www.math.science.cmu.ac.th/thaijournal

On Strongly *θ* - Semi - Continuous Functions

N. Puturong

Abstract: A function $f: X \to Y$ from a topological space X into a topological space Y to be strongly θ -semi-continuous if and only if for each $x \in X$ and each open set V containing f(x), there exists a semi- open set U containing x such that $f(scl \ U) \subset V$. In this paper gives some characterizations of strongly θ -semi-continuous functions, including to apply strongly θ -semi-continuous to the retraction and strongly θ -semi-continuous fixed point property.

Keywords : semi-open set , semiclosure , semi θ -closure , semi θ -interior , $s\theta$ -converges, strongly θ -semi-continuous , strongly θ -semi-continuous retraction , strongly θ -semi-continuous fixed point property.

1 Introduction

N. Levine [3] has defined a function $f: X \to Y$ from a topological space X into a topological space Y to be semi-continuous (denoted by "s.c.) if $f^{-1}(U)$ is semi-open set in X for every open set U in Y. Also, T. Noiri [6] has independently defined a function $f: X \to Y$ from a topological space X into a topological space Y to be strongly θ -continuous (denoted by $st. \theta c$) if for each $x \in X$ and each open set V containing f(x), there exists an open set U containing x such that $f(\overline{U}) \subset V$. Seong Hoon Cho [4] has the notion of a type of converges for nets that we called $s\theta$ -converges.

F. Cammaroto and T. Noiri [1] defined and investigated the δ -continuous retraction and the δ -continuous fixed point property.

In the present paper, author has define and study the strongly θ -semi-continuous functions. In section 2, preliminaries. Section 3 gives some characterizations of strongly θ -semi-continuous functions. Section 4 deals with the retraction of a topological space by strongly θ -semi-continuous functions and the fixed point property in relation to strongly θ -semi-continuous functions.

2 Preliminaries

Definition 2.1. [3] Let A be subset of a topological space X. A is said to be semi-open set in X if there exists an open set O of X such that $O \subset A \subset \overline{O}$. We will be denoted the class of all semi-open sets in X by S.O.(X).

Remark 2.2. [3] If O is an open set in X then $O \in S.O.(X)$.

Definition 2.3. [5] Let A be subset of a topological space X.

- (1) A is said to be semi-closed set in X if $A^c \in S.O.(X)$.
- (2) The semi-closure of A, denoted by scl A, scl $A = \cap \{F/F \text{ is semi} - \text{closed set in } X \text{ such that } A \subset F\}$
- (3) The semi-interior of A, denoted by sInt A, sInt $A = \cup \{O/O \in S.O.(X)$ such that $O \subset A\}$.

Theorem 2.4. [5] Let A and B be subsets of a topological space X. Then :

(1) If A is closed set, then A is semi-closed set.
(2) A ⊂ scl A ⊂ Ā.
(3) If A ⊂ B, then scl A ⊂ scl B.
(4) A is semi-closed set if and only if scl A = A.
(5) A ∈ S.O.(X) if and only if sInt A = A.
(6) sInt A = X - scl (X - A).
(7) sInt A ⊂ A.

Definition 2.5. [2] Let A be subset of a topological space X and $x \in X$. A point x is called a semi θ -adherent point of A if scl $U \cap A \neq \emptyset$ for every semi-open set U containing x. The set of all semi θ -adherent points of A is called the semi θ -closure of A and is denoted by $scl_{\theta}A$.

Definition 2.6. Let D be a directed set and (x_d) is a net in a topological space X. A net (x_d) is said to $s\theta$ -converges to $x_0 \in X$ if for each semi-open set U containing x_0 , there exists $d_0 \in D$ such that $x_d \in scl U$ for all $d \ge d_0$.

3 Characterizations

Definition 3.1. Let $X = (X, \tau_X)$ and $Y = (Y, \tau_Y)$ be topological spaces. A mapping $f: X \to Y$ is said to be strongly θ -semi-continuous at a point $x_0 \in X$ if for each open set V containing $f(x_0)$, there exists a semi-open set U containing x_0 such that $f(scl \ U) \subset V$. f is said to be strongly θ -semi-continuous on X if it is strongly θ -semi-continuous at every point of X, we shall denote by f is st. θ sc on X.

Example 3.2. Let $X = \{a, b, c, d\}, Y = \{x, y, z\},$

 $\begin{aligned} \tau_X &= \{ \emptyset, \{b\}, \{c\}, \{b, c\}, \{a, b, c\}, X \} \text{ be topology on } X, \\ \tau_y &= \{ \emptyset, \{y\}, \{z\}, \{y, z\}, Y \} \text{ be topology on } Y \end{aligned}$

and $f: X \to Y$ such that f(a) = x, f(b) = yandf(c) = f(d) = z. Show that f is st. θ sc on X.

Solution For (X, τ_x) ,

Closed sets in X ; \emptyset , $\{d\}$, $\{a, d\}$, $\{a, b, d\}$, $\{a, c, d\}$ and X.

Semi-open sets in X(S.O.(X)); \emptyset , $\{b\}$, $\{c\}$, $\{b, c\}$, $\{a, b\}$, $\{b, d\}$, $\{a, c\}$, $\{c, d\}$, $\{a, c, d\}$, $\{b, c, d\}$, $\{a, b, d\}$, $\{a, b, c\}$ and X

Semi-closed sets in X ; \emptyset , {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d} and X.

Consider at a point a :

Let $V \in \tau_Y$ such that $f(a) \in V$ then V is to be Y. There exists $\{a, c\} \in S.O.(X)$ such that $a \in \{a, c\}$ and $f(scl\{a, c\}) = f(\{a, c\}) = \{x, z\} \subset V$. Hence f is st. θ sc at a point a.

Consider at a point b :

Let $V \in \tau_Y$ such that $f(b) \in V$ then V is to be $\{y\}, \{y, z\}$ and Y. There exists $\{b\} \in S.O.(X)$ such that $b \in \{b\}$ and $f(scl\{b\}) = f(\{b\}) = \{y\} \subset V$. Hence f is $st.\theta sc$ at a point b.

Consider at a point c :

Let $V \in \tau_Y$ such that $f(c) \in V$ then V is to be $\{z\}, \{y, z\}$ and Y. There exists $\{c\} \in S.O.(X)$ such that $c \in \{c\}$ and $f(scl\{c\}) = f(\{c\}) = \{z\} \subset V$. Hence f is $st. \ \theta sc$ at a point c.

Consider at a point d :

Let $V \in \tau_Y$ such that $f(d) \in V$ then V is to be $\{z\}, \{y, z\}$ and Y. There exists $\{c, d\} \in S.O.(X)$ such that $d \in \{c, d\}$ and $f(scl \{c, d\}) = f(\{c, d\}) = \{z\} \subset V$. Hence f is st. θ sc at a point d. Therefore, f is st. θ sc on X.

Example 3.3. Let $X \neq \emptyset$ and X = Y. (X, τ_X) and (Y, τ_Y) be topological spaces such that τ_Y be trivial topology on Y, $f : X \to Y$ such that f(x) = x for all $x \in X$. Show that f is st. θ sc on X.

Solution Since f(x) = x for all $x \in X$ and τ_Y be trivial topology on Y, then an open set V containing f(x) is to be Y. There exists an open set X such that $x \in X$, thus there exists a semi-open set X such that $x \in X$ while X be a closed set. By Theorem 2.4(1), we have X be a semi-closed set and by Theorem 2.4(4), we have scl X = X. Hence $f(scl X) = f(X) \subset Y$, thus f is st. θsc at a point x. Therefore, f is st. θsc on X.

Remark 3.4. Let X and Y be topological spaces and $f : X \to Y$. Then : (1) If f is st. θc on X, then f is st. $\theta s c$ on X.

(2) If f is st. θ sc on X, then f is s.c on X.

Proof. (1) Let f is to be st. θc on X. Then for each $x \in X$ and $V \in \tau_Y$ such that $f(x) \in V$, there exists an open set U such that $x \in U$ and $f(\overline{U}) \subset V$. Since if $U \in \tau_x$ then $U \in S.O.(X)$ and since $scl \ U \subset \overline{U}$, There exists a semi-open set U such that $x \in U$ and $f(scl \ U) \in f(\overline{U})$. Since $f(\overline{U}) \subset V$, hence we have $f(scl \ U) \subset V$. Therefore, f is st. θsc on X.

(2) Let f is to be st. θ sc on X. Then for each $x \in X$ and $V \in \tau_Y$ such that $f(x) \in V$, there exists a semi-open set U of X such that $x \in U$ and $f(scl U) \subset V$.

Since $U \subset sclU$, we have $f(U) \subset f(scl U)$. Hence $f(U) \subset V$. Thus there exists a semi-open set U of X such that $x \in U$ and $f(U) \subset V$. Therefore, f is s.c on X.

The converse of Remark 3.4(1), (2) are false, as shown by Example 3.5(1), (2).

Example 3.5. (1) From Example 3.2, show that f is not st. θc on X

Solution Consider at a point b :

Let $V \in \tau_Y$ such that $f(b) \subset V$, hence V is to be $\{y\}, \{y, z\}$ and Y. Open sets in X containing b; $\{b\}, \{b, c\}, \{a, b, c\}$ and X. Since $f(\{b\}) = f(\{a, b, d\}) =$ $\{x, y, z\} \not\subset V, f(\overline{\{b, c\}}) = f(X) = \{x, y, z\} \not\subset V, f(\overline{\{a, b, c\}}) = f(X) = \{x, y, z\} \not\subset V$ and $f(\overline{X}) = f(X) = \{x, y, z\} \not\subset V$ for some $V \in \tau_Y$. Hence f is not st. θ_C on X. Therefore, f is st. θ_{sc} on X but it is not st. θ_C on X.

(2) Let $X = \{a, b, c, d\}, Y = \{1, 2, 3, 4\}, \tau_X = \{\emptyset, \{a\}, \{c\}, \{a, c\}, \{b, c\}, \{a, b, c\}, X\}$ be topology on $X, \tau_Y = \{\emptyset, \{1\}, \{3\}, \{1, 3\}, \{1, 2\}, \{1, 2, 3\}, Y\}$ be topology on Y, and $f : X \to Y$ such that f(a) = 3, f(b) = 2, f(c) = 1 and f(d) = 4. Show that f is s.c on X but it is not st. θ sc on X.

Solution For (X, τ_X) , Closed sets in $X; X, \{b, c, d\}, \{a, b, d\}, \{b, d\}, \{a, d\}, \{d\}$ and \emptyset . Semi-open sets in $X; \emptyset, \{a\}, \{c\}, \{a, c\}, \{b, c\}, \{a, d\}, \{c, d\}, \{a, b, c\}, \{b, c, d\}, \{a, c, d\}$ and X. Semi-closed sets in $X; X, \{b, c, d\}, \{a, b, d\}, \{b, d\}, \{a, d\}, \{b, c\}, \{a, b\}, \{a\}, \{b\}, \{d\}$ and \emptyset .

(1) Show that f is s.c on X.

Open sets in Y; \emptyset , {1}, {3}, {1,3}, {1,2}, {1,2,3} and Y. Since $f^{-1}(\emptyset) = \emptyset$, $f^{-1}(\{1\}) = \{c\}, f^{-1}(\{3\}) = \{a\}, f^{-1}(\{1,3\}) = \{a.c\}, f^{-1}(\{1,2\}) = \{b,c\}, f^{-1}(\{1,2,3\}) = \{a,b,c\}$ and $f^{-1}(Y) = X$. Hence for each open set V in Y, we have $f^{-1}(V) \in S.O.(X)$. Therefore, f is s.c on X.

(2) Show that f is not $st.\theta sc$ on X.

Consider at a point c :

Let $V \in \tau_Y$ such that $f(c) \in V$, hence V is to be $\{1\}, \{1,3\}, \{1,2\}, \{1,2,3\}$ and Y. Semi - open sets in X containing c; $\{c\}, \{a, c\}, \{b, c\}, \{c, d\}, \{a, b, c\}, \{b, c, d\}, \{a, c, d\}$ and X. Since $f(scl\{c\}) = f(X \cap \{b, c, d\} \cap \{b, c\}) = f(\{b, c\}) = \{1, 2\} \not\subset V$, $f(scl\{a, c\}) = f(X) = \{1, 2, 3, 4\} \not\subset V$, $f(scl\{b, c\}) = f(\{b, c\}) = \{1, 2\} \not\subset V$, $f(scl\{a, c\}) = f(X \cap \{b, c, d\}) = f(\{b, c, d\}) = \{1, 2, 4\} \not\subset V$, $f(scl\{a, c, d\}) = f(X) = \{1, 2, 3, 4\} \not\subset V$, $f(scl\{b, c, d\}) = f(\{b, c, d\}) = \{1, 2, 3, 4\} \not\subset V$, $f(scl\{a, c, d\}) = f(X) = \{1, 2, 3, 4\} \not\subset V$, and $f(sclX) = f(X) = \{1, 2, 3, 4\} \not\subset V$ for some $V \in \tau_Y$.

Hence f is not $st.\theta sc$ at a point c. Therefore, f is not st. θsc on X.

Remark 3.6. Let X and Y be topological spaces. If $f : X \to Y$ is continuous on X and (Y, τ_Y) is regular space, then f is st. θ sc on X.

Proof. Let $x \in X$ and $V \in \tau_Y$ such that $f(x) \in V$. We have V^c is a closed set in Y and $f(x) \notin V^c$. Since (Y, τ_Y) is regular space. There exists $A, B \in \tau_Y$ such

that $A \cap B = \emptyset$, $f(x) \in A$ and $V^c \subset B$, we have $A \subset B^c$. Hence $\overline{A} \subset \overline{B^c}$ and $B^c \subset V$. Since B^c is a closed set, hence $B^c = \overline{B^c}$. Thus $\overline{A} \subset V$. Since f is continuous on X and $A \in \tau_Y$, we have $f^{-1}(A) \in \tau_X$. Since $f(x) \in A$, we have $x \in f^{-1}(A)$. Hence $x \in f^{-1}(A) \subset scl f^{-1}(A) \subset \overline{f^{-1}(A)} \subset f^{-1}(\overline{A}) \subset f^{-1}(V)$. Thus $f(scl f^{-1}(A)) \subset V$. Since $f^{-1}(A)$ is an open set, we have $f^{-1}(A)$ is a semiopen set. There exists a semi- open set $U = f^{-1}(A)$ in X such that $x \in U$ and $f(scl U) \subset V$. Therefore, f is st. θsc on X.

From Remark 3.6 if (Y, τ_Y) is not regular space then f is not necessary to be st. θ sc on X, as show by Example 3.7.

Example 3.7. From Example 3.5(2), show that if f is continuous on X and (Y, τ_Y) is not regular space, then f is not st. θ sc on X.

Solution Open sets in Y ; \emptyset , {1}, {3}, {1,3}, {1,2}, {1,2,3} and Y. Closed sets in Y ; Y, {2,3,4}, {1,2,4}, {2,4}, {3,4}, {4} and \emptyset . Since $f^{-1}(\emptyset) = \emptyset$, $f^{-1}(\{1\}) = \{c\}$, $f^{-1}(\{3\}) = \{a\}$, $f^{-1}(\{1,3\}) = \{a,c\}$, $f^{-1}(\{1,2\}) = \{b,c\}$, $f^{-1}(\{1,2,3\}) = \{a,b,c\}$ and $f^{-1}(Y) = X$. Thus for each open sets V in Y, hence $f^{-1}(V)$ is open sets in X. Therefore, f is continuous on X.

Next, we shall show that (Y, τ_Y) is not regular space. Consider at a point 2, for $2 \in Y$ and a closed set $\{4\}$ such that $2 \notin \{4\}$. Open sets in Y containing 2; $\{1,2\}, \{1,2,3\}$ and Y. Since $\{4\} \subset Y, \{1,2\} \cap Y \neq \emptyset, \{1,2,3\} \cap Y \neq \emptyset$ and $Y \cap Y \neq \emptyset$, hence (Y, τ_Y) is not regular space. By Example 3.5(2), we have f is not st. θ sc on X. Therefore, if f is continuous on X and (Y, τ_Y) is not regular space then f is not st. θ sc on X.

The converse of Remark 3.6 is false, as shown by Example 3.8.

Example 3.8. From Example 3.2, show that f is not continuous on X.

noindent Solution Since $\{z\} \in \tau_Y$. But $f^{-1}(\{z\}) = \{c, d\} \notin \tau_X$. Hence, f is not continuous on X. Therefore, f is st. θsc on X but it is not continuous on X.

Definition 3.9. Let A be subset of a topological space X. The semi θ -interior of A, denoted by $sInt_{\theta}A$,

 $sInt_{\theta}A = \cup \{ O | O \in S.O.(X) \text{ such that } scl \ O \subset A \}.$

Example 3.10. Let $X = \{a, b, c, d\}$ and $\tau_X = \{\emptyset, \{a\}, \{b, c\}, \{a, d\}, \{a, b, c\}, X\}$ be topology on X. Find $sInt_{\theta}\{a\}$, $sInt_{\theta}\{b\}$, $sInt_{\theta}\{b, c\}$, $sInt_{\theta}\{b, d\}$, $sInt_{\theta}\{a, c, d\}$ and $sInt_{\theta} X$.

Solution Open sets in X; \emptyset , $\{a\}$, $\{b, c\}$, $\{a, d\}$, $\{a, b, c\}$ and X. Closed sets in X; X, $\{b, c, d\}$, $\{a, d\}$, $\{b, c\}$, $\{d\}$ and \emptyset . Semi-open sets in X; \emptyset , $\{a\}$, $\{b, c\}$, $\{a, d\}$, $\{a, b, c\}$ and X. Semi-closed sets in X; X, $\{b, c, d\}$, $\{a, d\}$, $\{b, c\}$, $\{d\}$ and \emptyset .

Since $scl \ A = \bigcup \{F | F \text{ is } semi - closed \text{ set in } X \text{ such that } A \subset F\}$, hence $scl \ \emptyset = \emptyset$, $scl \ \{a\} = \{a,d\} \cap X = \{a,d\}$, $scl \ \{b,c\} = \{b,c\}$, $scl \ \{a,d\} = \{a,d\}$, $scl \ \{a,b,c\} = X$ and $scl \ X = X$.

Since $sInt_{\theta}A = \bigcup \{O|O \in S.O.(X) \text{ such that } scl \ O \subset A\}$, hence $sInt_{\theta}\{a\} = \emptyset$, $sInt_{\theta}\{b\} = \emptyset$, $sInt_{\theta}\{b,c\} = \{b,c\}$, $sInt_{\theta}\{a,c,d\} = \{a\}\cup\{a,d\} = \{a,d\}$, $Int_{\theta}\{b,d\} = \emptyset$ and $sInt_{\theta} = X$.

Lemma 3.11. Let A be subset of a topological space X. Then :

(1) $sInt_{\theta}(X - A) = X - scl_{\theta}A.$ (2) $sInt_{\theta}A \subset sInt_{\theta}A.$

(3) $A \subset scl_{\theta}A$.

Proof. (1) $sInt_{\theta}(X - A) = X - scl_{\theta}A$.

(⇒) Let $x \in sInt_{\theta}(X - A)$. Then there exists a semi-open set U containing x such that $x \in scl \ U \subset (X - A)$. Thus $scl \ U \cap A = \emptyset$ and $x \notin scl_{\theta}A$. Hence $x \in X - scl_{\theta}A$. Therefore, we obtain $sInt_{\theta}(X - A) \subset X - scl_{\theta}A$.

 (\Leftarrow) Let $x \in X - scl_{\theta}A$. Then $x \notin scl_{\theta}A$. There exists a semi - open set U containing x such that $scl \ U \cap A = \emptyset$. So, $x \in U \subset scl \ U \subset X - A$. Hence $x \in sInt_{\theta}(X - A)$. Therefore, we obtain $X - scl_{\theta}A \subset sInt_{\theta}(X - A)$.

(2) $sInt_{\theta}A \subset sInt_{\theta}A$.

Let $x \in X$ and $x \in sInt_{\theta}A$. Since $sInt_{\theta}A = \bigcup \{O|O \in S.O.(X) such that scl \ O \subset A\}$, hence $x \in \bigcup \{O|O \in S.O.(X) such that scl \ O \subset A\}$. By Theorem 2.4 (2), we have $O \subset scl \ O$. Hence, we have $x \in \bigcup \{O|O \in S.O.(X) such that O \subset A\}$. By Definition 2.3(3), hence $x \in sInt \ A$. Therefore, $sInt_{\theta}A \subset sInt \ A$.

 $(3)A \subset scl_{\theta}A.$

Since $sInt_{\theta}(X - A) = X - scl_{\theta}A$ and sInt A = X - scl(X - A). By (2), we have $sInt_{\theta}(X - A) \subset sInt(X - A)$. Thus $X - scl_{\theta}A \subset X - scl A$. Hence $scl A \subset scl_{\theta}A$. By Theorem 2.4(2), we have $A \subset scl A$. Therefore, $A \subset scl_{\theta}A$.

Theorem 3.12. Let X and Y be topological spaces. For a function $f : X \to Y$, the following statements are equivalent :

(1) f is st. θ sc on X.

- (2) For each $x \in X$ and each $V \subset Y$ such that $f(x) \in IntV$, there exists $U \subset X$ such that $x \in sInt_{\theta}U$ and $f(U) \subset V$.
- (3) $f^{-1}(IntB) \subset sInt_{\theta}f^{-1}(B)$ for each $B \subset Y$.
- (4) $scl_{\theta}f^{-1}(B) \subset f^{-1}(\overline{B})$ for each $B \subset Y$.
- (5) $f^{-1}(G) \subset sInt_{\theta}f^{-1}(G)$ for each open set G in Y.

Proof. (1) \Rightarrow (2) Let $x \in X$ and $V \subset Y$ such that $f(x) \in IntV$. There exists $G \in \tau Y$ such that $f(x) \in G$ and $G \subset V$. Since f is $st. \ \theta sc$ on X,

hence there exists $A \in S.O.(X)$ such that $x \in A$ and $f(scl A) \subset G \subset V$. Since $sInt_{\theta}(scl A) = \bigcup \{A | A \in S.O.(X) \text{ such that } scl A \subset scl A \}$. Let U = scl A. Hence, there exists $U \subset X$ such that $x \in sInt_{\theta}U$ and $f(U) \subset V$.

 $(2) \Rightarrow (3)$ Let $B \subset Y$ show that $f^{-1}(IntB) \subset sInt_{\theta}f^{-1}(B)$. Let $x \in f^{-1}(IntB)$ then $f(x) \in IntB$. By (2), there exists $U \subset X$ such that $x \in sInt_{\theta}U$ and $f(U) \subset B$. Hence $f^{-1}(f(U)) \subset f^{-1}(B)$. By Lemma 3.11(2), $sInt_{\theta}U \subset sInt U$ and by Theorem 2.4(7), $sInt U \subset U$. Hence $sInt_{\theta}U \subset U$ and since $U \subset f^{-1}(f(U))$. Hence $x \in sInt_{\theta}U \subset f^{-1}(B)$. Since $x \in sInt_{\theta}U = \cup \{O|O \in S.O.(X) \text{ such that } sclO \subset U\}$ and $U \subset f^{-1}(B)$. Therefore, $x \in sInt_{\theta}f^{-1}(B) = \cup \{O|O \in S.O.(X) \text{ such that } sclO \subset U \subset f^{-1}(B)\}$. Thus $f^{-1}(IntB) \subset f^{-1}(B)$ for each $B \subset Y$.

(3)
$$\Rightarrow$$
 (4) Let $B \subset Y$ show that $scl_{\theta}f^{-1}(B) \subset f^{-1}(\overline{B})$.

$$\begin{array}{lll} X - f^{-1}(\overline{B}) &=& X - f^{-1}(Y - Int(Y - B)) \\ &=& X - f^{-1}(Y) + f^{-1}(Int(Y - B)) = X - X + f^{-1}(Int(Y - B)) \end{array}$$

$$\begin{aligned} X - X + f^{-1}(Int(Y - B)) &= f^{-1}(Int(Y - B)) \\ &\subset sInt_{\theta}f^{-1}(Y - B) \quad (By \ (3)) \\ &= sInt_{\theta}[f^{-1}(Y) - f^{-1}(B)] \\ &= sInt_{\theta}[X - f^{-1}(B)] \\ &= X - scl_{\theta}f^{-1}(B) \quad (By \ Lemma \ 3.11(1)) \end{aligned}$$

Thus $X - f^{-1}(\overline{B}) \subset scl_{\theta}f^{-1}(B)$. Therefore, $scl_{\theta}f^{-1}(B) \subset f^{-1}(\overline{B})$ for each $B \subset Y$. (4) \Rightarrow (5) Let $G \in \tau_Y$ show that $f - 1(G) \subset sInt_{\theta}f^{-1}(G)$.

$$\begin{aligned} X - sInt_{\theta}f^{-1}(G) &= scl_{\theta}(X - f^{-1}(G)) \quad (By \ Lemma \ 3.11(1)) \\ &= scl_{\theta}(f^{-1}(Y) - f^{-1}(G)) \\ &= scl_{\theta}f^{-1}(YG) \\ &= c \ f^{-1}(\overline{Y - G}) \quad (By \ (4)) \\ &= f^{-1}(Y - Int \ (Y - (Y - G))) \\ &= f^{-1}(Y - Int \ G) \\ &= f^{-1}(Y) - f^{-1}(Int \ G) = X - f^{-1}(G) \end{aligned}$$

Thus $X - sInt_{\theta}f^{-1}(G) \subset X - f^{-1}(G)$. Therefore, $f^{-1}(G) \subset sInt_{\theta}f^{-1}(G)$ for each $G \in \tau_Y$.

 $(5) \Rightarrow (1)$ Let $x \in X$ and $V \in \tau_Y$ such that $f(x) \in V$. Hence $x \in f^{-1}(V)$. By (5), we have $f^{-1}(V) \subset sInt_{\theta}f^{-1}(V)$. Hence $x \in sInt_{\theta}f^{-1}(V)$. Since $sInt_{\theta}f^{-1}(V) = \cup \{O|O \in S.O.(X) \text{ such that scl } O \subset f^{-1}(V)\}$. Thus there exists $U \in S.O.(X)$ such that $x \in U$ and $f(scl U) \subset V$. Therefore, f is st. θ sc on X. **Theorem 3.13.** Let X and Y be topological spaces. For a function $f : X \to Y$, the following statements are equivalent :

- (1) f is st. θ sc on X.
- (2) For each $x_0 \in X$ and each net (x_d) in X. If $(x_d)s\theta$ -converges to x_0 , then the net $(f(x_d))$ converges to $f(x_0)$.

Proof. (1) \Rightarrow (2) Let $x_0 \in X$ and (x_d) be a net in X such that $(x_d) \ s\theta$ -converges to x_0 . Let V be an open set containing $f(x_0)$. Since f is st. θ sc on X, there exists a semi-open set U containing x_0 such that $f(scl \ U) \subset V$. Since $(x_d)s\theta$ -converges to x_0 , there exists d_0 such that $x_d \in scl \ U$ for all $d \ge d_0$. Hence $f(x_d) \in f(scl \ U)$ for all $d \ge d_0$. Since $f(scl \ U) \subset V$, hence $f(x_d) \subset V$ for all $d \ge d_0$. Thus $(f(x_d))$ converges to $f(x_0)$.

 $(2) \Rightarrow (1)$ Suppose that f is not $st. \theta sc$ on X. Then there exists $x_0 \in X$ and an open set V containing $f(x_0)$ such that $f(scl \ U) \not\subset V$ for all semi-open sets Ucontaining x_0 . Thus there exists $x_U \in scl \ U$ such that $f(x_U) \notin V$. Consider the net $\{x_U | Uis \ semi - open \ set \ containing \ x_0\}$. Then $(x_U)s\theta$ -converges to x_0 but $(f(x_U))$ does not converges to $f(x_0)$. Since this contradiction (2). Therefore, f is $st. \theta sc$ on X.

4 The strongly θ - semi - continuous retraction and fixed point property

Definition 4.1. Let X be topological space and $A \subset X$. A is said to be strongly θ -semi-continuous retract of X if there exists $f : X \to A$ is st. θ sc on X such that f is the identity on A. f is called a strongly θ -semi-continuous retraction.

Example 4.2. Let $X = \{a, b, c, d\}, A = \{a, b, c\},\$

 $\tau_X = \{\emptyset, \{b\}, \{c\}, \{b, c\}, \{a, b, c\}, X\}$ be topology on X,

 $\tau_A = \{\emptyset, \{b\}, \{c\}, \{b, c\}, A\}$ be topology on A and $f: X \to A$ such that f(a) = a, f(b) = b and f(c) = f(d) = c. Show that f is a strongly θ -semi-continuous retraction.

Solution Similar to Example 3.2, hence f is st. θsc on X. Since f is the identity on A. Hence f is a strongly θ -semi-continuous retraction.

Lemma 4.3. Let X, Y and Z be topological spaces. If $f : X \to Y$ is st. θ sc on X and $g : Y \to Z$ is st. θ c on Y, then gof is st. θ sc on X.

Proof. Let $x \in X$ and $V \in \tau_Z$ such that $(gof)(x) \in V$. Hence $g(f(x)) \in V$ and $f(x) \in Y$. Since g is st. θc on Y, there exists an open set O containing f(x) such that

$$g(\overline{O}) \subset V. \tag{4.1}$$

Since f is $st.\theta c$ on X, there exists a semi - open set U containing x such that $f(sclU) \subset O$. By Theorem 2.4 (2), we have $O \subset \overline{O}$. Hence

$$g(O) \subset g(\overline{O}). \tag{4.2}$$

Since $f(sclU) \subset O$, hence

$$g(f(sclU)) \subset g(O). \tag{4.3}$$

By (4.1), (4.2) and (4.3), hence $g(f(scl \ U) \subset g(O) \subset g(\overline{O}) \subset V$. Thus $(gof)(scl \ U) \subset V$. Therefore, gof is $st. \ \theta sc$ on X.

Theorem 4.4. Let X be topological space and $A \subset X$. If A is a strongly θ -semicontinuous retract of X, then for every space Y, every $g: A \to Y$ is st. θc on A can be extended to $g: X \to Y$ is st. θsc on X.

Proof. Let Y be topological space and $g: A \to Y$ is st. θc on A. Since A is a strongly θ -semi-continuous retract of X, there exists $f: X \to A$ is st. θsc on X and f is the identity on A. By Lemma 4.3, we have $gof: X \to Y$ is st. θc on X. Since gof(x) = g(f(x)) = g(x) for all $x \in A$. Therefore, gof is an extension of g.

Theorem 4.5. Let X is Hausdorff space. If A is a strongly θ -semi-continuous retract of X, then $scl_{\theta}A = A$.

Proof. Suppose that $scl_{\theta} A \neq A$. By Lemma 3.11(3), we have $A \subset scl_{\theta}A$. Hence there exists $x \in (scl_{\theta}A - A)$, Thus $x \notin A$. Since A is a strongly θ -semi-continuous retract, hence $f(x) \neq x$ for some $x \in X$. Since X is Hausdorff space, there exists disjoint open sets U and V such that $x \in U$ and $f(x) \in V$. Thus $U \subset X - V$. By Theorem 2.4(3), we have $scl \ U \subset scl(X - V) = X - V$, thus $scl \ U \cap V = \emptyset$. Since $U \subset scl \ U$, hence $x \in scl \ U$ for open set U containing x.

Let W is an open set containing x. Since $W \subset scl W$, hence $x \in scl W$. Since $(U \cap W) \subset scl(U \cap W)$, hence $x \in scl(U \cap W)$ for open set $U \cap W$ containing x. Since $x \in scl_{\theta}A$ such that $scl_{\theta}A = \{x \in X | scl \ U \cap A \neq \emptyset \text{ for each semi} - open set U containing x\}$, hence $scl(U \cap W) \cap A \neq \emptyset$. Since $scl(U \cap W) \subset scl \ U \cap scl \ W$, hence $(scl \ U \cap scl \ W) \cap A \neq \emptyset$.

Let $a \in (scl \ U \cap scl \ W) \cap A \neq \emptyset$. We have $a \in scl \ U, a \in scl \ W$ and $a \in A$. Since $a \in A$ hence $f(a) = a, a \in scl \ W$ hence $f(a) \in f(scl \ W)$ and $a \in scl \ U$ hence $a \notin V$. Thus $f(a) \notin V$, we have $f(scl \ W) \notin V$ for semi- open set w containing x. Thus this contradiction f is $st. \ \theta sc$ on X. Therefore, $scl_{\theta}A = A$.

The converse of Theorem 4.2 is false, as shown by Example 4.6, 4.7.

Example 4.6. Let $X = \{a, b, c, d\}, A = \{a, d\}$,

- $\tau_X = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}, X\}$ be topology on X,
- $\tau_A = \{\emptyset, A\}$ be topology on A

and $f: X \to A$ such that f(a) = a, f(b) = f(c) = f(d) = d. Show that

(1) (X, τ_X) is not Hausdorff space.

(2) A is a strongly θ - semi - continuous retract of X. (3) $scl_{\theta}A = A$.

Solution

(1) Consider at b, c such that $b \neq c$:

Open set V containing b is to be $\{b, c\}, \{a, b, c\}$ and X.

Open set U containing c is to be $\{b, c\}, \{a, b, c\}$ and X.

Hence $V \cap U \neq \emptyset$, thus (X, τ_X) is not Hausdorff space.

(2) We must show, f is $st.\theta sc$ on X and f is the identity on A.

Open sets in $A; \emptyset, \{a\}$ and A.

Since $f^{-1}(\emptyset) = (\emptyset) \subset sInt_{\theta}f^{-1}(\emptyset), f^{1}(\{a\}) = \{a\} \subset sInt_{\theta}f^{-1}(\{a\}) = \{a\}$ and $f^{-1}(A) = A \subset AsInt_{\theta}f^{-1}(A) = A$.

By Theorem 3.12 (5) \Rightarrow (1), hence f is $st.\theta sc$ on X. By defined of f, we have f is identity on A. Therefore, A is a strongly θ - semi - continuous retract of X.

(3) Closed sets in $X; X, \{b, c, d\}, \{a, d\}, \{d\}$ and \emptyset .

Semi - open sets in $X; \emptyset, \{a\}, \{b, c\}, \{a, d\}, \{a, b, c\}, \{b, c, d\}$ and X. Semi - closed sets in $X; X, \{b, c, d\}, \{a, d\}, \{b, c\}, \{d\}, \{a\}$ and \emptyset .

Consider at a point a:

Semi - open set V in X containing a is to be $\{a\}, \{a, d\}, \{a, b, c\}$ and X. Since $scl\{a\} = \{a\}, scl\{a, d\} = \{a, d\}, scl\{a, b, c\} = X$ and scl X = X, hence $scl V \cap A \neq \emptyset$ for each semi - open set V containing a. Thus $a \in scl_{\theta}A$.

Consider at a point b:

Semi - open set U in X containing b is to be $\{b, c\}, \{a, b, c\}, \{b, c, d\}$ and X. Since $scl\{b, c\} = \{b, c\}$, hence $scl\{b, c\} \cap A = \emptyset$. Thus $b \notin scl_{\theta}A$.

Consider at a point c:

Similar to a point b, hence $c \notin scl_{\theta}A$.

Consider at a point d:

Semi - open set K in X containing d is to be $\{a, d\}, \{b, c, d\}$ and X. Since $scl\{a, d\} = \{a, d\}, scl\{b, c, d\} = \{b, c, d\}$ and scl X = X, hence $scl K \cap A$ Thus $d \in scl_{\theta}A$, hence $scl_{\theta}A = \{a, d\}$. Therefore, $scl_{\theta}A = A$.

Example 4.7. Let $X = \{x, y, z\}, A = \{x, y\},$

 $\tau_X = \{, \{x\}, \{y\}, \{z\}, \{x, y\}, \{x, z\}, \{y, z\}, X\} \text{ be topology on } X ,$

 $\tau_A = \{\emptyset, \{x\}, \{y\}, A\} \text{ be topology on } A$

and $f: X \to A$ such that f(x) = f(y) = f(z) = x. Show that

(1) (X, τ_X) is Hausdorff space.

(2) A is not a strongly θ - semi - continuous retract of X.

(3) $scl_{\theta}A = A$.

Solution

(1)Consider at x, y such that $x \neq y$, there exists disjoint open sets $\{x\}, \{y\}$

20

such that $x \in \{x\}, y \in \{y\}$. Consider at x, z such that xneqz, there exists disjoint open sets $\{x\}, \{z\}$ such that $x \in \{x\}, z \in \{z\}$. Consider at y, z such that $y \neq z$, there exists disjoint open sets $\{y\}, \{z\}$ such that $y \in \{y\}, z \in \{z\}$. Hence (X, τ_X) is Hausdorff space.

(2) We must show , f is not $st.\theta sc$ on X or f is not the identity on A. By defined of f, we have f is not the identity on A. Therefore , A is not a strongly θ - semi - continuous retract of X.

(3) Closed sets in $X; X, \{y, z\}, \{x, z\}, \{x, y\}, \{z\}, \{y\}, \{x\} \text{ and } \emptyset$.

Semi open sets in $X; \emptyset, \{x\}, \{y\}, \{z\}, \{x, y\}, \{x, z\}, \{y, z\}$ and X.

Semi- closed sets in $X; X, \{y, z\}, \{x, z\}, \{x, y\}, \{z\}, \{y\}, \{x\}$ and \emptyset .

By Lemma 3.11 (3), we have $A \subset scl_{\theta}A$, thus $x \in scl_{\theta}A$ and $y \in scl_{\theta}A$. Next, we shall show that $z \notin scl_{\theta}A$. Semi open set S in X containing z is to be $\{z\}, \{x, z\}, \{y, z\}$ and X. Since $scl\{z\} = \{z\}$, hence $scl\{z\} \cap A = \emptyset$. Thus $z \notin scl_{\theta}A$. Therefore, $scl_{\theta}A = A$.

Definition 4.8. Let X be topological space. A space X is said to has the strongly θ - semi - continuous fixed point property if for every $f: X \to X$ is st. θ sc on X, there exists an $x \in X$ such that f(x) = x. We shall denote by X has the st. θ scFPP.

Example 4.9. Let $X = \{a, b, c\}$ and $\tau_X = \{\emptyset, \{a\}, \{b, c\}, X\}$ be topology on X. Consider the existence of st. θ scFPP for X.

Solution

Claim that X has not the $st.\theta scFPP$. We must show, there exists $f: X \to X$ is $st.\theta sc$ on X such that $f(x) \neq x$ for all $x \in X$. Let $f: X \to X$ such that f(a) = f(c) = b and f(b) = c. Next, we shall show that f is $st.\theta sc$ on X. Open sets in $X; \emptyset, \{a\}, \{b, c\}$ and X. Since $f-1(\emptyset) = \emptyset \subset sInt_{\theta}f^{-1}(\emptyset) = \emptyset, f^{-1}(\{a\}) = \emptyset \subset sInt_{\theta}f^{-1}(\{a\}) = \emptyset, f^{-1}(\{b, c\}) = X \subset sInt_{\theta}f^{-1}(\{b, c\}) = sInt_{\theta}X = X$, and $f^{-1}(X) = X \subset f^{-1}(X) = sInt_{\theta}X = X$. By Theorem 3.12 (5) \Rightarrow (1), hence f is $st.\theta sc$ on X. Since $f(x) \neq x$ for all $x \in X$. Therefore, X has not the $st.\theta scFPP$.

Lemma 4.10. Let X, Y and Z be topological space. If $gof : X \to Z$ is continuous on X and $g : Y \to Z$ is an open bijection, then f is continuous on X.

Proof. Let V is any open set in Y. Since g is an open mapping , hence g(V) is an open set in Z. Since gof is continuous on X , hence $(gof)^{-1}(g(V))$ is an open set in X. Since $(gof)^{-1}(g(V)) = f^{-1}(g^{-1}(g(V))) = f^{-1}(V)$, hence $f^{-1}(V)$ is an open set in X. Therefore , f is continuous on X.

Theorem 4.11. Let (X, τ) is regular space with the st. θ scFPP. If σ is a topology for X stronger than τ and scl $G^{(\tau)} =$ scl $G^{(\sigma)}$ for every $G \in \sigma$, then (X, σ) has the fixed point property. Proof. Suppose that $f : (X, \sigma) \to (X, \sigma)$ is any continuous function. Let $g : (X, \sigma) \to (X, \tau)$ and $h : (X, \tau) \to (X, \tau)$ be the functions defined by g(x) = h(x) = f(x) for all $x \in X$. Let $i : (X, \tau) \to (X, \sigma)$ be the identity function. Since $\tau \subset \sigma$, hence i is an open bijection. Since f = iog is continuous, by Lemma 4.10 g is continuous. Next, we shall show that h is $st.\theta sc$ on X. Let $x \in X$ and $h(x) \in V$. For each open set V in (X, τ) , hence V^c is closed set in (X, τ) and $h(x) \notin V^c$. Since (X, τ) is regular space, there exists disjoint open sets A and B such that $h(x) \in A$ and $V^c \subset B$. We have $A \subset B^c$, then $\overline{A} \subset \overline{B^c}$ and $B^c \subset V$. Since B^c is closed set, we have $B^c = \overline{B^c}$. Hence $(\overline{A}^{(\tau)} \subset V$. Thus $h(x) \in A \subset (\overline{A}^{(\tau)} \subset V$. Since g is continuous, hence $g^{-1}(A) \in \sigma$. Since $h^{-1}(A) = f^{-1}(A) = g^{-1}(A)$, hence $h^{-1}(A) = f^{-1}(A) \in \sigma$. By Theorem 2.4(2) and $scl \ G^{(\tau)} = scl \ G^{(\sigma)}$ for every $G \in \sigma$, we obtain

$$x \in h^{-1}(A) \subset scl \ h^{-1}(A)^{(\tau)} = scl \ h^{-1}(A)^{(\sigma)} = scl \ f^{-1}(A)^{(\sigma)} \subset \overline{f^{-1}}(A)^{(\sigma)}$$
(4.4)

Since f is continuous, $\tau \subset \sigma$ and $(\overline{A}^{(\tau)} \subset V$, we obtain

$$\overline{f^{-1}}(A)^{(\sigma)} \subset f^{-1}(\overline{A})^{(\tau)} \subset f^{-1}(\overline{A})^{(\tau)} \subset f^{-1}(V).$$

$$(4.5)$$

By (4.4) and (4.5), we have $scl \ h^{-1}(A) \subset f^{-1}(V)$. Since h(x) = f(x) for all $x \in X$, hence $f^{-1}(V) = h^{-1}(V)$. Thus $scl \ h^{-1}(A) \subset h^{-1}(V)$. Now, we set $U = h^{-1}(A)$, then we have semi - open set U in (X, τ) with $x \in U$ such that $h(scl \ U) \subset V$. Hence h is $st.\theta sc$ on (X, τ) . Since (X, τ) has the $st.\tau scFPP$, there exists $x \in X$ such that x = h(x) = f(x). Therefore, (X, σ) has the fixed point property. \Box

Lemma 4.12. Let X, Y and Z be topological spaces. If $gof : X \to Z$ is $st.\theta sc$ on X and $g : Y \to Z$ is an open bijection, then f is $st.\theta sc$ on X.

Proof. Let V is any open set in Y. Since g is an open mapping, hence g(v) is an open set in Z. Since gof is $st.\theta sc$ on X, hence $(gof)^{-1}(g(V)) \subset sInt_{\theta}(gof)^{-1}(g(V))$. Since g is bijection, hence $(gof)^{-1}(g(V)) = f^{-1}(g^{-1}(g(V)) = f^{-1}(V)$. Hence $f^{-1}(V) \subset sInt_{\theta}f^{-1}(V)$. By Theorem 3.12 (5) \Rightarrow (1), hence f is $st.\theta sc$ on X. \Box

Theorem 4.13. Let (X, τ) is regular space with the fixed point property. If σ is a topology for X stronger than τ and $scl_{\theta}G^{(\tau)} = scl_{\theta}G^{(\sigma)}$ and $G \in \sigma$ for each semi - open set G in (X, σ) , then (X, σ) has the st. θ scFPP.

Proof. Suppose that $f: (X, \sigma) \to (X, \sigma)$ is any $st.\theta sc$ on X. Let $g: (X, \sigma) \to (X, \tau)$ and $h: (X, \tau) \to (X, \tau)$ be the functions defined by g(x) = h(x) = f(x) for all $x \in X$. Let $i: (X, \tau) \to (X, \tau)$ be the identity function. Since f = iog is $st.\theta sc$ on X and i is an open bijection. By Lemma 4.12, g is $st.\theta sc$ on X. By Remark 3.4 (2), hence g is s.c on X. Next, we shall show that h is continuous. The same argument as in proof of Theorem 4.11 that $h(x) \in A \subset \overline{A}^{(\tau)} \subset V$ for open set V in (X, τ) containing $h(x), A \in \tau$. Since g is s.c on X, hence $g^{-1}(A)$ is semi-

open in (X, σ) . By assumption $G \in \sigma$ for each semi - open set G in (X, σ) , hence $g^{-1}(A) \in \sigma$. Since $h^{-1}(A) = f^{-1}(A) = g^{-1}(A)$, hence $h^{-1}(A) = f^{-1}(A) \in \sigma$. By Lemma 3.11 (3) and $scl_{\theta}G^{(\tau)} = scl_{\theta}G^{(\sigma)}$ for every $G \in \sigma$, we obtain

$$x \in h^{-1}(A) \subset scl_{\theta}h^{-1}(A)^{(\tau)} = scl_{\theta}h^{-1}(A)^{(\sigma)} = scl_{\theta}f^{-1}(A)^{(\sigma)}.$$
 (4.6)

Since f is $st.\theta sc$ on $X,\tau\subset\sigma$ and $\overline{A}^{(\tau)}\subset V$, we obtain

$$scl_{\theta}f^{-1}(A)^{(\sigma)} \subset f^{-1}\overline{A}^{(\sigma)} \subset f^{-1}\overline{A}^{(\tau)} \subset f^{-1}(V).$$

$$(4.7)$$

By (4.6) and (4.7), we have $h^{-1}(A) \subset f^{-1}(V)$. Since h(x) = f(x) for all $x \in X$, hence $f^{-1}(V) = h^{-1}(V)$. Thus $h^{-1}(A) \subset h^{-1}(V)$. Now, we set $U = h^{-1}(A)$, then we have open set U in (X, τ) with $x \in U$ such that $h(U) \subset V$. Hence h is continuous on (X, τ) . Since (X, τ) has the fixed point property, there exists $x \in X$ such that x = h(x) = f(x). Therefore, (X, σ) has the $st.\theta scFPP$. \Box

References

- F. Cammaroto and T. Noiri, On the *delta* continuous fixed point property , *Internat. J. Math & Math . Sci .* 13(1)(1990), 45 - 50.
- [2] G. Di Maio and T. Noiri, Weak and strong forms of irresolute functions, Third national Conference on Topology (Italian)(Trieste, 1986).Rend. Circ. Math. Palermo(2) suppl.18(1988), 255-273.
- [3] N. Levine, Semi open sets and semi continuity in topological spaces, Amer
 Math. Monthly 70 (1963), 36 41.
- [4] Seong hoon cho, A Note on almost s continuous functions, Kyungpook Math. J., 42 (2002), 171 -175 27(4)(1981), 343-348.
- [5] S.G. Crossley and S.K. Hildebrand, Semi closed sets and semi continuity in topological spaces, *Texas J. Sci.*, 22 (1971), 123-126.
- [6] T. Noiri, On the δ continuous functions, J. Korean Math . Soc., 16 (1980), 161-166.

(Received 30 May 2007)

N. Puturong Mathematics Program Faculty of Science Udonthani Rajabhat University Udonthani 41000, THAILAND. e-mail: naputurong@hotmail.com