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Abstract In this paper, we introduce the class of αs-non-expansive mappings which satisfy a generalized

contractive condition. We establish some fixed point theorems for a introduced mappings in a complete

partial b-metric space. Our results generalize some fixed point results existing in the current literature.

We give an example which explains the main result. As an application, we show the existence of the

solution of a boundary valued problem.
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1. Introduction

Let k be non-negative real number. Suppose that a self-mapping T on a metric space
(X, d) satisfies the inequality

d(T (x), T (y)) ≤ kd(x, y) for all x, y ∈ X.

If k < 1, then T is called a contractive mapping and for k = 1, T is known as non-
expansive mapping. There exists plenty of literature for contractive and non-expansive
type mappings, where the contractive and non-expansive conditions are replaced with
more general conditions (see for example [2–4, 6, 7, 11, 15, 21, 22]).
In 1989, Bakhtin [1] introduced the concept of b-metric space, however, Czerwik [5] initi-
ated study of fixed point of self-mappings in the b-metric space and proved an analogue of
Banach’s fixed point theorem. Since then, a large number of researchers have presented
remarkable fixed point results for various classes of single-valued and multi-valued opera-
tors in the b-metric spaces: see for example, Kir and Kiziltunc [13], Parvaneh et al. [18],
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Roshan et al. [23], Shatanawi et al. [24]. Khamsi and Hussain [12] obtained some results
on KKM mappings in cone b-metric spaces. Recently, Jovanović et al. [10], Hussain and
Huang [8, 9] have dealt with spaces of this kind, although under different names (in the
spaces called metric-type) and obtained (common) fixed point results.
Matthews [16] presents a symmetric generalized metric which he announced as partial
metric; an approach which sheds a new light on how metric tools such as Banach’s The-
orem can be extended to non-Hausdorff topologies.
Following Matthews and Czerwik, Shukla [25] introduced the concept of the partial b-
metric space which generalizes partial metric and established fixed point theorems for
Banach contraction, Kannan contraction and Chatterjea contraction defined on a com-
plete partial b-metric space. Recently, Mustafa et al.[17], Latif et al.[14] and Piri et al.[19]
have established some fixed point results in complete partial b-metric spaces.

In this paper, we investigate the fixed points of αs-non-expansive single-valued map-
pings defined on a partial b-metric space subject to a generalized contractive condition.
Our results generalize the results presented in [5, 16, 27]. An example and an application
are given to explain the main theorem.

2. preliminaries

We denote the set of natural numbers, rational numbers, (−∞,+∞), (0,+∞) and [0,+∞)
by N, Q, R, R+ and R+

0 , respectively.
Shukla generalized the notion of b-metric, as follows:

Definition 2.1. [25] Let X be a nonempty set and s ≥ 1 be a real number. A mapping
pb : X × X → R+

0 is said to be a partial b-metric if it satisfies following axioms, for all
x, y, z ∈ X

(pb1) x = y if and only if pb(x, y) = pb(x, x) = pb(y, y);
(pb2) pb(x, x) ≤ pb(x, y);
(pb3) pb(x, y) = pb(y, x);
(pb4) pb(x, y) ≤ s [pb(x, z) + pb(z, y)]− pb(z, z).

The triplet (X, pb, s) is called a partial b-metric space.

Remark 2.2. The self distance pb(x, x), referred to the size or weight of x, is a feature
used to describe the amount of information contained in x.

Remark 2.3. Obviously, every partial metric space is a partial b-metric space with
coefficient s = 1 and every b-metric space is a partial b-metric space with zero self-
distance. However, the converse of this fact need not to hold.

Example 2.4. Let X = R+ and k > 1, the mapping pb : X ×X → R+ defined by

pb(x, y) =
{
(x ∨ y)k + |x− y|k

}
for all x, y ∈ X

is a partial b-metric on X with s = 2k. For x = y, pb(x, x) = xk ̸= 0, so, pb is not a
b-metric on X.
Let x, y, z ∈ X such that x > z > y. Then following inequality always holds

(x− y)k > (x− z)k + (z − y)k.



40 Thai J. Math. Vol. 18, No. 1 (2020) / Sukprasert et al.

Since, pb(x, y) = xk +(x− y)k and pb(x, z)+ pb(z, y)− pb(z, z) = xk +(x− z)k +(z− y)k,
therefore,

pb(x, y) > pb(x, z) + pb(z, y)− pb(z, z).

This shows that pb is not a partial metric on X.

Example 2.5. [25] Let X be a nonempty set and p be a partial metric defined on X.
The mapping pb : X ×X → R+ dened by

pb(x, y) = [p(x, y)]q for all x, y ∈ X and q > 1

defines a partial b-metric.

Definition 2.6. Let (X, pb, s) be a partial b-metric space. The mapping dpb
: X ×X →

R+
0 defined by

dpb
(x, y) = 2pb(x, y)− pb(x, x)− pb(y, y) for all x, y ∈ X

defines a metric on X, called induced metric.

In partial b-metric space (X, pb, s), we immediately have a natural definition for the open
balls:

Bpb
(x; ϵ) = {y ∈ X|pb(x, y) < pb(x, x) + ϵ} for all x ∈ X. (2.1)

Remark 2.7. The open balls in a partial b-metric space (X, pb, s) may not be open set.

Proof. Let X = {a, b, c} and define pb as follows: pb(a, a) = pb(c, c) = 1, pb(b, b) = 1/2,
pb(a, b) = pb(b, a) = 3, pb(a, c) = p(c, a) = 3/2, pb(b, c) = pb(c, b) = 1. Then p is a partial
b-metric, c ∈ Bpb

(a; 1) but for any r > 0, Bpb
(c; r) does not lie in Bpb

(a; 1). This implies
that Bpb

(a; 1) is not an open set in (X, pb, s).

The following definition and Lemma are taken from Shukla in [25].

Definition 2.8. [25] Let (X, pb, s) be a partial b-metric space.

(1) A sequence {xn}n∈N in (X, pb, s) is called a Cauchy sequence if
limn,m→∞ pb(xn, xm) exists and is finite.

(2) A partial b-metric space (X, pb, s) is said to be complete if every Cauchy se-
quence {xn}n∈N in X converges, with respect to T [pb], to a point υ ∈ X such
that

pb(x, x) = lim
n,m→∞

pb(xn, xm).

Lemma 2.9. [25] Let (X, pb, s) be a partial b-metric space. Then

(1) every Cauchy sequence in (X, dpb
) is also a Cauchy sequence in (X, pb, s) and

vice versa;
(2) a partial b-metric (X, pb, s) is complete if and only if the metric space (X, dpb

)
is complete;

(3) a sequence {xn}n∈N in X converges to a point υ ∈ X with respect to T [(dpb
)]

if and only if

lim
n→∞

pb(υ, xn) = pb(υ, υ) = lim
n→∞

pb(xn, xm);

(4) if limn→∞ xn = υ such that pb(υ, υ) = 0, then limn→∞ pb(xn, k) = pb(υ, k) for
every k ∈ X.
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Remark 2.10. Unlike metric space, in a partial b-metric space the limit of a convergent
sequence may not be unique. Indeed, if X = R+ and let σ > 0 be any constant. Define
pb : X×X → R+ by pb(x, y) = x∨y+σ for all x, y ∈ X, then (X, pb, s) is a partial b-metric
space with arbitrary coefficient s ≥ 1. Define the sequence {xn} in X by xn = ρ for all
n ∈ N. We note that if y ≥ ρ then pb(xn, y) = y + σ = pb(y, y), thus limn→∞ pb(xn, y) =
pb(y, y) for all y ≥ ρ. Hence, the limit of a convergent sequence is not unique.

Recently, Popescu [20] introduced the concept of α-orbital admissible mappings.

Definition 2.11. [20] Let X ̸= ϕ and let T : X → X; α : X ×X → R+
0 be mappings.

We say the mapping T is α-orbital admissible if for all x ∈ X, we have

α(x, T (x)) ≥ 1 implies α(T (x), T 2(x)) ≥ 1.

3. The Fixed Point Results

Definition 3.1. Let X ̸= ϕ and let T : X → X; α : X ×X → R+
0 be mappings. We say

the mapping T is αs-orbital admissible if for all x ∈ X, we have

αs(x, T (x)) ≥ s2 implies αs(T (x), T
2(x)) ≥ s2.

Definition 3.2. Let (X, pb, s) be a partial b-metric space. We say the mapping T : X →
X is a non-expansive mapping if

pb(T (x), T (y)) ≤ pb(x, y) for all x, y ∈ X.

Definition 3.3. Let (X, pb, s) be a partial b-metric space. Let T : X → X; αs : X×X →
R+

0 be mappings. We say the mapping T is αs-non-expansive mapping if for all x, y ∈ X,
we have

αs(x, y) ≥ s2 implies pb(T (x), T (y)) ≤ pb(x, y).

The following example illustrates the concept of αs-non-expansive mapping.

Example 3.4. Let X = R be endowed with a partial b-metric

pb(x, y) =
{
(x ∨ y)2 + |x− y|2

}
for all x, y ∈ X.

Define mapping T : X ×X by

T (x) =
x2 + x

2
for all x ∈ X.

Define α4 : X ×X → R+
0 by

α4(x, y) =

{
16, if x ∈ [0, 1]
0, otherwise

Let x, y ∈ X be such that α4(x, y) = 16, then x, y ∈ [0, 1]. In this case, we note that(
x2 + x

2
∨ y2 + y

2

)2

≤ (x ∨ y)2 and

∣∣∣∣x2 + x

2
− y2 + y

2

∣∣∣∣2 ≤ |x− y|2.

Thus,

pb(T (x), T (y)) =
{
(T (x) ∨ T (y))2 + |T (x)− T (y)|2

}
≤ pb(x, y).
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Hence, T is an αs-non-expansive mapping. Observe that T is not a non-expansive map-
ping. In fact, for x = 1, y = 2 we have

pb(T (1), T (2)) = 13 > Pb(1, 2) = 5.

Lemma 3.5. Let (X, pb, s) be a partial b-metric space and T : X → X be a non-expansive
mapping. If there exists x0 ∈ X and {xn} be the Picard iterative sequence with initial
point x0. Then the sequence{

pb(xn−1, xn) + pb(xn, xn+1)

pb(xn−1, xn) + pb(xn, xn+1) + 1

}
n∈N

is non-increasing.

Proof. Since, the mapping T is non-expansive, so, pb(xn−1, xn) ≥ pb(xn, xn+1). We note
that

pb(xn−1, xn) + pb(xn, xn+1)

pb(xn−1, xn) + pb(xn, xn+1) + 1
≥ pb(xn, xn+1) + pb(xn+1, xn+2)

pb(xn, xn+1) + pb(xn+1, xn+2) + 1

if and only if

pb(xn−1, xn) ≥ pb(xn+1, xn+2),

this completes the proof.

Definition 3.6. Let (X, pb, s) be a partial b-metric space. The space (X, pb, s) is said to
be αs-regular if for any sequence {xn} ⊂ X such that αs(xn, xn+1) ≥ s2 for all n ∈ N
and xn → x as n→ ∞, we have αs(xn, x) ≥ s2 for all n ∈ N.

The following is our main result.

Theorem 3.7. Let (X, pb, s) be a complete partial b-metric space and let T : X → X
be an αs-non-expansive and an αs-orbital admissible mapping satisfying the following
contractive condition:

pb(T (x), T (y)) ≤
(

pb(x, T (y)) + pb(y, T (x))

s(pb(x, T (x)) + pb(y, T (y)) + 1)
+ k

)
M(x, y), (3.1)

for all x, y ∈ X such that αs(x, y) ≥ s2 and k ∈ [0, 1), where

M (x, y) = max

{
pb (x, y) , pb (x, Tx) , pb (y, Ty) ,

pb (x, Ty) + pb (y, Tx)

2s

}
.

Assume that

(a) there exists x0 ∈ X such that αs(x0, T (x0)) ≥ s2 and

pb(x0, T (x0)) + pb(T (x0), T
2(x0))

1 + pb(x0, T (x0)) + pb(T (x0), T 2(x0))
+ k <

1

s
; (3.2)

(b) X is αs-regular,

then T has at least one fixed point in X.

Proof. By assumption (a) there exists x0 ∈ X such that αs(x0, T (x0)) ≥ s2 and (3.2)
holds. Define a sequence {xn} by xn = T (xn−1) = Tn(x0) for all n ≥ 1. Since, T is an
αs-orbital admissible mapping. Thus, αs(T (x0), T

2(x0)) ≥ s2. By repeated application
of αs-orbital admissibility of mapping T , we have for all n ≥ 0

αs(xn, xn+1) = αs(T
n(x0), T

n+1(x0)) ≥ s2.
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Since αs(xn, xn+1) ≥ s2 for all n ≥ 0, thus,

pb (xn, xn+1) ≤ pb (xn−1, xn) , for all n ∈ N.

We note that,

M (xn−1, xn) = max


pb (xn−1, xn) , pb (xn−1, xn) , pb (xn, xn+1) ,

pb (xn−1, xn+1) + pb (xn, xn)

2s


= max {pb (xn−1, xn) , pb (xn, xn+1)} .

If M (xn−1, xn) = pb (xn, xn+1), then by substituting x = xn−1 and y = xn in (3.1), we
get a contradiction. Thus,

pb(xn, xn+1) ≤
(

pb(xn−1, xn+1) + pb(xn, xn)

s(pb(xn−1, xn) + pb(xn, xn+1) + 1)
+ k

)
pb(xn−1, xn)

≤
(

pb(xn−1, xn) + pb(xn, xn+1)

1 + pb(xn−1, xn) + pb(xn, xn+1)
+ k

)
pb(xn−1, xn). (3.3)

By Lemma 3.5, we know that the sequence{
pb(xn−1, xn) + pb(xn, xn+1)

pb(xn−1, xn) + pb(xn, xn+1) + 1

}
n∈N

is non-increasing. Consequently,

pb(xn−1, xn) + pb(xn, xn+1)

pb(xn−1, xn) + pb(xn, xn+1) + 1
≤ pb(x0, x1) + pb(x1, x2)

pb(x0, x1) + pb(x1, x2) + 1
.

Let δ =
pb(x0, x1) + pb(x1, x2)

pb(x0, x1) + pb(x1, x2) + 1
+ k. By (3.3), we obtain

pb(xn, xn+1) ≤ δnpb(x0, x1), for all n ∈ N. (3.4)

By triangle inequality, for m > n, we have

pb(xn, xm) ≤ s[pb(xn, xn+1) + pb(xn+1, xm)]− pb(xn+1, xn+1)

≤ spb(xn, xn+1) + s2[pb(xn+1, xn+2) + pb(xn+2, xm)]

− spb(xn+2, xn+2)

≤ spb(xn, xn+1) + s2pb(xn+1, xn+2)

+ s3[pb(xn+2, xn+3) + pb(xn+3, xm)]− s2pb(xn+3, xn+3)

≤ spb(xn, xn+1) + s2pb(xn+1, xn+2) + s3pb(xn+2, xn+3)

+ · · ·+ sm−npb(xm−1, xm).

By inequality (3.4), we obtain

pb(xn, xm) ≤ sδnpb(x0, x1) + s2δn+1pb(x0, x1) + s3δn+3pb(x0, x1)

+ · · ·+ sm−nδm−1pb(x0, x1)

≤ sδn
(
1 + sδ + (sδ)2 + · · ·+ (sδ)m−n−1

)
pb(x0, x1)

≤ sδn

1− sδ
pb(x0, x1).
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Since, δ ∈ [0, 1s ) and s > 1, thus

lim
n,m→∞

pb(xn, xm) = 0. (3.5)

Hence, {xn} is a Cauchy sequence in (X, pb, s). Since (X, pb, s) is a complete par-
tial b-metric space, therefore, by Lemma 2.9(3), there exists x∗ ∈ X (say) such that
lim
n→∞

dpb
(xn, x

∗) = 0 if and only if

lim
n→∞

pb(x
∗, xn) = pb(x

∗, x∗) = lim
n,m→∞

pb(xn, xm). (3.6)

By (3.5) and (3.6), we have

lim
n→∞

pb(x
∗, xn) = pb(x

∗, x∗) = 0 ⇒ xn
pb−→ x∗.

Since, αs(xn, xn+1) ≥ s2 and xn
pb−→ x∗, by assumption (b), we have αs(xn, x

∗) ≥ s2. By
contractive condition (3.1), we have

pb(xn+1, T (x
∗)) ≤

(
pb(xn, T (x

∗)) + pb(x
∗, xn+1)

s(pb(xn, xn+1) + pb(x∗, T (x∗) + 1))
+ k

)
M(xn, x

∗).

Taking limit as n→ ∞, we have

pb(x
∗, T (x∗)) ≤

(
pb(x

∗, T (x∗))

s(pb(x∗, T (x∗)) + 1)
+ k

)
pb(x

∗, T (x∗)).

Hence, by axioms (pb1) and (pb2), we get x
∗ = T (x∗) which shows that x∗ is a fixed point

of T .

Remark 3.8. Let T satisfies the conditions assumed in the statement of Theorem 3.7.
If x∗ and y∗ are two distinct fixed points of T satisfying αs(x

∗, y∗) ≥ s2, then

pb(x
∗, y∗) ≥ s(1− k)

2
.

Proof. We have proved that set of fixed points of T is nonempty. Let x∗ and y∗ be two
distinct fixed points of T . By contractive condition (3.1), we have

pb(T (x
∗), T (y∗)) ≤

(
pb(x

∗, T (y∗)) + pb(y
∗, T (x∗))

s(pb(x∗, T (x∗)) + pb(y∗, T (y∗)) + 1)
+ k

)
M(x∗, y∗).

As M(x∗, y∗) = pb(x
∗, y∗), thus,

pb(x
∗, y∗) ≤

(
pb(x

∗, y∗) + pb(y
∗, x∗)

s(pb(x∗, x∗) + pb(y∗, y∗) + 1)
+ k

)
pb(x

∗, y∗)

implies that

s(1− k)

2
≤ pb(x

∗, y∗).

The following example illustrates Theorem 3.7.

Example 3.9. Let X = {1, 2, 3, 4} be endowed with the mapping pb : X × X → R+
0

defined by

pb(x, y) =


|x− y|2 + (x ∨ y)2, if x ̸= y,

x, if x = y ̸= 1 ,

0, if x = y = 1 .
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Then, it is easy to verify that (X, pb, 4) is a complete partial b-metric space. Moreover,
we note that

pb(1, 1) = 0, pb(2, 2) = 2, pb(3, 3) = 3, pb(4, 4) = 4,

pb(1, 2) = pb(2, 1) = 5, pb(3, 1) = pb(1, 3) = 13, pb(1, 4) = pb(4, 1) = 25,

pb(2, 3) = pb(3, 2) = 10, pb(2, 4) = pb(4, 2) = 20, pb(3, 4) = pb(4, 3) = 17.

Define the mapping T : X → X by

T (1) = 1, T (2) = 1, T (3) = 2, T (4) = 2.

Following table shows that T satisfies the contractive condition (3.1) for
1

6
≤ k < 1.

x ̸= y pb(T (x), T (y))

(
pb(x, T (y)) + pb(y, T (x))

s(1 + pb(x, T (x)) + pb(y, T (y)))
+ k

)
M(x, y)

(1, 2) 0 5k + 25/24
(1, 3) 5 13k + 117/22
(1, 4) 5 25k + 125/14
(2, 3) 5 13k + 195/64
(2, 4) 5 20k + 540/104
(3, 4) 2 20k + 300/62

x = y ̸= 1 pb(T (x), T (y))

(
pb(x, T (y)) + pb(y, T (x))

s(1 + pb(x, T (x)) + pb(y, T (y)))
+ k

)
M(x, y)

(2, 2) 0 5k + 25/11
(3, 3) 2 10k + 50/21
(4, 4) 2 20k + 200/41

Similarly (3.1) holds for x = y = 1. Now define

αs(x, y) =


18, if x ̸= y,

17, if x = y ̸= 1 ,

16, if x = y = 1 .

There exists x0 = 1 such that αs(x0, T (x0)) = 16. Clearly, T is both α4-non-expansive and
α4-orbital admissible mapping and satisfies conditions (a) and (b). Hence, the conditions
of Theorem 3.7 are satisfied. Note that x = 1 is a fixed point of T with pb(1, 1) = 0.
Since pb(2, 2) = 2 ̸= 0, it follows that pb is not a b-metric. Also pb is not a partial metric.
Indeed, pb(4, 1) = 25 > 23 = pb(4, 2) + pb(2, 1)− pb(2, 2). It is remarked that the results
in [5], [16] and [27] are not applicable while Theorem 3.7 is applicable.

Definition 3.10. Let (X, pb) be an ordered partial b-metric space and ≺1 be a binary
relation on X. We say the mapping T : X → X is an order preserving if for each x ∈ X
such that x ≺1 T (x), we have T (x) ≺1 T

2(x).

We state the following.
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Corollary 3.11. Let (X, pb, s,≺1) be an ordered complete partial b-metric space and
T : X → X be a non-expansive and order preserving mapping satisfying the following
condition:

pb(T (x), T (y)) ≤
(

pb(x, T (y)) + pb(y, T (x))

s(pb(x, T (x)) + pb(y, T (y)) + 1)
+ k

)
M(x, y),

for all x, y ∈ X such that x ≺1 y and k ∈ [0, 1), where

M (x, y) = max

{
pb (x, y) , pb (x, Tx) , pb (y, Ty) ,

pb (x, Ty) + pb (y, Tx)

2s

}
.

Assume that

(a) there exists x0 ∈ X such that x0 ≺1 T (x0) and

pb(x0, T (x0)) + pb(T (x0), T
2(x0))

1 + pb(x0, T (x0)) + pb(T (x0), T 2(x0))
+ k <

1

s
;

(b) (X, pb, s,≺1) is regular.

Then

(i) T has at least one fixed point;
(ii) the Picard iterative sequence converges to a fixed point of T .
(iii) If x∗ and y∗ are two distinct fixed points of T such that x∗ ≺1 y

∗, then

pb(x
∗, y∗) ≥ s(1− k)

2
.

Proof. It suffices to consider

αs(x, y) =

{
s2, if x ≺1 y,

0, otherwise

in Theorem 3.7.

Now we state our second main result.

Theorem 3.12. Let (X, pb, s) be a complete partial b-metric space and T : X → X
be an αs-non-expansive and an αs-orbital admissible mapping satisfying the following
contractive condition:

pb(T (x), T (y)) ≤
(

pb(x, T (y)) + pb(y, T (x))

s(pb(x, T (x)) + pb(y, T (y)) + 1)
+ k

)
M1(x, y), (3.7)

for all x, y ∈ X such that αs(x, y) ≥ s2 and k ∈ [0, 1), where

M1 (x, y) = pb (x, y) + |pb (x, Tx)− pb (y, Ty) |,
Assume that

(a) there exists x0 ∈ X such that αs(x0, T (x0)) ≥ s2 and

pb(x0, T (x0)) + pb(T (x0), T
2(x0))

1 + pb(x0, T (x0)) + pb(T (x0), T 2(x0))
+ k <

1

s
;

(b) X is αs-regular.

Then

(i) T has at least one fixed point;
(ii) the Picard iterative sequence converges to a fixed point of T .
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(iii) If x∗ and y∗ are two distinct fixed points of T such that αs(x
∗, y∗) ≥ s2, then

pb(x
∗, y∗) ≥ s(1− k)

2
.

Proof. Proceeding as in the proof of Theorem 3.7, we have

αs(xn, xn+1) = αs(T
n(x0), T

n+1(x0)) ≥ s2, for all n ∈ N.

Since αs(xn, xn+1) ≥ s2 for all n ≥ 0 and the mapping T is an αs-non-expansive, we get

pb (xn, xn+1) ≤ pb (xn−1, xn) , for all n ∈ N. (3.8)

By contractive condition (3.7), we have

pb(xn, xn+1) ≤
(

pb(xn−1, xn+1) + pb(xn, xn)

s(pb(xn−1, xn) + pb(xn, xn+1) + 1)
+ k

)
M1(xn−1, xn). (3.9)

By (3.8), we have

M1 (xn−1, xn) = pb (xn−1, xn) + |pb (xn−1, xn)− pb (xn, xn+1) |
= 2pb (xn−1, xn)− pb (xn, xn+1) .

By Lemma 3.5, we know that the sequence{
pb(xn−1, xn) + pb(xn, xn+1)

pb(xn−1, xn) + pb(xn, xn+1) + 1

}
n∈N

is non-increasing. Consequently,

pb(xn−1, xn) + pb(xn, xn+1)

pb(xn−1, xn) + pb(xn, xn+1) + 1
≤ pb(x0, x1) + pb(x1, x2)

pb(x0, x1) + pb(x1, x2) + 1
.

Let δ =
pb(x0, x1) + pb(x1, x2)

pb(x0, x1) + pb(x1, x2) + 1
+ k. By (3.9), we obtain

pb(xn, xn+1) ≤
(

pb(xn−1, xn+1) + pb(xn, xn)

s(1 + pb(xn−1, xn) + pb(xn, xn+1))
+ k

)
M1 (xn−1, xn)

≤
(

pb(x0, x1) + pb(x1, x2)

1 + pb(x0, x1) + pb(x1, x2)
+ k

)
M1 (xn−1, xn)

= δM1 (xn−1, xn) = δ(2pb (xn−1, xn)− pb (xn, xn+1)),

(1 + δ)pb(xn, xn+1) ≤ 2δpb (xn−1, xn) ,

pb(xn, xn+1) ≤
2δ

(1 + δ)
pb (xn−1, xn) .

By induction we obtain

pb(xn, xn+1) ≤ λnpb(x0, x1), for all n ∈ N where λ =
2δ

(1 + δ)
<

2

1 + s
< 1.

The remaining part of this proof can easily be followed by the proof of Theorem 3.7.

Corollary 3.13. Let (X, pb, s) be a complete partial b-metric space and T : X → X be
an αs-non-expansive mapping satisfying the following condition:

pb(T (x), T (y)) ≤
(

pb(x, T (y)) + pb(y, T (x))

s(1 + pb(x, T (x)) + pb(y, T (y)))
+ k

)
M2(x, y),
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for all x, y ∈ X αs(x, y) ≥ s2 and k ∈ [0, 1), where

M2 (x, y) = max {M(x, y),M1(x, y)} .

Assume that the conditions (a) and (b) assumed in the statement of Theorem 3.7 hold.
Then

(i) T has at least one fixed point;
(ii) the Picard iterative sequence converges to a fixed point of T .
(iii) If x∗ and y∗ are two distinct fixed points of T such that αs(x

∗, y∗) ≥ s2, then

pb(x
∗, y∗) ≥ s(1− k)

2
.

Corollary 3.14. Let (X, pb, s) be a complete partial b-metric space and T : X → X be
an αs-non-expansive mapping satisfying the following condition:

pb(T (x), T (y)) ≤
(

pb(x, T (y)) + pb(y, T (x))

s(1 + pb(x, T (x)) + pb(y, T (y)))
+ k

)
M3(x, y),

where

M3 (x, y) =
1

2
{M(x, y) +M1(x, y)} .

Assume that the conditions (a) and (b) assumed in the statement of Theorem 3.7 hold.
Then

(i) T has at least one fixed point;
(ii) the Picard iterative sequence converges to a fixed point of T .
(iii) If x∗ and y∗ are two distinct fixed points of T such that αs(x

∗, y∗) ≥ s2, then

pb(x
∗, y∗) ≥ s(1− k)

2
.

Theorem 3.15. Let (X, pb, s) be a complete partial b-metric space and T : X → X be a
non-expansive mapping satisfying the following conditions:

pb(T (x), T (y)) ≤
(

pb(x, T (y)) + pb(y, T (x))

s(pb(x, T (x)) + pb(y, T (y)) + 1)
+ k

)
M(x, y),

for all x, y ∈ X, where

M (x, y) = max

{
pb (x, y) , pb (x, Tx) , pb (y, Ty) ,

pb (x, Ty) + pb (y, Tx)

2s

}
.

Assume that

pb(x0, T (x0)) + pb(T (x0), T
2(x0))

1 + pb(x0, T (x0)) + pb(T (x0), T 2(x0))
+ k <

1

s
.

Then

(i) T has at least one fixed point;
(ii) the Picard iterative sequence converges to a fixed point of T .
(iii) If x∗ and y∗ are two distinct fixed points of T , then

pb(x
∗, y∗) ≥ s(1− k)

2
.

Proof. The proof follows as the same lines in the proof of Theorem 3.7.
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Remark 3.16. If we replace M(x, y) with M1(x, y) in the Theorem 3.15, Corollary 3.11
stated above, we get new results. For s = 1, we get all the stated results in partial metric
spaces (new results). For pb(x, x) = 0 for all x ∈ X, we get all the stated results in
b-metric spaces (new results). For s = 1 with pb(x, x) = 0 for all x ∈ X, we get all the
stated results in metric spaces.

4. Application

In this section, we present an application of Theorem 3.15 to show the existence of the
solution of the boundary valued problem given by −d

2x

dt2
= f (t, x (t)) , t ∈ [0, 1]

x(0) = x (1) = 0,
(4.1)

where f : [0, 1]×R −→ R is a continuous mapping. The Green function associated to the
boundary valued problem (4.1) is defined by

G (t, τ) =

{
t (1− τ) , 0 ≤ t ≤ τ ≤ 1
τ (1− t) , 0 ≤ τ ≤ t ≤ 1.

Let C[0, 1] be the space of all continuous mappings defined on [0, 1]. Let X = (C[0, 1],R).
Define the mapping pb : X ×X → R+

0 by

pb(x, y) =
∥∥∥(x− y)

2
∥∥∥
∞

+ η = sup
t∈[0,1]

|x(t)− y(t)|2 + η; η > 0

It is known that (X, pb, s) is a complete partial b-metric space with constant s = 2. Define
the mapping T : X → X by

Tx(t) =

∫ 1

0

G(t, τ)f(τ, x(τ)) dτ,

for all t ∈ [0, 1]. Note that problem (4.1) has a solution if and only if the operator T has
a fixed point.

Theorem 4.1. Let X=C([0, 1],R). Define the mappings T : X → X by

Tx(t) =

∫ 1

0

G(t, τ)f(τ, x(τ)) dτ, (4.2)

where f : [0, 1] × X → R is a continuous mapping. Assume that T satisfies following
conditions:

(a) there exists x0 = x0(t) ∈ X such that

pb(x0, T (x0)) + pb(T (x0), T
2(x0))

1 + pb(x0, T (x0)) + pb(T (x0), T 2(x0))
+ k <

1

s
;

(b) the mapping f : [0, 1]×X → R satisfies

|f(t, x)− f(t, y)|2 ≤ 64 ln

(
ekpb(x,y)

ρ

)
,

for all t ∈ [0, 1], x, y ∈ X and ρ > 1.

Then boundary valued problem (4.1) has a solution.
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Proof. It is remarked that x∗(t) ∈
(
C2[0, 1],R

)
(say) is a solution of (4.1) if and only if

x∗(t) ∈ X is a solution of the integral equation (4.2). The solution of (4.2) is given by
the fixed point of T i.e x∗(t) = T (x∗(t)).
Let x, y ∈ X and t ∈ [0, 1], by assumption (b), we get

|Tx(t)− Ty(t)|2 =

[∣∣∣∣∫ 1

0

G(t, τ) [f(τ, x(τ))− f(τ, y(τ))] dτ

∣∣∣∣]2
≤
[∫ 1

0

G(t, τ) |f(τ, x(τ))− f(τ, y(τ))| dτ
]2

≤

8∫ 1

0

G(t, τ)

√
ln

(
ekpb(x,y)

ρ

)
dτ

2

≤

8∫ 1

0

G(t, τ)

√
ln

(
ekpb(x,y)

ρ

)
dτ

2

= 82 ln

(
ekpb(x,y)

ρ

)(
sup

t∈[0,1]

[∫ 1

0

G(t, τ)dτ

]2)
.

Since
∫ 1

0
G(t, τ)dτ = − t2

2 + t
2 for all t ∈ [0, 1], then we have

(
sup

t∈[0,1]

[∫ 1

0
G(t, τ)dτ

]2)
= 1

82 ,

which implies that

|Tx(t)− Ty(t)|2 + η ≤ kpb(x, y), where η = ln(ρ)

≤
(

pb(x, T (y)) + pb(y, T (x))

s(pb(x, T (x)) + pb(y, T (y)) + 1)
+ k

)
M(x, y).

We note that

pb(Tx(t), T y(t)) ≤ pb(x(t), y(t))

which shows that T is non-expansive. Let M(x, y) be defined as in Theorem 3.15. Then
it can easily be proved that

M(x, y) = sup
t∈[0,1]

M(x(t), y(t)).

Thus,

pb(T (x), T (y)) ≤
(

pb(x, T (y)) + pb(y, T (x))

s(pb(x, T (x)) + pb(y, T (y)) + 1)
+ k

)
M(x, y)

holds true for all x, y ∈ X and t ∈ [0, 1]. Hence, application of Theorem 3.15 ensures that
T has at least one fixed point x∗(t) ∈ X, that is, T (x∗(t) = x∗(t) which is a solution of
(4.2).
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[3] Lj. B. Ćıŕıc, On some non-expansive type mappings and fixed points, Indian J. Pure
Appl. Math. 24(1993) 145–149.
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