterations.
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1. Introduction

Let H be a real Hilbert space with the inner product ⟨·, ·⟩ and the induced norm ∥ · ∥.
Let f, g : H → R ∪ {+∞} be two proper, lower-semicontinuous and convex functions in
which f is Fréchet differentiable on open set containing the domain of g. We are interested
in solving problems for the minimization problem:

min
x∈H

f(x) + g(x). (1.1)

The solution set of this problem (1.1) will be denoted by S∗. Recently problem (1.1)
has received much attention due to its applications in optimal control, signal processing,
system identification, machine learning, and image analysis; see, e.g. [10, 11, 27]. It is
well-known that, for any α > 0, x is an optimal solution to problem (1.1) if and only if

x = proxαg(x− α∇f(x)). (1.2)

Published by The Mathematical Association of Thailand.
Copyright c⃝ 2020 by TJM. All rights reserved.



64 Thai J. Math. Vol. 18, No. 1 (2020) / Cholamjiak et al.

The above equation shows an equivalency between convex minimization problems and
fixed point problems.This alternative equivalent formulation has played a major role in
study of minimization problem. In particular, the minimizers of (1.1) can be approximated
by using the following proximal technique:

xk+1 = proxαkg︸ ︷︷ ︸
backward step

(xk − αk∇f(xk))︸ ︷︷ ︸
forward step

, (1.3)

where αk is a suitable stepsize. This method is called the forward-backward splitting
algorithm. The forward-backward method based on iteration (1.3) has been studied
by many authors; see, e.g. [5, 6, 10, 12, 14, 19, 23, 24, 28, 34]. Moreover, scheme
(1.3) may reduce to many popular optimization methods as particular cases including
the projected gradient method for smooth constrained minimization, the proximal point
method, the CQ algorithm for the split feasibility problem, the projected Landweber al-
gorithm for constrained least squares; the iterative soft thresholding algorithm for linear
inverse problems; decomposition methods for solving variational inequalities; and the si-
multaneous orthogonal projection algorithm for the convex feasibility problem; see, e.g.
[2, 7, 8, 13, 15, 17, 29, 33, 34] and the references therein. Combettes and Wajs [11] intro-
duced the following iterative sequence which is based on the classical forward-backward
iteration (1.3).

Algorithm 1.1. [11] Given ϵ ∈ (0,min{1, 1
β }) and let x0 ∈ RN . For k ≥ 1, calculate

yk = xk − αk∇f(xk),

xk+1 = xk + λk(proxαkg
yk − xk), (1.4)

where αk ∈ [ϵ, 2
β − ϵ] and λk ∈ [ϵ, 1]. Here β is the Lipschitz constant of the gradient of f.

It should be remarked that, in general, the Lipschitz constant is unknown even if the
convex objective function is given. To obtain the convergence, it is usually assumed that
the gradient of the function is Lipschitz continuous and also the stepsize is bounded below
and less than some constants related to the Lipschitz constant. This leads to a difficulty
in computing the iterative sequence to a solution. As pointed out, it is interested to study
and develop the forward-backward algorithm for solving minimization problems without
information of the Lipschitz constant.

In 2016, J.Y. Bello Cruz and T.T.A Nghia [3] proposed the following forward-backward
method using the linesearch technique which does not depend on the Lipschitz constant.

Algorithm 1.2. Given σ > 0, θ ∈ (0, 1) and δ ∈ (0, 1
2 ). Let x0 ∈ domg. For k ≥ 1,

calculate
xk+1 = proxαkg

(xk − αk∇f(xk)),

where αk = σθmk and mk is the smallest nonnegative integer such that

αk∥∇f(xk+1)−∇f(xk)∥ ≤ δ∥xk+1 − xk∥.

It was shown that the sequence (xk)k∈N converges weakly to a solution in S∗ and
lim
k→∞

(f + g)(xk) = min
x∈H

(f + g)(x). In this work linesearches are used to eliminate the

undesired Lipschitz assumption. As far as we observe, the theory of convergence and
complexity for the forward-backward is almost complete under such a Lipschitz assump-
tion. However, the Lipschitz condition fails in many natural circumstances; see, e.g. [9].
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It is quite interesting to question the convergence of the method without the Lipschitz
assumption aforementioned. So, we aim to modify Algorithm 1.2 for solving (1.1) with a
new linesearch. The main advantage is that our scheme do not require the information of
the Lipschitz constant of the gradient of functions which makes proposed algorithm more
practical for computing.

This paper is organized as follows: In section 2, we present some preliminary results
that will be used in the proof. In Section 3, we prove the weak convergence and the com-
plexity of the proposed algorithm. In Section 4, we provide some numerical experiments
to support our main theorem and also show its efficiency comparing with other methods.
In section 5, we complete the paper with the conclusion in this work.

2. Preliminaries

In this section, we recall some basic concepts and lemmas which will be used in our
proof. The strong (weak) convergence of a sequence (xk)k∈N to x is denoted by xk →
x (xk ⇀ x), respectively.

Definition 2.1. The subdifferential of h at x is defined by

∂h(x) = {v ∈ H : ⟨v, y − x⟩ ≤ h(y)− h(x), y ∈ H}.

Fact 2.2. [[1], Proposition 17.2] Let h : H → R∪{+∞} be a proper, lower-semicontinuous
and convex function. Then, for x ∈ domh and y ∈ H,

h′(x; y − x) + h(x) ≤ h(y).

Lemma 2.3. [4] The subdifferential operator ∂h is maximal monotone. Moreover, the
graph of ∂h, Gph(∂h) = {(x, v) ∈ H ×H : v ∈ ∂h(x)} is demiclosed, i.e., if the sequence
(xk, vk) ⊂ Gph(∂h) satisfies that (xk)k∈N converges weakly to x and (vk)k∈N converges
strongly to v, then (x, v) ∈ Gph(∂h).

Let us recall that the proximal operator proxg : H → domg is defined by proxg(z) =

(Id + ∂g)−1(z), z ∈ H. Here Id denotes the identity operator. It is well-known that the
proximal operator is single-valued with full domain. Furthermore, note that [3]

z − proxαg(z)

α
∈ ∂g(proxαg(z)) for all z ∈ H, α > 0. (2.1)

Definition 2.4. Let S be a nonempty subset of H. A sequence (xk)k∈N in H is said to
be quasi-Fejér convergent to S if and only if for all x ∈ S there exists a positive sequence

(ϵk)k∈N such that

∞∑
k=0

ϵk < +∞ and ∥xk+1 − x∥2 ≤ ∥xk − x∥2 + ϵk for all k ∈ N. When

(ϵk)k∈N is a null sequence, we say that (xk)k∈N is Fejér convergent to S.

Fact 2.5. [[20],Theorem 4.1] If (xk)k∈N is quasi-Fejér convergent to S, then one has:
(i) The sequence (xk)k∈N is bounded.
(ii) If all weak accumulation points of (xk)k∈N belong to S, then (xk)k∈N is weakly con-
vergent to a point in S.

Following [3], we assume that two below conditions hold:
(A1) f, g : H → R ∪ {+∞} are two proper, lower-semicontinuous and convex functions
with domg ⊆ domf .
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(A2) The function f is Fréchet differentiable on an open set containing domg. The
gradient ∇f is uniformly continuous on any bounded subset of domg and maps any
bounded subset of domg to a bounded set in H.

Remark 2.6. The second part of (A2) still holds when ∇f is Lipschitz continuous on
domg.

3. Main Results

In this section, we present our algorithm and prove its convergence and complexity.
Throughout this work, we denote by S∗ the solution set of (1.1) and assume that S∗ is
nonempty.

Algorithm 3.1. Let σ > 0, θ ∈ (0, 1) and δ ∈ (0, 1/4), take x0 ∈ domg and

yk = proxαkg
(xk − αk∇f(xk)), (3.1)

xk+1 = proxαkg
(yk − αk∇f(yk)), (3.2)

where αk = σθmk and mk is the smallest nonnegative integer such that

αk∥∇f(yk)−∇f(xk)∥ ≤ δ∥yk − xk∥ (3.3)

and

αk∥∇f(xk+1)−∇f(yk)∥ ≤ δ∥xk+1 − yk∥. (3.4)

Lemma 3.2. [[3], Lemma 3.1] The linesearch (3.3) and (3.4) stops after finitely many
steps.

Lemma 3.3. Let (xk) be defined by Algorithm 3.1. For all k ∈ N and x ∈ domg, we have
(i) ∥xk − x∥2 − ∥xk+1 − x∥2 ≥ 2αk[(f + g)(xk+1)− (f + g)(x) + (f + g)(yk)− (f + g)(x)]

+ (1− 2δ)∥xk − yk∥2 + (1− 2δ)∥xk+1 − yk∥2;
(ii) ((f + g)(xk))k∈N is decreasing.

Proof. First we will prove (i). From (2.1) and (3.1), we have

xk − yk

αk
−∇f(xk) =

xk − proxαkg
(xk − αk∇f(xk))

αk
−∇f(xk) ∈ ∂g(yk).

By the convexity of g, it follows that

g(x)− g(yk) ≥ ⟨x
k − yk

αk
−∇f(xk), x− yk⟩,∀x ∈ domg. (3.5)

From (2.1) and (3.2), we obtain

yk − xk+1

αk
−∇f(yk) =

yk − proxαkg
(yk − αk∇f(yk))

αk
−∇f(yk) ∈ ∂g(xk+1).

By the convexity of g, we also have

g(x)− g(xk+1) ≥ ⟨y
k − xk+1

αk
−∇f(yk), x− xk+1⟩,∀x ∈ domg. (3.6)

By Fact 2.2, we see that

f(x)− f(y) ≥ ⟨∇f(y), x− y⟩,∀x ∈ domf, y ∈ domg. (3.7)
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For any x ∈ domg ⊆ domf and y = xk in (3.7), we see that

f(x)− f(xk) ≥ ⟨∇f(xk), x− xk⟩. (3.8)

Taking y = yk in (3.7), we obtain

f(x)− f(yk) ≥ ⟨∇f(yk), x− yk⟩. (3.9)

Using (3.5), (3.6), (3.8) and (3.9), we have

g(x)− g(xk+1) + g(x)− g(yk) + f(x)− f(yk) + f(x)− f(xk)

≥ ⟨y
k − xk+1

αk
−∇f(yk), x− xk+1⟩+ ⟨x

k − yk

αk
−∇f(xk), x− yk⟩+ ⟨∇f(yk), x− yk⟩

+⟨∇f(xk), x− xk⟩

=
1

αk
⟨yk − xk+1, x− xk+1⟩+ ⟨∇f(yk), xk+1 − x⟩+ 1

αk
⟨xk − yk, x− yk⟩

+⟨∇f(xk), yk − x⟩+ ⟨∇f(yk), x− yk⟩+ ⟨∇f(xk), x− xk⟩

=
1

αk
⟨yk − xk+1, x− xk+1⟩+ 1

αk
⟨xk − yk, x− yk⟩+ ⟨∇f(yk), xk+1 − yk⟩

+⟨∇f(xk), yk − xk⟩

=
1

αk
⟨yk − xk+1, x− xk+1⟩+ 1

αk
⟨xk − yk, x− yk⟩+ ⟨∇f(yk)−∇f(xk+1), xk+1 − yk⟩

+⟨∇f(xk+1), xk+1 − yk⟩+ ⟨∇f(xk)−∇f(yk), yk − xk⟩+ ⟨∇f(yk), yk − xk⟩

≥ 1

αk
⟨yk − xk+1, x− xk+1⟩+ 1

αk
⟨xk − yk, x− yk⟩ − ∥∇f(yk)−∇f(xk+1)∥∥xk+1 − yk∥

+f(xk+1)− f(yk)− ∥∇f(xk)−∇f(yk)∥∥yk − xk∥+ f(yk)− f(xk), (3.10)

where the last inequality follows from Fact 2.2. This shows that
1

αk
[⟨yk − xk+1, xk+1 − x⟩+ ⟨xk − yk, yk − x⟩]

≥ (f+g)(xk+1)− (f+g)(x)+(f+g)(yk)− (f+g)(x)−∥∇f(yk)−∇f(xk+1)∥∥xk+1−yk∥
− ∥∇f(xk)−∇f(yk)∥∥yk − xk∥.

This shows that, by (3.3) and (3.4),

1

αk
[⟨yk − xk+1, xk+1 − x⟩+ ⟨xk − yk, yk − x⟩]

≥ (f + g)(xk+1)− (f + g)(x) + (f + g)(yk)− (f + g)(x)− δ

αk
∥yk − xk+1∥∥xk+1 − yk∥

− δ

αk
∥xk − yk∥∥yk − xk∥.

= (f + g)(xk+1)− (f + g)(x) + (f + g)(yk)− (f + g)(x)− δ

αk
∥yk − xk+1∥2

− δ

αk
∥xk − yk∥2. (3.11)

We know that

2⟨yk − xk+1, xk+1 − x⟩ = ∥yk − x∥2 − ∥yk − xk+1∥2 − ∥xk+1 − x∥2 (3.12)
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and

2⟨xk − yk, yk − x⟩ = ∥xk − x∥2 − ∥xk − yk∥2 − ∥yk − x∥2. (3.13)

Replacing (3.12) and (3.13) in (3.11), we have

∥xk − x∥2 − ∥xk+1 − x∥2 ≥ 2αk[(f + g)(xk+1)− (f + g)(x) + (f + g)(yk)− (f + g)(x)]

+(1− 2δ)∥xk − yk∥2 + (1− 2δ)∥xk+1 − yk∥2. (3.14)

This proves (i). Setting x = xk in (3.14), we have

−∥xk+1 − xk∥2 ≥ 2αk[(f + g)(xk+1)− (f + g)(x) + (f + g)(yk)− (f + g)(x)]

+(1− 2δ)∥xk − yk∥2 + (1− 2δ)∥xk+1 − yk∥2. (3.15)

Also setting x = yk in (3.14), we have

∥xk − yk∥2 − ∥xk+1 − yk∥2 (3.16)

≥ 2αk[(f + g)(xk+1)− (f + g)(x) + (f + g)(yk)− (f + g)(x)]

+(1− 2δ)∥xk − yk∥2 + (1− 2δ)∥xk+1 − yk∥2. (3.17)

Summing (3.15) and (3.16), it follows that

−∥xk+1 − xk∥2 − ∥xk − yk∥2 − ∥xk+1 − yk∥2

≥ 4αk[(f + g)(xk+1)− (f + g)(x) + (f + g)(yk)− (f + g)(x)]

+(2− 4δ)∥xk − yk∥2 + (2− 4δ)∥xk+1 − yk∥2. (3.18)

This shows that

(f+g)(xk+1)−(f+g)(xk) ≤ − 1

4αk
[(3−4δ)∥yk−xk+1∥2+(1−4δ)∥xk−yk∥2+∥xk+1−xk∥2].

Hence, ((f + g)(xk))k∈N is decreasing. We thus complete the proof of (ii).

Next, we prove weak convergence theorem of Algorithm 3.1.

Theorem 3.4. Let (xk)k∈N and (αk)k∈N be the sequences generated by Algorithm 3.1. If
there exists α > 0 such that αk ≥ α > 0 for all k ∈ N, then (xk)k∈N is weakly convergent
to a point in S∗. Moreover,

lim
k→∞

(f + g)(xk) = min
x∈H

(f + g)(x). (3.19)

Proof. Let x∗ ∈ S∗. Using Lemma 3.3(i), we see that

∥xk − x∗∥2 − ∥xk+1 − x∗∥2 (3.20)

≥ 2αk[(f + g)(xk+1)− (f + g)(x∗) + (f + g)(yk)− (f + g)(x∗)]

+(1− 2δ)∥yk − xk+1∥2 + (1− 2δ)∥xk − yk∥2

≥ (1− 2δ)∥yk − xk+1∥2 + (1− 2δ)∥xk − yk∥2

≥ 0. (3.21)
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Then the sequence (xk)k∈N is Féjer convergent to S∗. Hence, by Fact 2.5 (i), it is bounded.
From (3.20), we get

0 ≤ 2αk[(f + g)(xk+1)− (f + g)(x∗) + (f + g)(yk)− (f + g)(x∗)]

≤ ∥xk − x∗∥2 − ∥xk+1 − x∗∥2

= (∥xk − x∗∥ − ∥xk+1 − x∗∥)(∥xk − x∗∥+ ∥xk+1 − x∗∥)
≤ 2M(∥xk − x∗∥ − ∥xk+1 − x∗∥)
≤ 2M∥xk − xk+1∥, where M := sup

k∈N
{∥xk − x∗∥} < +∞. (3.22)

It follows that

2αk[(f + g)(xk+1)− (f + g)(x∗)] ≤ 2M∥xk − xk+1∥.

Hence

(f + g)(xk+1)− (f + g)(x∗) ≤
M∥xk − xk+1∥

αk
. (3.23)

Since (∥xk−x∗∥)k∈N is convergent, by (3.20), we have ∥yk−xk+1∥ → 0 and ∥yk−xk∥ → 0
as k → ∞. Thus ∥xk − xk+1∥ → 0 as k → ∞.

Since (xk)k∈N is bounded, the set of its weak accumulation points is nonempty. Take
any weak accumulation point x̄ of (xk)k∈N. So there is a subsequence (xnk)k∈N of (xk)k∈N
weakly converging to x̄. Moreover, xnk+1 also weakly converges to x̄. Since (xnk)k∈N is
bounded and ∥xnk+1 − ynk∥ → 0, we get from Assumption (A2) that

lim
k→∞

∥∇f(xnk+1)−∇f(ynk)∥ = 0. (3.24)

Since xnk+1 = proxαnk
g(y

nk − αnk
∇f(ynk)), it follows from (2.1) that

ynk − αnk
∇f(ynk)− xnk+1

αnk

∈ ∂g(xnk+1) (3.25)

which implies that

ynk − xnk+1

αnk

+∇f(xnk+1)−∇f(ynk) ∈ ∇f(xnk+1) + ∂g(xnk+1) ∈ ∂(f + g)(xnk+1).(3.26)

By passing k → ∞ in (3.26), we get from (3.24) and Fact 2.5 that 0 ∈ ∂(f + g)(x̄). Thus
x̄ ∈ S∗. Furthermore, since the sequence ((f + g)(xk))k∈N is decreasing due to Lemma
3.3(ii), (3.19) is a consequence of (3.23).

We next discuss the complexity of Algorithm 3.1.

Theorem 3.5. Let (xk)k∈N and (αk)k∈N be the sequences generated by Algorithm 3.1. If
there exists α > 0 such that αk ≥ α > 0 for all k ∈ N, then

(f + g)(xk)−min
x∈H

(f + g)(x) ≤ 1

2α

[dist(x0, S∗)]
2

k
.
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Proof. Let x∗ ∈ S∗. Then we have, by Lemma 3.3(i),

0 ≥ 2αl[(f + g)(x∗)− (f + g)(xl+1) + (f + g)(x∗)− (f + g)(yl)]

≥ ∥xl+1 − x∗∥2 − ∥xl − x∗∥2 + (1− 2δ)∥yl − xl+1∥2 + (1− 2δ)∥yl − xl∥2

≥ ∥xl+1 − x∗∥2 − ∥xl − x∗∥2 (3.27)

for any l ∈ N. Since αl ≥ α, we get from (3.27) that

0 ≥ (f + g)(x∗)− (f + g)(xl+1) ≥ 1

2α
(∥xl+1 − x∗∥2 − ∥xl − x∗∥2). (3.28)

Summing the above inequality over l = 0, 1, ..., k − 1 implies that

k(f + g)(x∗)−
k−1∑
l=0

(f + g)(xl+1) ≥ 1

2α
(∥xk − x∗∥2 − ∥x0 − x∗∥2). (3.29)

Since (f + g)(xl) is decreasing by Lemma 3.3(ii), it follows that

k[(f + g)(xk)− (f + g)(x∗)] ≤
1

2α
(∥x∗ − x0∥2 − ∥xk − x∗∥2) ≤

1

2α
∥x∗ − x0∥2. (3.30)

From (3.30), we obtain

(f + g)(xk)−min
x∈H

(f + g)(x) ≤ 1

2α
inf
y∈S∗

∥y − x0∥2

k
=

1

2α

[dist(x0, S∗)]
2

k
. (3.31)

This completes the proof.

4. Numerical Experiments

In this section, we give some numerical examples to the signal recovery in com-
pressed sensing. We provide a comparison among Algorithm 1.1, Algorithm 1.2 and
Algorithm 3.1. Compressed sensing can be modeled as the following underdeterminated
linear equation system:

y = Ax+ ϵ, (4.1)

where x ∈ RN is a vector with m nonzero components to be recovered, y ∈ RM is the
observed or measured data with noisy ϵ, and A : RN → RM (M < N) is a bounded linear
operator. It is known that to solve (4.1) can be seen as solving the LASSO problem:

min
x∈RN

1

2
∥y −Ax∥22 + λ∥x∥1, (4.2)

where λ > 0. So we can apply our method for solving (4.2) in case f(x) = 1
2∥y − Ax∥22

and g(x) = λ∥x∥1.
In our experiment, the sparse vector x ∈ RN is generated from uniform distribution in

the interval [-2,2] with m nonzero elements. The matrix A ∈ RM×N is generated from a
normal distribution with mean zero and one invariance. The observation y is generated
by white Gaussian noise with signal-to-noise ratio SNR=40. The initial point x0 is zeros.
The restoration accuracy is measured by the error as follows:

Ek = ∥xk+1 − xk∥2 < 10−7.

The step size αk in Algorithm (1.1) is 0.2
∥A∥2 and λk = 1 and σ = 0.02, θ = 0.3, and δ = 1

6

in both Algorithm (1.2) and Algorithm (3.1). We denote by CPU the time using in CPU
and Iter the number of iterations. The numerical results are reported as follows:
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Table 1: Computational results for solving the LASSO problem

m-sparse signal Method
N=512, M=256 N=1024, M=512

CPU Iter CPU Iter

m=20 Algorithm 1.1 0.1609 4260 0.5498 4447
Algorithm 1.2 0.0704 432 0.2283 352
Algorithm 3.1 0.0631 234 0.1789 203

m=30 Algorithm 1.1 0.1835 4569 0.6916 5450
Algorithm 1.2 0.0729 470 0.2692 418
Algorithm 3.1 0.0605 256 0.2386 235

m=40 Algorithm 1.1 0.2279 5883 1.0277 7888
Algorithm 1.2 0.0841 545 0.4062 587
Algorithm 3.1 0.0757 304 0.3474 313

m=50 Algorithm 1.1 0.3673 9899 1.1935 9480
Algorithm 1.2 0.1169 819 0.4463 679
Algorithm 3.1 0.0919 437 0.3806 365

m=60 Algorithm 1.1 0.4382 11079 1.4771 10232
Algorithm 1.2 0.1527 1045 0.4697 756
Algorithm 3.1 0.1127 547 0.3919 403

The data in Table 1 shows that, for a given tolerance, all algorithms can be used to
solve the LASSO problem in compressed sensing. To be more precise, Algorithm 3.1
with a linesearch take significantly less number of iterations and CPU time compared to
Algorithm 1.1 of [22]. and Algorithm 1.2 of [3].
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Original signal (N=512, M=256, 60 spikes)
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Figure 1. From top to bottom: original signal, observation data, re-
covered signal by Algorithm 1.1, Algorithm 1.2 and Algorithm 3.1 with
N = 512 and M = 256, respectively.
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Figure 2. The objective function value versus number of iterations in
case N=512, M=256.
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Original signal (N=1024, M=512, 50 spikes)
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Figure 3. From top to bottom: original signal, observation data, re-
covered signal by Algorithm 1.1, Algorithm 1.2 and Algorithm 3.1 with
N = 1024 and M = 512, respectively.
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Figure 4. The objective function value versus number of iterations in
case N=1024, M=512.
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5. Conclusion

In this work, we discuss the modified forward-backward splitting method involving
new linesearches for solving minimization problems of two convex functions. Our algo-
rithm need not compute the Lipschitz constant of the gradient of functions. Also, we show
in a simple and novel way how the sequence generated by the method weakly converges
to a solution of the minimization problem. We also discuss the complexity of our defined
algorithm. All the results are compared, in compressed sensing, with forward-backward
method of [11] in Algorithm 1.1 and forward-backward method with linesearches [3] in
Algorithm 1.2. One interesting and challenge topic is to design new linesearches that
reduce the number of iterations and the CPU time in computing.
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