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1. Introduction

Fixed point theory is an active area of research due to its applications in multiple fields.
It addresses the results which state that, under certain conditions, a self map on a set
admits a fixed point. Banach contraction principle [6] is one of the most important theo-
rem due to its simplicity and ease of application in major areas of mathematics. In 2008,
Jachymski [16] generalized the Banach contraction principle in a complete metric space
endowed with a directed graph. Many authors have investigated fixed point theorems for
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nonexpansive mappings on both Hilbert spaces and Banach spaces. The initial existence
theorems for nonexpansive mapping have been obtained by Browder [8], Göhde [12] and
Kirk [17] independently.
Construction of approximating fixed points of nonexpansive mappings is an important
subject in the theory of nonexpansive mappings and its applications in a number of ap-
plied areas. Thus three iteration methods often prevail to approximate a fixed point of
a nonexpansive mapping are Halpern [14], Mann [20] and Ishikawa [15] iteration process.
Some of well known iterative process are Agarwal [2], Noor [21], Abbas [1], SP[22], CR[9],
Picard-S[13] iteration process.
In 2012, Aleomraninejad et al. [5] presented some iterative scheme for G-contraction and
G-nonexpansive mappings in a Banach space with a graph. Tiammee et al. [31] proved
Browder’s convergence theorem for G-nonexpansive mappings in a Hilbert space with a
directed graph. In 2016, Tripak [32] prove the weak and strong convergence of a sequence
generated by the Ishikawa iteration to some common fixed points of two G-nonexpansive
mappings defined on a Banach space endowed with a graph. In 2017, Suparatulatorn et al.
[28] introduced and studied the modified S-iteration for two G-nonexpansive mappings
in a uniformly convex Banach space endowed with a graph. Recently, Thianwan and
Yambangwai [30], introduced a new two-step iteration process for two G-nonexpansive
mappings and studied the strong and weak convergence theorems for such mappings in a
uniformly convex Banach space endowed with a graph.
They use a uniformly convex Banach space as a base space and prove strong and weak
convergence theorems. On the other hand, we know that every Banach space is a CAT(0)
space. Motivated by the recent works, we introduce modified Picard-S iteration process
including two G-nonexpansive mappings, where the sequence {xn} is generated iteratively
as follows:
Let C be a nonempty convex subset of a CAT(0) space X, for any arbitrary x0 ∈ C,

zn = (1− βn)xn ⊕ βnS2xn,

yn = (1− αn)S1xn ⊕ αnS2zn,

xn+1 = S1yn. (1.1)

where {αn} and {βn} are appropriate real sequences in (0, 1).
The purpose of this paper is to approximate common fixed points of twoG-nonexpansive

mappings for modified Picard-S iteration and to study the convergence analysis of such
mappings in CAT(0) space endowed with a graph. We also perform the numerical experi-
ments for supporting our main results and comparing rate of convergence of the proposed
method (1.1) with the Ishikawa iteration process [32], the modified S-iteration process
[28], Thianwan’s new iteration process [30].

2. Preliminaries

In this section, we collect some well-known concepts and relevant results which will
be used frequently in our subsequent results.
A metric space (X, d) is a CAT(0) space if it is geodesically connected and every geodesic
triangle in X is at least as thin as its comparison triangle in the Euclidean plane. Let X
be complete CAT(0) space and {xn} be a bounded sequence in X. For x ∈ X set:

r(x, {xn}) = lim sup
n→∞

d(x, xn).
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The asymptotic radius r({xn}) is given by

r({xn}) = inf{r(x, xn) : x ∈ X},
and the asymptotic center A({xn}) of {xn} is defined as:

A({xn}) = {x ∈ X : r(x, xn) = r({xn})}.
It is known that in a CAT(0) space (see in, [33–41]), A({xn}) consists of exactly one
point.
In 2008, Kirk and Panyanak [18] gave a concept of convergence in CAT(0) spaces which
is analogue of weak convergence in Banach spaces and restriction of Lim’s concepts of
convergence [19] to CAT(0) spaces.

Definition 2.1. A sequence {xn} in X is said to ∆-converges to x ∈ X if x is the
unique asymptotic center of un for every subsequence {un} of {xn}. In this case we write
∆− limn xn = x and read as x is the ∆-limit of {xn}.
Notice that given {xn} ⊂ X such that {xn} ∆-converges to x and given y ∈ X with
y ̸= x, by uniqueness of asymptotic center we have,

lim sup
n→∞

d(xn, x) < lim sup
n→∞

d(xn, y).

Thus every CAT(0) space satisfies the Opial property. Now we collect some basic fact
about CAT(0) spaces which will be used throughout the text frequently.

Lemma 2.2. ([18]). Every bounded sequence in a complete CAT(0) space admits a ∆-
convergent subsequence.

Lemma 2.3. ([10]). If C is closed convex subset of a complete CAT(0) space and if {xn}
is a bounded sequence in C, then the asymptotic center of {xn} is in C.

Lemma 2.4. ([11]). Let (X, d) be a CAT(0) space. For x, y ∈ X and t ∈ [0, 1], there
exists a unique z ∈ [x, y] such that

d(x, z) = td(x, y) and d(y, z) = (1− t)d(x, y).

We use the notation (1− t)x⊕ ty for the unique point z of the above lemma.

Lemma 2.5. For x, y, z ∈ X and t ∈ [0, 1] we have

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z).

Let C be a nonempty subset of a complete CAT(0) X. Let △ denote the diagonal of
the cartesian product C × C, i.e., △ = {(x, x) : x ∈ C}.
Consider a directed graph G such that the set V (G) of its vertices coincides with C, and
the set E(G) of its edges contains all loops, i.e., E(G) ⊇ △. We assume G has no parallel
edge. So we can identify the graph G with the pair (V (G), E(G)). By G−1 we denote
the conversion of a graph G i.e., the graph obtained from G by reversing the direction of
edges. Thus we have

E(G−1) = {(x, y) ∈ X ×X : (y, x) ∈ E(G)}.
A set B dominates x0 if for each x ∈ B, (x, x0) ∈ E(G) and is dominated by x0 if for each
x ∈ B, (x0, x) ∈ E(G). Let C be a subset of a CAT(0) space X. A mapping S : C → C
is semicompact [27] if for a sequence {xn} in C with lim

n→∞
d(xn, Sxn) = 0, there exists a
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subsequence {xnj
} of {xn} such that xnj

→ p ∈ C.
If x and y are vertices in a graph G, then a path in G from x to y of length N(N ∈ N∪0)
is a sequence {xi}Ni=0 of N + 1 vertices such that x0 = x, xN = y and (xi, xi+1) ∈ E(G)
for i = 0, 1, ...N − 1. A graph G is connected if there is path between any two vertices.
A directed G = (V (G), E(G)) is said to be transitive if, for any x, y, z ∈ V (G) such that
(x, y) and (y, z) are in E(G), implies (x, z) ∈ E(G).
Let S : C → C be a self map. An edge preserving mapping i.e.((x, y) ∈ E(G) ⇒
(Sx, Sy) ∈ E(G)) is said to be:

(1) G-contraction if

d(Sx, Sy) ≤ αd(x, y), ∀(x, y) ∈ E(G).

where α ∈ (0, 1).

(1) G-nonexpansive if

d(Sx, Sy) ≤ d(x, y), ∀(x, y) ∈ E(G).

Let C be a subset of a complete CAT(0) space X and let G = (V (G), E(G)) be a directed
graph such that V (G) = C. Then, C is said to have Property DG(SG) if for each
sequence {xn} in C converging ∆(strongly) to x ∈ C and (xn, xn+1) ∈ E(G), there is a
subsequence {xnj} of {xn} such that (xnj , x) ∈ E(G) for all n ∈ N.
The following lemmas are useful in our main results.
Lemma 2.6 Let X be a complete CAT (0) space and let x ∈ X. Suppose {tn} is a
sequence in [b, c] for some b, c ∈ (0, 1) and {xn}, {yn} are sequences in X such that
lim sup
n→∞

d(xn, x) ≤ r , lim sup
n→∞

d(yn, x) ≤ r, and lim
n→∞

d((1− tn)xn ⊕ tnyn, x) = r for some

r ≥ 0. Then

lim
n→∞

d(xn, yn) = 0.

3. Main Results

We start with proving the following proposition.

Proposition 3.1. Let S1 and S2 be two G-nonexpansive from C to C with F = F (S1)∩
F (S2) nonempty, where C is a nonempty closed convex subset of a complete CAT(0) space
X endowed with the directed graph. Let V (G) = C, E(G) is convex and the graph G is
transitive. For an arbitrary x0 ∈ C, defined the sequence {xn} by (1.1). Let p0 ∈ F be
such that (x0, p0), (p0, x0) are in E(G). Then (xn, p0), (yn, p0), (zn, p0), (p0, xn), (p0, yn),
(p0, zn), (xn, yn), (xn, zn) and (xn, xn+1) are in E(G).

Proof. We proceed by induction. Since S2 is edge-preserving and (x0, p0) ∈ E(G), we
have (S2x0, p0) ∈ E(G) and so (z0, p0) ∈ E(G), by convexity of E(G). By edge pre-
servingness of S1 and (x0, p0) ∈ E(G), we get (S1x0, p0) ∈ E(G) and as S2 is edge
preserving and (z0, p0) ∈ E(G), we have (S2z0, p0) ∈ E(G). By convexity of E(G) and
(S1x0, p0), (S2z0, p0) ∈ E(G), we get (y0, p0) ∈ E(G). Thus, by edge-preserving of S1,
(S1y0, p0) ∈ E(G), we get (x1, p0) ∈ E(G).
Again, by edge-preserving of S2, (S2x1, p0) ∈ E(G). By convexity of E(G) and (x1, p0), (S2x1, p0) ∈
E(G), we get (z1, p0) ∈ E(G). Thus by edge-preserving of S2, (S2z1, p0) ∈ E(G). Again
by convexity of E(G) and (S1x1, p0), (S2z1, p0) ∈ E(G), we have (y1, p0) ∈ E(G). By
edge-preserving of S1, (S1y1, p0) ∈ E(G), we get (x2, p0) ∈ E(G). Next we assume that
(xk, p0) ∈ E(G). By edge-preserving of S2 and convexity of E(G), we get (S2xk, p0) ∈



COMMON FIXED POINTS OF MODIFIED PICARD-S ITERATION PROCESS . . . 5

E(G) and (zk, p0) ∈ E(G). By applying edge-preserving of S2 on (zk, p0) ∈ E(G), we
get (S2zk, p0) ∈ E(G). By using convexity of E(G) and (S1xk, p0), (S2zk, p0) ∈ E(G), we
have (yk, p0) ∈ E(G). As S1 is edge-preserving and (yk, p0) ∈ E(G) implies (S1yk, p0) ∈
E(G) which implies (xk+1, p0) ∈ E(G). Owing to edge-preserving of S2, we obtain
(S2xk+1, p0) ∈ E(G) and so (zk+1, p0) ∈ E(G), since E(G) is convex. By edge-preserving
of S2, we get (S2zk+1, p0) ∈ E(G) so (yk+1, p0) ∈ E(G), since E(G) is convex. Therefore,
(xn, p0), (yn, p0), (zn, p0) ∈ E(G) for all n ≥ 1. Using a similar arguement, we can show
that (p0, xn), (p0, yn), (p0, zn) ∈ E(G) under the assumption that (p0, z0) ∈ E(G). By us-
ing transitivity of G, we get (xn, yn), (xn, zn), (yn, zn), (xn, xn+1) ∈ E(G). This completes
the proof.

Lemma 3.2. Let X, C, S1, S2, F and {xn} be same as in Proposition (3.1). Suppose
that {αn} and {βn} are real sequence in [δ, 1−δ] for some δ ∈ (0, 1) and (x0, p0), (p0, x0) ∈
E(G) for arbitrary x0 ∈ C and p0 ∈ F . Then
(i) lim

n→∞
d(xn, p0) exists;

(ii) lim
n→∞

d(xn, S1xn) = 0 = lim
n→∞

d(xn, S2xn).

Proof. (i) Let p0 ∈ F . By Proposition (3.1), we have (xn, p0), (yn, p0), (zn, p0) ∈ E(G).
Then, by G-nonexpansiveness of S1 and S2 and using (1.1), we have

d(zn, p0) = d((1− βn)xn ⊕ βnS2xn, p0)
≤ (1− βn)d(xn, p0) + βnd(S2xn, p0)
≤ (1− βn)d(xn, p0) + βnd(xn, p0)
≤ d(xn, p0),

(3.1)

d(yn, p0) = d((1− αn)S1xn ⊕ αnS2zn, p0)
≤ (1− αn)d(S1xn, p0) + αnd(S2zn, p0)
≤ (1− αn)d(xn, p0) + αnd(zn, p0)
≤ (1− αn)d(xn, p0) + αnd(xn, p0)
≤ d(xn, p0),

(3.2)

and
d(xn+1, p0) = d(S1yn, p0)

≤ d(yn, p0)
≤ d(xn, p0).

(3.3)

This implies that sequence {d(xn, p0)} is decreasing and bounded below for all p0 ∈ F (S).
Hence lim

n→∞
d(xn, p0) exists.

(ii) Assume that lim
n→∞

d(xn, p0) = c. If c=0, then by G-nonexpansiveness of S1 and S2 ,

we get

d(xn, Sixn) ≤ d(xn, p0) + d(p0, Sixn)
≤ d(xn, p0) + d(p0, xn).

Therefore, the result follows.
Suppose that c > 0.
Taking the lim sup on both sides in the inequality (3.1) and (3.2), we obtain

lim sup
n→∞

d(zn, p0) ≤ lim supn→∞ d(xn, p0) = c. (3.4)

lim sup
n→∞

d(yn, p0) ≤ lim supn→∞ d(xn, p0) = c. (3.5)
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In addition, by G-nonexpansiveness of Si(i = 1, 2), we have d(Siyn, p0) ≤ d(yn, p0) and
d(Sizn, p0) ≤ d(zn, p0).
We have,

lim sup
n→∞

d(Siyn, p0) ≤ c. (3.6)

and
lim sup
n→∞

d(Sizn, p0) ≤ c. (3.7)

Since lim
n→∞

d(xn+1, p0) = c. Letting n → ∞ in the inequality (3.3), we have,

lim
n→∞

d(S1yn, p0) = c. (3.8)

we have,
d(S1yn, p0) ≤ d(yn, p0).

By taking the lim inf on both sides;

c ≤ lim inf
n→∞

d(yn, p0). (3.9)

By using (3.5) and (3.9) we have

lim
n→∞

d(yn, p0) = c. (3.10)

From (3.2) and (3.10), we have

lim
n→∞

d((1− αn)S1xn ⊕ αnS2zn, p0) = c. (3.11)

In addition, lim sup
n→∞

d(S1xn, p0) ≤ c and lim sup
n→∞

d(S2zn, p0)) ≤ c, using (3.11) and Lemma

(2.6), we have
lim
n→∞

d(S1xn, S2zn) = 0. (3.12)

We have,
d(xn+1, p0) = d(S1yn, p0)

≤ d(yn, p0)
≤ d((1− αn)S1xn ⊕ αnS2zn, p0)
≤ (1− αn)d(S1xn, p0) + αnd(S2zn, p0)
≤ (1− αn)d(xn, p0) + αnd(zn, p0)
≤ d(xn, p0)− αnd(xn, p0) + αnd(zn, p0)

This implies that,

d(xn+1, p0)− d(xn, p0)

αn
≤ d(zn, p0)− d(xn, p0)

So

d(xn+1, p0)− d(xn, p0) ≤
d(xn+1, p0)− d(xn, p0)

αn
≤ d(zn, p0)− d(xn, p0).

This implies,

d(xn+1, p0) ≤ d(zn, p0).

By taking lim inf both sides, we have

c ≤ lim inf
n→∞

d(zn, p0). (3.13)

By using (3.4) and (3.13), we get

lim
n→∞

d(zn, p0) = 0. (3.14)
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From, (3.1) and (3.14), we have

lim
n→∞

d((1− γn)xn ⊕ γnS2xn, p0) = 0. (3.15)

In addition, lim sup
n→∞

d(xn, p0) ≤ c and lim sup
n→∞

d((S2xn, p0) ≤ c. By using Lemma (2.6)

and (3.15), we have

lim
n→∞

d(S2xn, xn) = 0. (3.16)

Thus, it follows from (3.16) that

d(zn, xn) = d((1− βn)xn ⊕ βnS2xn, xn)
≤ (1− βn)d(xn, xn) + βnd(S2xn, xn)
→ 0(as n → ∞).

(3.17)

Now, By using (3.12), (3.16) and (3.17) we have,

d(S1xn, xn) ≤ d(S1xn, S2zn) + d(S2zn, xn)
≤ d(S1xn, S2zn) + d(S2zn, S2xn) + d(S2xn, xn)
≤ d(S1xn, S2zn) + d(zn, xn) + d(S2xn, xn)
→ 0(as n → ∞)

Therefore, we conclude lim
n→∞

d(xn, S1xn) = 0 = lim
n→∞

d(xn, S2xn). This completes the

proof.

We now prove the ∆ convergence of the sequence (1.1) for two G-nonexpansive map-
pings in CAT(0) space.

Theorem 3.3. Let X, C, S1, S2, F and {xn} be same as in Proposition (3.1) with C
has property DG. Suppose that {αn} and {βn} are real sequence in [δ, 1 − δ] for some
δ ∈ (0, 1) and (x0, p0), (p0, x0) ∈ E(G) for arbitrary x0 ∈ C and p0 ∈ F then sequence
{xn}, ∆ converges to a common fixed point of S1 and S2.

Proof. Let p0 ∈ F be such that (x0, p0), (p0, x0) ∈ E(G). From Lemma (3.2)(i), we
have lim

n→∞
d(xn, p0) exists, so {xn} is bounded. It follows from Lemma (3.2)(ii) that

lim
n→∞

d(xn, S1xn) = 0 = lim
n→∞

d(xn, S2xn). Let Wω({xn}) =: ∪A({un}), where union is

taken over all subsequence {un} over {xn}. To show the ∆-convergence of {xn} to a
common fixed point of S1 and S2, we show that Wω({(xn}) ⊂ F (S) and Wω({xn}) is
a singleton set. To show that Wω({xn}) ⊂ F (S) let r ∈ Wω({(xn}). Then, there exists
a subsequence {rn} of {xn} such that A({rn}) = r. By Lemmas (2.2), there exists a
subsequence {sn} of {rn} such that ∆− lim

n
sn = s and s ∈ C. Since lim

n→∞
d(sn, S1sn) =

0 = lim
n→∞

d(sn, S2sn) By Opial property

lim sup
n→∞

d(sn, s) < lim sup
n→∞

d(sn, S1s).

and

lim sup
n→∞

d(sn, s) < lim sup
n→∞

d(sn, S2s).
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Hence S1s = S2s = s, i.e. s ∈ F (S). Now, we claim that s = r. If not, by Lemma (3.1),
lim
n

d(xn, s) exists and owing to the uniqueness of asymptotic centers,

lim sup
n→∞

d(sn, s) < lim sup
n→∞

d(sn, r)

≤ lim sup
n→∞

d(rn, r)

< lim sup
n→∞

d(rn, s)

= lim sup
n→∞

d(xn, s)

= lim sup
n→∞

d(sn, s),

which is a contradiction. Hence r = s. To assert that Wω({(xn}) is a singleton let {rn}
be a subsequence of {xn}. In view of Lemmas (2.2) and (2.3), there exists a subsequence
{sn} of {rn} such that ∆ − lim

n
sn = s. Let A({rn}) = r and A({xn}) = x. Earlier, we

have shown that r = s. Therefore it is enough to show s = x.. If s ̸= x, then in view of
Lemma (3.1) {d(xn, s)} is convergent. By uniqueness of asymptotic centers

lim sup
n→∞

d(sn, s) < lim sup
n→∞

d(sn, x)

≤ lim sup
n→∞

d(xn, x)

< lim sup
n→∞

d(xn, s)

= lim sup
n→∞

d(sn, s),

which is a contradiction so that conclusion follows.

Theorem 3.4. Let C be a nonempty compact convex subset subset of a complete CAT(0)
space, S1, S2, F and {xn} be same as in Proposition (3.1) with C has property SG, {αn}
and {βn} are real sequence in [δ, 1 − δ] for some δ ∈ (0, 1). If (x0, p0), (p0, x0) ∈ E(G)
for arbitrary x0 ∈ C and p0 ∈ F , then {xn} converges strongly to a common fixed point
of S1 and S2.

Proof. We have F (S) ̸= ∅ and so by Lemma (3.2) we have lim
n→∞

d(xn, S1xn) = 0 =

lim
n→∞

d(xn, S2xn). Since C is compact, there exists a subsequence {xnk
} of {xn} such

that {xnk
} converges strongly to p for some p ∈ C. By using the property SG and

Lemma (3.2), we have

lim
n→∞

d(xnk
, S1xnk

) = 0 = lim
n→∞

d(xnk
, S2xnk

)

Then

d(xnk
, Sip) ≤ d(xnk

, Sixnk
) + d(Sixnk

, Sip)

d(xnk
, Sip) ≤ d(xnk

, Sixnk
) + d(xnk

, p)

for all n ≥ 1. Letting k → ∞, we get Tp = p, i.e., p ∈ F (S). By Lemma (3.2),
lim
n→∞

d(xn, p) exists for every p ∈ F (S) and so the sequence {xn} converge strongly to p.

Let C be a nonempty closed convex subset of a uniformly convex Banach space X.
Recall that the mappings S1 and S2 on C are said to satisfy condition (B) [27] if there
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exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0 for all
r > 0 such that for all x ∈ C,

max{∥x− S1x∥, ∥x− S2x∥} ≥ f(d(x, F )),

where F = F (S1)∩F (S2), F (S1) and F (S2) are the sets of fixed points of S1 and S2 and
d(x, F ) = inf{∥x− q∥ : q ∈ F}.

Theorem 3.5. Let X, C, S1, S2 F and {xn} be same as in Proposition (3.1). Suppose
that {αn} and {βn} are real sequence in [δ, 1 − δ] for some δ ∈ (0, 1), Si(i = 1, 2) satis-
fies condition(B) and F is dominated by x0 and F dominates x0. Then {xn} converges
strongly to a common fixed point of S1 and S2.

Proof. From Lemma (3.2)(i), we have lim
n→∞

d(xn, q) exists and so lim
n→∞

d(xn, F ) exists for

any q ∈ F . Also from Lemma (3.2)(ii), lim
n→∞

d(xn, S1xn) = 0 = lim
n→∞

d(xn, S2xn). Owing

to condition (B),

f(d(x, F )) ≤ max{d(x, S1x), d(x, S2x)},
we have lim

n→∞
f(d(xn, F )) = 0. As f : [0,∞) → [0,∞) is a nondecreasing function

satisfying f(0) = 0, f(r) > 0 for all r ∈ [0,∞), we obtain that lim
n→∞

d(xn, F ) = 0.

Hence, we can find a subsequence {xnj
} of {xn} and a sequence {uj} ⊂ F such that

d(xnj
, uj) ≤ 1

2j . Put nj+1 = nj + h for some h ≥ 1. Then

d(xnj+1
, uj) ≤ d(xnj+h−1, uj) ≤ d(xnj

, uj) ≤ 1
2j .

d(uj+1, uj) ≤ d(uj+1, xj+1) + d(xj+1, uj) ≤ 1
2j+1 + 1

2j = 1
2j−1 .

So {uj} is a Cauchy sequence. We assume that uj → q0 ∈ C as j → ∞. Since F is
closed, we get q0 ∈ F . So we have xnj → q0 as j → ∞. Since lim

n→∞
d(xn, q0) exists, we

get xn → q0. This completes the proof.

Theorem 3.6. Let C be a nonempty closed convex subset of a complete CAT(0) space
with property SG, {αn} and {βn} are real sequence in [δ, 1− δ] for some δ ∈ (0, 1), F is
dominated by x0 and F dominates x0. If one of Si(i = 1, 2) is semicompact then {xn}
converges strongly to a common fixed point of S1 and S2.

Proof. It follows from Lemma (3.2) {xn} is bounded and lim
n→∞

d(xn, S1xn) = 0 = lim
n→∞

d(xn, S2xn).

Since one of S1 and S2 is semicompact, then there exists a subsequences {xnj} of {xn}
such that xnj → q ∈ C as j → ∞. Since C has Property SG and transitivity of graph G,
we obtain (xnj

, q) ∈ E(G). Notice that, for each i ∈ 0, 1, lim
j→∞

d(xnj
, Sixnj

) = 0.

Then

d(q, Siq) ≤ d(q, xnj
) + d(xnj

, Sixnj
) + d(Sixnj

, Siq)
≤ d(q, xnj ) + d(xnj , Sixnj ) + d(xnj , q)
→ 0(as j → ∞)

Hence q ∈ F . Thus lim
n→∞

d(xn, F ) exists by Theorem 3.5. We note that d(xnj
, F ) ≤

d(xnj
, q) → 0 as j → ∞. Hence lim

n→∞
d(xn, F ) = 0. It follows, as in the proof of Theorem

(3.5), that {xn} converges strongly to a common fixed point of S1 and S2. This completes
the proof.
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4. Numerical Example

Now we will discuss a numerical experiments which support our main theorem.

Example 4.1. Let X = R and C = [0, 2]. Let G = (V (G), E(G)) be a directed graph
defined by V (G) = C and (x, y) ∈ E(G) if and only if 0.65 ≤ x, y ≤ 1.65. Define a
mapping S1, S2 : C → C by

S1x = x2 log x,

S2x = x
1
3 ,

for any x ∈ C

It is easy to show that S1, S2 are G-nonexpansive but S1, S2 are not nonexpansive
because

|S1x− S1y| > |x− y|,
and

|S2u− S2v| > |u− v|,
when x = 0.1, y = 1.90, u = 0.5 and v = 0.03.

iteration no. modified Ishikawa modified S-iteration Thianwan’s new modified Picard S-iteration

1 1.450000000000000 1.450000000000000 1.450000000000000 1.450000000000000
2 1.446937747316145 1.135151919359837 1.131080728764182 1.043236108230096
3 1.439978424804714 1.042576363439713 1.038677525097028 1.004565686484902
4 1.428350360114987 1.013325277028436 1.010915892564614 1.000476511629518
5 1.411433812946091 1.004089484416440 1.002905477559686 1.000048707721444
6 1.388873575644693 1.001227490994499 1.000726883239842 1.000004870758310
7 1.360698339367269 1.000360147984224 1.000170618155917 1.000000476251854
8 1.327418711668000 1.000103251370589 1.000037500910039 1.000000045508510
9 1.290068993515692 1.000028911223261 1.000007700340779 1.000000004247461
10 1.250161362039185 1.000007902472312 1.000001473338871 1.000000000386991
11 1.209538616935949 1.000002107331501 1.000000261927179 1.000000000034399
12 1.170140985639988 1.000000547906589 1.000000043130684 1.000000000002981
13 1.133734370966920 1.000000138803029 1.000000006555864 1.000000000000252
14 1.101667785773435 1.000000034238082 1.000000000916364 1.000000000000021
15 1.074723914188363 1.000000008217140 1.000000000117295 1.000000000000002
16 1.053096214938510 1.000000001917333 1.000000000013684 1.000000000000000
17 1.036481654435387 1.000000000434595 1.000000000001448 1.000000000000000
18 1.024242648677044 1.000000000095611 1.000000000000138 1.000000000000000

Table 1. Comparative Sequences

Let αn = n
50 , βn = n

20 . Choose x0 = y0 = z0 = 1.45 and x = 1 is a common fixed
point of S1 and S2. Let {xn} be the sequence generated by (1.1) and {yn}, {zn} and {tn}
be sequences generated by Thianwan’s new iteration, modified S-iteration and modified
Ishikawa iteration, respectively. We get the following numerical experiments for common
fixed point of S1 and S2 and rate of convergence of {xn}, {yn}, {zn} and {tn}.
Table 1 shows the numerical experiment for supporting our main results and comparing
rate of convergence of modified Picard-S iteration with Thianwan’s new iteration, modified
S-iteration and modified Ishikawa iteration.



COMMON FIXED POINTS OF MODIFIED PICARD-S ITERATION PROCESS . . . 11

Figure 1. Numerical experiment of Example 4.1 using Ishikawa itera-
tion, modified S-iteration, Thianwan’s new iteration and modified Abbas
iteration.

Figure 2. Convergence comparision of sequence generated by Ishikawa
iteration, modified S-iteration, Thianwan’s new iteration and modified
Picard-S iteration for example 4.1.

Figure 1 shows the convergence of Ishikawa iteration, modified S-iteration, Thianwan’s
new iteration and modified Abbas iteration to the common fixed point of S1 and S2 which
is 1 in this numerical experiment and proposed iteration process converges faster than
other iteration process.
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