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On Strongly θ - Semi - Continuous Functions
N. Puturong

Abstract : A function f : X → Y from a topological space X into a topological
space Y to be strongly θ-semi-continuous if and only if for each x ∈ X and each
open set V containing f(x) , there exists a semi- open set U containing x such
that f(scl U) ⊂ V . In this paper gives some characterizations of strongly θ-
semi-continuous functions , including to apply strongly θ-semi-continuous to the
retraction and strongly θ-semi-continuous fixed point property.
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1 Introduction

N. Levine [3] has defined a function f : X → Y from a topological space X into a
topological space Y to be semi-continuous ( denoted by ”s.c ) if f−1(U) is semi-
open set in X for every open set U in Y . Also, T. Noiri [6] has independently
defined a function f : X → Y from a topological space X into a topological space
Y to be strongly θ-continuous ( denoted by st. θc ) if for each x ∈ X and each
open set V containing f(x), there exists an open set U containing x such that
f

(
U

) ⊂ V . Seong Hoon Cho [4] has the notion of a type of converges for nets
that we called sθ-converges.

F. Cammaroto and T. Noiri [1] defined and investigated the δ-continuous re-
traction and the δ-continuous fixed point property.

In the present paper, author has define and study the strongly θ-semi-continuous
functions. In section 2, preliminaries. Section 3 gives some characterizations of
strongly θ-semi-continuous functions. Section 4 deals with the retraction of a topo-
logical space by strongly θ-semi-continuous functions and the fixed point property
in relation to strongly θ-semi-continuous functions.

2 Preliminaries

Definition 2.1. [3] Let A be subset of a topological space X. A is said to be
semi-open set in X if there exists an open set O of X such that O ⊂ A ⊂ O. We
will be denoted the class of all semi-open sets in X by S.O.(X).
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Remark 2.2. [3] If O is an open set in X then O ∈ S.O.(X).

Definition 2.3. [5] Let A be subset of a topological space X.
(1) A is said to be semi-closed set in X if Ac ∈ S.O.(X).
(2) The semi-closure of A , denoted by scl A ,

scl A = ∩{F/F is semi− closed set in X such that A ⊂ F}
(3) The semi-interior of A, denoted by sInt A ,

sInt A = ∪{O/O ∈ S.O.(X)such that O ⊂ A}.

Theorem 2.4. [5] Let A and B be subsets of a topological space X. Then :
(1) If A is closed set, then A is semi-closed set.
(2) A ⊂ scl A ⊂ A.
(3) If A ⊂ B, then scl A ⊂ scl B.
(4) A is semi-closed set if and only if scl A = A.
(5) A ∈ S.O.(X) if and only if sInt A = A.
(6) sInt A = X − scl (X −A).
(7) sInt A ⊂ A.

Definition 2.5. [2] Let A be subset of a topological space X and x ∈ X. A point
x is called a semi θ-adherent point of A if scl U ∩ A 6= ∅ for every semi-open
set U containing x. The set of all semi θ-adherent points of A is called the semi
θ-closure of A and is denoted by sclθA.

Definition 2.6. Let D be a directed set and (xd) is a net in a topological space
X. A net (xd) is said to sθ-converges to x0 ∈ X if for each semi-open set U
containing x0, there exists d0 ∈ D such that xd ∈ scl U for all d > d0.

3 Characterizations

Definition 3.1. Let X = (X, τX) and Y = (Y, τY ) be topological spaces.
A mapping f : X → Y is said to be strongly θ-semi-continuous at a point x0 ∈ X
if for each open set V containing f(x0), there exists a semi-open set U containing
x0 such that f(scl U) ⊂ V . f is said to be strongly θ-semi-continuous on X if it
is strongly θ-semi-continuous at every point of X, we shall denote by f is st. θsc
on X .

Example 3.2. Let X = {a, b, c, d}, Y = {x, y, z},
τX = {∅, {b}, {c}, {b, c}, {a, b, c}, X} be topology on X,
τy = {∅, {y}, {z}, {y, z}, Y } be topology on Y
and f : X → Y such that f(a) = x, f(b) = yandf(c) = f(d) = z.

Show that f is st. θsc on X.
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Solution For (X, τx},
Closed sets in X ; ∅, {d}, {a, d}, {a, b, d}, {a, c, d} and X.
Semi-open sets in X(S.O.(X)); ∅, {b}, {c}, {b, c}, {a, b}, {b, d}, {a, c}, {c, d}, {a, c, d},

{b, c, d}, {a, b, d}, {a, b, c} and X
Semi-closed sets in X ; ∅, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, d}, {c, d}, {a, b, d},

{a, c, d} and X.
Consider at a point a :

Let V ∈ τY such that f(a) ∈ V then V is to be Y . There exists {a, c} ∈ S.O.(X)
such that a ∈ {a, c} and f(scl{a, c}) = f({a, c}) = {x, z} ⊂ V . Hence f is st. θsc
at a point a.

Consider at a point b :
Let V ∈ τY such that f(b) ∈ V then V is to be {y}, {y, z} and Y. There exists
{b} ∈ S.O.(X) such that b ∈ {b} and f(scl{b}) = f({b}) = {y} ⊂ V . Hence f is
st.θsc at a point b.

Consider at a point c :
Let V ∈ τY such that f(c) ∈ V then V is to be {z}, {y, z} and Y . There exists
{c} ∈ S.O.(X) such that c ∈ {c} and f(scl{c}) = f({c}) = {z} ⊂ V . Hence f is
st. θsc at a point c.

Consider at a point d :
Let V ∈ τY such that f(d) ∈ V then V is to be {z}, {y, z} and Y . There exists
{c, d} ∈ S.O.(X) such that d ∈ {c, d} and f(scl {c, d}) = f({c, d}) = {z} ⊂ V .
Hence f is st. θsc at a point d. Therefore, f is st. θsc on X.

Example 3.3. Let X 6= ∅ and X = Y . (X, τX) and (Y, τY ) be topological spaces
such that τY be trivial topology on Y , f : X → Y such that f(x) = x for all x ∈ X.
Show that f is st. θsc on X.

Solution Since f(x) = x for all x ∈ X and τY be trivial topology on Y , then
an open set V containing f(x) is to be Y . There exists an open set X such that
x ∈ X, thus there exists a semi-open set X such that x ∈ X while X be a closed
set. By Theorem 2.4(1), we have X be a semi-closed set and by Theorem 2.4(4),
we have scl X = X. Hence f(scl X) = f(X) ⊂ Y , thus f is st. θsc at a point x.
Therefore, f is st. θsc on X.

Remark 3.4. Let X and Y be topological spaces and f : X → Y . Then :
(1) If f is st. θc on X, then f is st. θsc on X.
(2) If f is st. θsc on X, then f is s.c on X.

Proof. (1) Let f is to be st. θc on X. Then for each x ∈ X and V ∈ τY such
that f(x) ∈ V , there exists an open set U such that x ∈ U and f(U) ⊂ V . Since
if U ∈ τx then U ∈ S.O.(X) and since scl U ⊂ U , There exists a semi-open
set U such that x ∈ U and f(scl U) ∈ f(U). Since f(U) ⊂ V , hence we have
f(scl U) ⊂ V . Therefore, f is st. θsc on X.

(2) Let f is to be st. θsc on X. Then for each x ∈ X and V ∈ τY such that
f(x) ∈ V , there exists a semi-open set U of X such that x ∈ U and f(scl U) ⊂ V .
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Since U ⊂ sclU , we have f(U) ⊂ f(scl U). Hence f(U) ⊂ V .Thus there exists
a semi-open set U of X such that x ∈ U and f(U) ⊂ V . Therefore, f is s.c on
X.

The converse of Remark 3.4(1), (2) are false, as shown by Example 3.5(1), (2).

Example 3.5. (1) From Example 3.2, show that f is not st. θc on X

Solution Consider at a point b :
Let V ∈ τY such that f(b) ⊂ V , hence V is to be {y}, {y, z} and Y . Open
sets in X containing b ; {b}, {b, c}, {a, b, c} and X. Since f({b}) = f({a, b, d}) =
{x, y, z} 6⊂ V, f({b, c}) = f(X) = {x, y, z} 6⊂ V, f({a, b, c}) = f(X) = {x, y, z} 6⊂
V and f(X) = f(X) = {x, y, z} 6⊂ V for some V ∈ τY . Hence f is not st. θc on
X. Therefore, f is st.θsc on X but it is not st. θc on X.

(2) Let X = {a, b, c, d}, Y = {1, 2, 3, 4}, τX = {∅, {a}, {c}, {a, c},
{b, c}, {a, b, c}, X} be topology on X, τY = {∅, {1}, {3}, {1, 3}, {1, 2}, {1, 2, 3}, Y }
be topology on Y, and f : X → Y such that f(a) = 3, f(b) = 2, f(c) = 1 and
f(d) = 4. Show that f is s.c on X but it is not st. θsc on X.
Solution For (X, τX) , Closed sets in X; X, {b, c, d}, {a, b, d}, {b, d}, {a, d}, {d}
and ∅. Semi-open sets in X ; ∅, {a}, {c}, {a, c}, {b, c}, {a, d}, {c, d}, {a, b, c}, {b, c, d},
{a, c, d} and X. Semi-closed sets in X ; X, {b, c, d}, {a, b, d}, {b, d}, {a, d}, {b, c},
{a, b}, {a}, {b}, {d} and ∅.

(1) Show that f is s.c on X.
Open sets in Y ; ∅, {1}, {3}, {1, 3}, {1, 2}, {1, 2, 3} and Y . Since f−1(∅) = ∅,
f−1({1}) = {c}, f−1({3}) = {a}, f−1({1, 3}) = {a.c}, f−1({1, 2}) = {b, c},
f−1({1, 2, 3}) = {a, b, c} and f−1(Y ) = X. Hence for each open set V in Y ,
we have f−1(V ) ∈ S.O.(X). Therefore, f is s.c on X.

(2) Show that f is not st.θsc on X.
Consider at a point c :

Let V ∈ τY such that f(c) ∈ V , hence V is to be {1}, {1, 3}, {1, 2}, {1, 2, 3} and Y .
Semi - open sets in X containing c ; {c}, {a, c}, {b, c}, {c, d}, {a, b, c}, {b, c, d}, {a, c, d}
and X. Since f(scl{c}) = f(X∩{b, c, d}∩{b, c}) = f({b, c}) = {1, 2} 6⊂ V, f(scl{a, c}) =
f(X) = {1, 2, 3, 4} 6⊂ V, f(scl{b, c}) = f({b, c}) = {1, 2} 6⊂ V, f(scl{c, d}) =
f(X∩{b, c, d}) = f({b, c, d}) = {1, 2, 4} 6⊂ V, f(scl{a, b, c}) = f(X) = {1, 2, 3, 4} 6⊂
V, f(scl{b, c, d}) = f({b, c, d}) = {1, 2, 4} 6⊂ V, f(scl{a, c, d}) = f(X) = {1, 2, 3, 4} 6⊂
V , and f(sclX) = f(X) = {1, 2, 3, 4} 6⊂ V for some V ∈ τY .

Hence f is not st.θsc at a point c. Therefore , f is not st. θsc on X.

Remark 3.6. Let X and Y be topological spaces. If f : X → Y is continuous on
X and (Y, τY ) is regular space, then f is st. θsc on X.

Proof. Let x ∈ X and V ∈ τY such that f(x) ∈ V . We have V c is a closed set
in Y and f(x) /∈ V c. Since (Y, τY ) is regular space. There exists A,B ∈ τY such
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that A ∩ B = ∅, f(x) ∈ A and V c ⊂ B, we have A ⊂ Bc. Hence A ⊂ Bc and
Bc ⊂ V . Since Bc is a closed set, hence Bc = Bc. Thus A ⊂ V . Since f is
continuous on X and A ∈ τY , we have f−1(A) ∈ τX . Since f(x) ∈ A , we have
x ∈ f−1(A). Hence x ∈ f−1(A) ⊂ scl f−1(A) ⊂ f−1(A) ⊂ f−1(A) ⊂ f−1(V ).
Thus f(scl f−1(A)) ⊂ V . Since f−1(A) is an open set, we have f−1(A) is a semi-
open set. There exists a semi- open set U = f−1(A) in X such that x ∈ U and
f(scl U) ⊂ V . Therefore, f is st. θsc on X.

From Remark 3.6 if (Y, τY ) is not regular space then f is not necessary to be
st. θsc on X, as show by Example 3.7.

Example 3.7. From Example 3.5(2) , show that if f is continuous on X and
(Y, τY ) is not regular space, then f is not st. θsc on X.

Solution Open sets in Y ; ∅, {1}, {3}, {1, 3}, {1, 2}, {1, 2, 3} and Y . Closed sets
in Y ; Y, {2, 3, 4}, {1, 2, 4}, {2, 4}, {3, 4}, {4} and ∅. Since f−1(∅) = ∅, f−1({1}) =
{c}, f−1({3}) = {a}, f−1({1, 3}) = {a, c}, f−1({1, 2}) = {b, c}, f−1({1, 2, 3}) =
{a, b, c} and f−1(Y ) = X. Thus for each open sets V in Y , hence f−1(V ) is
open sets in X. Therefore , f is continuous on X.

Next , we shall show that (Y, τY ) is not regular space. Consider at a point 2
, for 2 ∈ Y and a closed set {4} such that 2 /∈ {4}. Open sets in Y containing
2 ; {1, 2}, {1, 2, 3} and Y . Since {4} ⊂ Y, {1, 2} ∩ Y 6= ∅, {1, 2, 3} ∩ Y 6= ∅ and
Y ∩ Y 6= ∅ , hence (Y, τY ) is not regular space. By Example 3.5(2) , we have f is
not st. θsc on X. Therefore , if f is continuous on X and (Y, τY ) is not regular
space then f is not st. θsc on X.

The converse of Remark 3.6 is false, as shown by Example 3.8.

Example 3.8. From Example 3.2 , show that f is not continuous on X.

noindent Solution Since {z} ∈ τY . But f−1({z}) = {c, d} /∈ τX . Hence , f
is not continuous on X. Therefore , f is st. θsc on X but it is not continuous on
X.

Definition 3.9. Let A be subset of a topological space X. The semi θ-interior of
A , denoted by sIntθA ,

sIntθA = ∪{O|O ∈ S.O.(X) such that scl O ⊂ A} .

Example 3.10. Let X = {a, b, c, d} and τX = {∅, {a}, {b, c}, {a, d}, {a, b, c}, X} be
topology on X. Find sIntθ{a}, sIntθ{b}, sIntθ{b, c}, sIntθ{b, d}, sIntθ{a, c, d}
and sIntθ X .
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Solution Open sets in X ; ∅, {a}, {b, c}, {a, d}, {a, b, c} and X.
Closed sets in X ; X, {b, c, d}, {a, d}, {b, c}, {d} and ∅.
Semi-open sets in X ; ∅, {a}, {b, c}, {a, d}, {a, b, c} and X.
Semi-closed sets in X ; X, {b, c, d}, {a, d}, {b, c}, {d} and ∅.

Since scl A = ∪{F |F is semi− closed set in X such that A ⊂ F}, hence
scl ∅ = ∅, scl {a} = {a, d} ∩ X = {a, d}, scl {b, c} = {b, c}, scl {a, d} =
{a, d}, scl {a, b, c} = X and scl X = X.

Since sIntθA = ∪{O|O ∈ S.O.(X) such that scl O ⊂ A} , hence sIntθ{a} =
∅, sIntθ{b} = ∅, sIntθ{b, c} = {b, c}, sIntθ{a, c, d} = {a}∪{a, d} = {a, d}, Intθ{b, d} =
∅ and sIntθ = X.

Lemma 3.11. Let A be subset of a topological space X. Then :
(1) sIntθ(X −A) = X − sclθA.
(2) sIntθA ⊂ sIntθA.
(3) A ⊂ sclθA.

Proof. (1) sIntθ(X −A) = X − sclθA.
(⇒) Let x ∈ sIntθ(X − A). Then there exists a semi-open set U containing x
such that x ∈ scl U ⊂ (X − A). Thus scl U ∩ A = ∅ and x /∈ sclθA . Hence
x ∈ X − sclθA . Therefore , we obtain sIntθ(X −A) ⊂ X − sclθA.
(⇐) Let x ∈ X − sclθA. Then x /∈ sclθA. There exists a semi - open set U
containing x such that scl U ∩ A = ∅. So, x ∈ U ⊂ scl U ⊂ X − A. Hence
x ∈ sIntθ(X −A). Therefore, we obtain X − sclθA ⊂ sIntθ(X −A).

(2) sIntθA ⊂ sIntθA.
Let x ∈ X and x ∈ sIntθA . Since sIntθA = ∪{O|O ∈ S.O.(X)such thatscl O ⊂
A}, hence x ∈ ∪{O|O ∈ S.O.(X)such thatscl O ⊂ A}. By Theorem 2.4 (2) , we
have O ⊂ scl O. Hence, we have x ∈ ∪{O|O ∈ S.O.(X)such thatO ⊂ A}. By
Definition 2.3(3), hence x ∈ sInt A. Therefore, sIntθA ⊂ sInt A .

(3)A ⊂ sclθA.
Since sIntθ(X −A) = X − sclθA and sInt A = X − scl(X −A). By (2), we have
sIntθ(X−A) ⊂ sInt(X−A). Thus X−sclθA ⊂ X−scl A. Hence scl A ⊂ sclθA.
By Theorem 2.4(2), we have A ⊂ scl A. Therefore, A ⊂ sclθA.

Theorem 3.12. Let X and Y be topological spaces. For a function f : X → Y ,
the following statements are equivalent :

(1) f is st. θsc on X.
(2) For each x ∈ X and each V ⊂ Y such that f(x) ∈ IntV , there exists

U ⊂ X such that x ∈ sIntθU and f(U) ⊂ V .
(3) f−1(IntB) ⊂ sIntθf

−1(B) for each B ⊂ Y .
(4) sclθf

−1(B) ⊂ f−1(B) for each B ⊂ Y .
(5) f−1(G) ⊂ sIntθf

−1(G) for each open set G in Y .

Proof. (1) ⇒ (2) Let x ∈ X and V ⊂ Y such that f(x) ∈ IntV .
There exists G ∈ τY such that f(x) ∈ G and G ⊂ V . Since f is st. θsc on X,
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hence there exists A ∈ S.O.(X) such that x ∈ A and f(scl A) ⊂ G ⊂ V . Since
sIntθ(sclA) = ∪{A|A ∈ S.O.(X) such that scl A ⊂ scl A}. Let U = scl A. Hence,
there exists U ⊂ X such that x ∈ sIntθU and f(U) ⊂ V .

(2) ⇒ (3) Let B ⊂ Y show that f−1(IntB) ⊂ sIntθf
−1(B). Let x ∈

f−1(IntB)then f(x) ∈ IntB. By (2), there exists U ⊂ X such that x ∈ sIntθU
and f(U) ⊂ B. Hence f−1(f(U)) ⊂ f−1(B). By Lemma 3.11(2), sIntθU ⊂
sInt U and by Theorem 2.4(7) , sInt U ⊂ U . Hence sIntθU ⊂ U and since
U ⊂ f−1(f(U)). Hence x ∈ sIntθU ⊂ f−1(B). Since x ∈ sIntθU = ∪{O|O ∈
S.O.(X) such that sclO ⊂ U} and U ⊂ f−1(B). Therefore, x ∈ sIntθf

−1(B) =
∪{O|O ∈ S.O.(X) such that sclO ⊂ U ⊂ f−1(B)}. Thus f−1(IntB) ⊂ f−1(B)
for each B ⊂ Y .

(3) ⇒ (4) Let B ⊂ Y show that sclθf
−1(B) ⊂ f−1(B).

X − f−1(B) = X − f−1(Y − Int(Y −B))

= X − f−1(Y ) + f−1(Int(Y −B)) = X −X + f−1(Int(Y −B))

X −X + f−1(Int(Y −B)) = f−1(Int(Y −B))

⊂ sIntθf
−1(Y −B) (By (3))

= sIntθ[f−1(Y )− f−1(B)]

= sIntθ[X − f−1(B)]

= X − sclθf
−1(B) (By Lemma 3.11(1))

Thus X−f−1(B) ⊂ sclθf
−1(B). Therefore, sclθf

−1(B) ⊂ f−1(B) for each B ⊂ Y .

(4) ⇒ (5) Let G ∈ τY show that f−1(G) ⊂ sIntθf
−1(G).

X − sIntθf
−1(G) = sclθ(X − f−1(G)) (By Lemma 3.11(1))

= sclθ(f−1(Y )− f−1(G))

= sclθf
−1(Y G)

= ⊂ f−1(Y −G) (By (4))

= f−1(Y − Int (Y − (Y −G)))

= f−1(Y − Int G)

= f−1(Y )− f−1(Int G) = X − f−1(G)

Thus X − sIntθf
−1(G) ⊂ X − f−1(G). Therefore, f−1(G) ⊂ sIntθf

−1(G) for
each G ∈ τY .

(5) ⇒ (1) Let x ∈ X and V ∈ τY such that f(x) ∈ V . Hence x ∈ f−1(V ).
By (5) , we have f−1(V ) ⊂ sIntθf

−1(V ). Hence x ∈ sIntθf
−1(V ). Since

sIntθf
−1(V ) = ∪{O|O ∈ S.O.(X) such that scl O ⊂ f−1(V )}. Thus there

exists U ∈ S.O.(X) such that x ∈ U and f(scl U) ⊂ V . Therefore, f is st. θsc on
X.
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Theorem 3.13. Let X and Y be topological spaces. For a function f : X → Y ,
the following statements are equivalent :

(1) f is st. θsc on X.
(2) For each x0 ∈ X and each net (xd) in X. If (xd)sθ-converges to x0,

then the net (f(xd)) converges to f(x0).

Proof. (1) ⇒ (2) Let x0 ∈ X and (xd) be a net in X such that (xd) sθ-converges
to x0. Let V be an open set containing f(x0). Since f is st. θsc on X , there exists
a semi-open set U containing x0 such that f(scl U) ⊂ V . Since (xd)sθ-converges
to x0, there exists d0 such that xd ∈ scl U for all d > d0. Hence f(xd) ∈ f(scl U)
for all d > d0. Since f(scl U) ⊂ V , hence f(xd) ⊂ V for all d > d0. Thus (f(xd))
converges to f(x0)..

(2) ⇒ (1) Suppose that f is not st. θsc on X. Then there exists x0 ∈ X and
an open set V containing f(x0) such that f(scl U) 6⊂ V for all semi-open sets U
containing x0. Thus there exists xU ∈ scl U such that f(xU ) /∈ V . Consider the
net {xU |Uis semi − open set containing x0}. Then (xU )sθ-converges to x0 but
(f(xU )) does not converges to f(x0). Since this contradiction (2). Therefore, f is
st. θsc on X.

4 The strongly θ - semi - continuous retraction
and fixed point property

Definition 4.1. Let X be topological space and A ⊂ X. A is said to be strongly
θ-semi-continuous retract of X if there exists f : X → A is st. θsc on X such that
f is the identity on A. f is called a strongly θ-semi-continuous retraction.

Example 4.2. Let X = {a, b, c, d}, A = {a, b, c},
τX = {∅, {b}, {c}, {b, c}, {a, b, c}, X} be topology on X,
τA = {∅, {b}, {c}, {b, c}, A} be topology on A and f : X → A such that f(a) =

a, f(b) = b and f(c) = f(d) = c. Show that f is a strongly θ-semi-continuous
retraction.

Solution Similar to Example 3.2, hence f is st. θsc on X. Since f is the
identity on A. Hence f is a strongly θ-semi-continuous retraction.

Lemma 4.3. Let X, Y and Z be topological spaces. If f : X → Y is st. θsc on X
and g : Y → Z is st. θc on Y , then gof is st. θsc on X.

Proof. Let x ∈ X and V ∈ τZ such that (gof)(x) ∈ V . Hence g(f(x)) ∈ V and
f(x) ∈ Y . Since g is st. θc on Y , there exists an open set O containing f(x) such
that

g(O) ⊂ V. (4.1)
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Since f is st.θc on X , there exists a semi - open set U containing x such that
f(sclU) ⊂ O. By Theorem 2.4 (2) , we have O ⊂ O. Hence

g(O) ⊂ g(O). (4.2)

Since f(sclU) ⊂ O , hence
g(f(sclU)) ⊂ g(O). (4.3)

By (4.1) , (4.2) and (4.3) , hence g(f(scl U) ⊂ g(O) ⊂ g(O) ⊂ V . Thus
(gof)(scl U) ⊂ V . Therefore, gof is st. θsc on X.

Theorem 4.4. Let X be topological space and A ⊂ X. If A is a strongly θ-semi-
continuous retract of X , then for every space Y , every g : A → Y is st. θc on A
can be extended to g : X → Y is st. θsc on X.

Proof. Let Y be topological space and g : A → Y is st. θc on A. Since A is a
strongly θ-semi-continuous retract of X, there exists f : X → A is st. θsc on X
and f is the identity on A. By Lemma 4.3, we have gof : X → Y is st. θc on X.
Since gof(x) = g(f(x)) = g(x) for all x ∈ A. Therefore, gof is an extension of
g.

Theorem 4.5. Let X is Hausdorff space. If A is a strongly θ-semi-continuous
retract of X, then sclθA = A.

Proof. Suppose that sclθ A 6= A. By Lemma 3.11(3), we have A ⊂ sclθA. Hence
there exists x ∈ (sclθA−A), Thus x /∈ A. Since A is a strongly θ-semi-continuous
retract, hence f(x) 6= x for some x ∈ X. Since X is Hausdorff space , there exists
disjoint open sets U and V such that x ∈ U and f(x) ∈ V . Thus U ⊂ X − V . By
Theorem 2.4(3), we have scl U ⊂ scl(X − V ) = X − V , thus scl U ∩ V = ∅. Since
U ⊂ scl U , hence x ∈ scl U for open set U containing x.

Let W is an open set containing x. Since W ⊂ scl W , hence x ∈ scl W . Since
(U ∩ W ) ⊂ scl(U ∩ W ), hence x ∈ scl(U ∩ W ) for open set U ∩ W containing
x. Since x ∈ sclθA such that sclθA = {x ∈ X|scl U ∩ A 6= ∅ for each semi −
open set U containing x}, hence scl(U ∩ W ) ∩ A 6= ∅. Since scl(U ∩ W ) ⊂
scl U ∩ scl W , hence(scl U ∩ scl W ) ∩A 6= ∅.

Let a ∈ (scl U ∩ scl W ) ∩ A 6= ∅. We have a ∈ scl U, a ∈ scl W and a ∈ A.
Since a ∈ A hence f(a) = a, a ∈ scl W hence f(a) ∈ f(scl W ) and a ∈ scl U hence
a /∈ V . Thus f(a) /∈ V , we have f(scl W ) 6⊂ V for semi- open set w containing x.
Thus this contradiction f is st. θsc on X. Therefore, sclθA = A.

The converse of Theorem 4.2 is false , as shown by Example 4.6 , 4.7.
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Example 4.6. Let X = {a, b, c, d}, A = {a, d} ,
τX = {∅, {a}, {b, c}, {a, b, c}, X} be topology on X ,

τA = {∅, A} be topology on A
and f : X → A such that f(a) = a, f(b) = f(c) = f(d) = d. Show that

(1) (X, τX) is not Hausdorff space.
(2) A is a strongly θ - semi - continuous retract of X. (3) sclθA = A.

Solution
(1) Consider at b, c such that b 6= c :

Open set V containing b is to be {b, c}, {a, b, c} and X.
Open set U containing c is to be {b, c}, {a, b, c} and X.

Hence V ∩ U 6= ∅ , thus (X, τX) is not Hausdorff space.
(2) We must show , f is st.θsc on X and f is the identity on A.

Open sets in A; ∅, {a} and A.
Since f−1(∅) = (∅) ⊂ sIntθf

−1(∅), f1({a}) = {a} ⊂ sIntθf
−1({a}) = {a}

and f−1(A) = A ⊂ AsIntθf
−1(A) = A.

By Theorem 3.12 (5) ⇒(1) , hence f is st.θsc on X. By defined of f , we have f
is identity on A. Therefore , A is a strongly θ - semi - continuous retract of X.

(3) Closed sets in X;X, {b, c, d}, {a, d}, {d} and∅.
Semi - open sets in X; ∅, {a}, {b, c}, {a, d}, {a, b, c}, {b, c, d} and X. Semi - closed
sets in X; X, {b, c, d}, {a, d}, {b, c}, {d}, {a} and ∅.

Consider at a point a :
Semi - open set V in X containing a is to be {a}, {a, d}, {a, b, c} and X. Since
scl{a} = {a}, scl{a, d} = {a, d}, scl{a, b, c} = X and scl X = X , hence scl V ∩A 6=
∅ for each semi - open set V containing a. Thus a ∈ sclθA.

Consider at a point b :
Semi - open set U in X containing b is to be {b, c}, {a, b, c}, {b, c, d} and X. Since
scl{b, c} = {b, c} , hence scl{b, c} ∩A = ∅. Thus b /∈ sclθA.

Consider at a point c :
Similar to a point b , hence c /∈ sclθA.

Consider at a point d :
Semi - open set K in X containing d is to be {a, d}, {b, c, d} and X. Since
scl{a, d} = {a, d}, scl{b, c, d} = {b, c, d} and scl X = X, hence scl K ∩ AThus
d ∈ sclθA , hence sclθA = {a, d}. Therefore , sclθA = A.

Example 4.7. Let X = {x, y, z}, A = {x, y},
τX = {, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, X} be topology on X ,
τA = {∅, {x}, {y}, A} be topology on A

and f : X → A such that f(x) = f(y) = f(z) = x. Show that
(1) (X, τX) is Hausdorff space.
(2) A is not a strongly θ - semi - continuous retract of X.
(3) sclθA = A.

Solution
(1)Consider at x, y such that x 6= y , there exists disjoint open sets {x}, {y}
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such that x ∈ {x}, y ∈ {y}. Consider at x, z such that xneqz , there exists disjoint
open sets {x}, {z} such that x ∈ {x}, z ∈ {z}. Consider at y, z such that y 6= z ,
there exists disjoint open sets {y}, {z} such that y ∈ {y}, z ∈ {z}. Hence (X, τX)
is Hausdorff space.

(2) We must show , f is not st.θsc on X or f is not the identity on A. By
defined of f , we have f is not the identity on A. Therefore , A is not a strongly
θ - semi - continuous retract of X.

(3) Closed sets in X; X, {y, z}, {x, z}, {x, y}, {z}, {y}, {x} and ∅.
Semi open sets in X; ∅, {x}, {y}, {z}, {x, y}, {x, z}, {y, z} and X.
Semi- closed sets in X; X, {y, z}, {x, z}, {x, y}, {z}, {y}, {x} and ∅ .

By Lemma 3.11 (3) , we have A ⊂ sclθA , thus x ∈ sclθA and y ∈ sclθA.
Next , we shall show that z /∈ sclθA. Semi open set S in X containing z is to
be {z}, {x, z}, {y, z} and X. Since scl{z} = {z} , hence scl{z} ∩ A = ∅. Thus
z /∈ sclθA. Therefore , sclθA = A.

Definition 4.8. Let X be topological space. A space X is said to has the strongly
θ - semi - continuous fixed point property if for every f : X → X is st.θsc on
X , there exists an x ∈ X such that f(x) = x. We shall denote by X has the
st.θscFPP .

Example 4.9. Let X = {a, b, c} and τX = {∅, {a}, {b, c}, X} be topology on X.
Consider the existence of st.θscFPP for X.

Solution
Claim that X has not the st.θscFPP . We must show , there exists f : X → X
is st.θsc on X such that f(x) 6= x for all x ∈ X. Let f : X → X such that
f(a) = f(c) = b and f(b) = c. Next , we shall show that f is st.θsc on X. Open
sets in X; ∅, {a}, {b, c} and X. Since f−1(∅) = ∅ ⊂ sIntθf

−1(∅) = ∅, f−1({a}) =
∅ ⊂ sIntθf

−1({a}) = ∅, f−1({b, c}) = X ⊂ sIntθf
−1({b, c}) = sIntθX = X, and

f−1(X) = X ⊂ f−1(X) = sIntθX = X. By Theorem 3.12 (5) ⇒ (1) , hence f is
st.θsc on X. Since f(x) 6= x for all x ∈ X. Therefore , X has not the st.θscFPP .

Lemma 4.10. Let X, Y and Z be topological space. If gof : X → Z is continuous
on X and g : Y → Z is an open bijection , then f is continuous on X.

Proof. Let V is any open set in Y . Since g is an open mapping , hence g(V ) is
an open set in Z. Since gof is continuous on X , hence (gof)−1(g(V )) is an open
set in X. Since (gof)−1(g(V )) = f−1(g−1(g(V ))) = f−1(V ) , hence f−1(V ) is an
open set in X. Therefore , f is continuous on X.

Theorem 4.11. Let (X, τ) is regular space with the st.θscFPP . If σ is a topology
for X stronger than τ and scl G(τ) = scl G(σ) for every G ∈ σ , then (X, σ) has
the fixed point property.
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Proof. Suppose that f : (X, σ) → (X,σ)isanycontinuousfunction. Let g :
(X,σ) → (X, τ) and h : (X, τ) → (X, τ) be the functions defined by g(x) =
h(x) = f(x) for all x ∈ X. Let i : (X, τ) → (X,σ) be the identity function.
Since τ ⊂ σ , hence i is an open bijection. Since f = iog is continuous , by
Lemma 4.10 g is continuous . Next , we shall show that h is st.θsc on X. Let
x ∈ X and h(x) ∈ V . For each open set V in (X, τ) , hence V c is closed set in
(X, τ) and h(x) /∈ V c. Since (X, τ) is regular space , there exists disjoint open
sets A and B such that h(x) ∈ A and V c ⊂ B. We have A ⊂ Bc , then A ⊂ Bc

and Bc ⊂ V . Since Bc is closed set , we have Bc = Bc . Hence (A
(τ) ⊂ V .

Thus h(x) ∈ A ⊂ (A
(τ) ⊂ V . Since g is continuous , hence g−1(A) ∈ σ. Since

h−1(A) = f−1(A) = g−1(A) , hence h−1(A) = f−1(A) ∈ σ . By Theorem 2.4(2)
and scl G(τ) = scl G(σ) for every G ∈ σ , we obtain

x ∈ h−1(A) ⊂ scl h−1(A)(τ) = scl h−1(A)(σ) = scl f−1(A)(σ) ⊂ f−1(A)(σ) (4.4)

Since f is continuous , τ ⊂ σ and (A
(τ) ⊂ V , we obtain

f−1(A)(σ) ⊂ f−1(A)(τ) ⊂ f−1(A)(τ) ⊂ f−1(V ). (4.5)

By (4.4) and (4.5) , we have scl h−1(A) ⊂ f−1(V ). Since h(x) = f(x) for all x ∈ X
, hence f−1(V ) = h−1(V ). Thus scl h−1(A) ⊂ h−1(V ). Now , we set U = h−1(A)
, then we have semi - open set U in (X, τ) with x ∈ U such that h(scl U) ⊂ V .
Hence h is st.θsc on (X, τ). Since (X, τ) has the st.τscFPP , there exists x ∈ X
such that x = h(x) = f(x). Therefore , (X, σ) has the fixed point property.

Lemma 4.12. Let X, Y and Z be topological spaces. If gof : X → Z is st.θsc on
X and g : Y → Z is an open bijection , then f is st.θsc on X.

Proof. Let V is any open set in Y . Since g is an open mapping , hence g(v) is an
open set in Z. Since gof is st.θsc on X , hence (gof)−1(g(V )) ⊂ sIntθ(gof)−1(g(V ))
. Since g is bijection , hence (gof)−1(g(V )) = f−1(g−1(g(V )) = f−1(V ). Hence
f−1(V ) ⊂ sIntθf

−1(V ). By Theorem 3.12 (5) ⇒ (1), hence f is st.θsc on X.

Theorem 4.13. Let (X, τ) is regular space with the fixed point property. If σ is a
topology for X stronger than τ and sclθG

(τ) = sclθG
(σ) and G ∈ σ for each semi

- open set G in (X,σ) , then (X, σ) has the st.θscFPP .

Proof. Suppose that f : (X, σ) → (X, σ) is any st.θsc on X. Let g : (X,σ) →
(X, τ) and h : (X, τ) → (X, τ) be the functions defined by g(x) = h(x) = f(x) for
all x ∈ X. Let i : (X, τ) → (X, τ) be the identity function. Since f = iog is st.θsc
on X and i is an open bijection. By Lemma 4.12 , g is st.θsc on X. By Remark
3.4 (2) , hence g is s.c on X. Next , we shall show that h is continuous. The same
argument as in proof of Theorem 4.11 that , h(x) ∈ A ⊂ A

(τ) ⊂ V for open set
V in (X, τ) containing h(x), A ∈ τ . Since g is s.c on X , hence g−1(A) is semi -
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open in (X,σ). By assumption G ∈ σ for each semi - open set G in (X,σ) , hence
g−1(A) ∈ σ. Since h−1(A) = f−1(A) = g−1(A) , hence h−1(A) = f−1(A) ∈ σ. By
Lemma 3.11 (3) and sclθG

(τ) = sclθG
(σ) for every G ∈ σ , we obtain

x ∈ h−1(A) ⊂ sclθh
−1(A)(τ) = sclθh

−1(A)(σ) = sclθf
−1(A)(σ). (4.6)

Since f is st.θsc on X, τ ⊂ σ and A
(τ) ⊂ V , we obtain

sclθf
−1(A)(σ) ⊂ f−1A

(σ) ⊂ f−1A
(τ) ⊂ f−1(V ). (4.7)

By (4.6) and (4.7) , we have h−1(A) ⊂ f−1(V ). Since h(x) = f(x) for all x ∈ X
, hence f−1(V ) = h−1(V ). Thus h−1(A) ⊂ h−1(V ). Now , we set U = h−1(A)
, then we have open set U in (X, τ) with x ∈ U such that h(U) ⊂ V . Hence h
is continuous on (X, τ). Since (X, τ) has the fixed point property , there exists
x ∈ X such that x = h(x) = f(x). Therefore , (X, σ) has the st.θscFPP .
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