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1 Introduction

Let X and Y be two finite sets. Let f be a function mapping from X to Y .
Let A and B ⊆ X. We say f separates A and B whenf(A) ∩ f(B) = φ. A hash
family F is a family of functions {fi : X → Y, i ∈ {1, 2, ..., N}}, for some positive
integer N . Let n,m and t be positive integers and let w1, w2, ..., wt be positive
integers in non-decreasing order.

Definition 1.1. Let X and Y be two finite sets such that |X| = n and |Y | = m.
Let F be a family of functions {fi : X → Y, i ∈ {1, 2, ..., N}}, for some positive
integer N . Then F is an (N ;n,m, {w1, w2, ..., wt})−separating hash family, or an
SHF(N ;n,m, {w1, w2, ..., wt}) if for any pairwise disjoint C1, C2, ..., Ct ⊆ X such
that |Cj | ≤ wj , j ∈ {1, 2, ..., t}, there exists i ∈ {1, 2, ..., N} such that fi separates
C1, C2, ..., Ct ⊆ X.
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For any SHF(N ;n,m, {w1, w2, ..., wt}), we refer to n, N and {w1, w2, ..., wt}
as its size, length and type, respectively.

We avoid the trivial case by letting m ≥ 2 and t ≥ 2.
Here are some known results on the bounds of separating hash families.

Theorem 1.2. ([1, Theorem 1])
If there exists an SHF(N ;n,m, {w1, w2, ..., wt}), then

n ≤ (w1w2 + u− w1 − w2)md
N

u−1e (1.1)

where u =
∑
i wi.

Theorem 1.3. ([2, Theorem 6])
If there exists an SHF(N ;n,m, {w1, w2, ..., wt}), then

n ≤ (u− 1)md
N

u−1e (1.2)

where u =
∑
i wi.

The following theorem is the best previously known result on the upper bound
of separating hash families of type {1, w}. The theorem is originally in frameproof
codes language.

Theorem 1.4. ([3, Corollary 12])
If there exists an SHF(N ;n,m, {1, w}), then

n ≤

(
N

N − (r − 1)dNw e

)
md

N
w e +O

(
md

N
w e−1

)
,

where r is a unique positive integer in {1, 2, ..., w} such that r ≡ N mod w.

In the following sections we state our new bounds and compare them with the
known results. Section 3 is dedicated to separating hash families of type {1, w}.
The improved bounds for separating hash families of type {w1, w2} are presented
in Section 4.

2 Separating Hash Families Type {1, w}
2.1 Case of length equals 1 mod w

In [4], Trung stated and proved the tight bounds for separating hash families
of type {1, w}, when the length N ≡ 1 mod w. Here we present our alternate
proof.

Theorem 2.1. Let m,n,w and N be positive integers where m > w ≥ 2, n ≥ 2
and N ≡ 1 mod w. If there exists an SHF(N ;n,m, {1, w}), then

n ≤ mdNw e.
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To make it easier for us to generate the proof for Theorem 2.1, it is necessary
that we introduce some additional terms and notation, including definition and a
relevant theorem of a combinatorial object.

Let F = {fi : X → Y, i ∈ {1, 2, ..., N}} be an SHF(N ;n,m, {w1, w2}). For
any x ∈ X, any i ∈ {1, 2, ..., N}, and any I ⊆ {1, 2, ..., N}, let xi = fi(x), and let
xI = (fj(x))j∈I . We say x is unique under I if |{z ∈ X : zI = xI}| = 1, and we
say x is non-unique under I when |{z ∈ X : zI = xI}| > 1.

For any I ⊆ {1, 2, ..., N}, let UI = {x ∈ X : x is unique under I}.

Definition 2.2. A family S of subsets of a set is t-colliding if S does not contain
t pairwise disjoint subsets.

Theorem 2.3 ([3], Theorem 11). Let t, k and ` be positive integers such that
` ≥ tk. Let S be a t-colliding family of subsets of {1, 2, ..., `}, where |S| = k for all
S ∈ S. Then

|S| ≤
(
`

k

)
(t− 1)k

`
.

Proof of Theorem 2.1. Let F = {f1, f2, ..., fwh+1 : X → Y } be an SHF(wh +
1;n,m, {1, w}). Assume for contradiction that n ≥ mh+1 + 1.

For any i ∈ {1, 2, ..., wh+1}, let Ii be the set of all i-subsets of {1, 2, ..., wh+1}.
For any I ∈ Ih+1, there are at most mh+1 possible (h + 1)-tuples for xI . Thus,

there are at least

⌈
mh+1 + 1

mh+1

⌉
= 2 elements x, x′ ∈ X with xI = x′I , by the

pigeonhole principle.
Let Imax ∈ Ih+1 maximize the number of x ∈ X where x 6∈ UImax

.
Let s = |X\UImax

|. It follows from the previous paragraph that s ≥ 2.

Claim. There exits J ∈ Ih such that J ∩ Imax = ∅ and at least
s

w − 1
elements

x ∈ X\UImax
are unique under J .

Once we are confident that the claim is true the rest of the proof follows
naturally. To justify the claim, we define Jx, for each x ∈ X\UImax

, to be the set
of all h-subsets I ′ of {1, 2, ..., wh + 1}\Imax such that x 6∈ UI′ . Then Jx must be
a (w − 1)-colliding family.

Assume that Jx is not a (w − 1)-colliding family. Then there exist pairwise
disjoint sets J1, J2, ..., Jw−1 in Jx such that

w−1⋃
i=1

Ji = {1, 2, ..., wh+ 1}\Imax.

Since x ∈ X\UImax
, there exists an element z ∈ X\UImax

such that z 6= x and
zImax

= xImax
. For each i ∈ {1, 2, ..., w − 1}, let zi be an element of X\{x} such

that ziJi = xJi . This makes f({x}) ∩ f({z, z1, z2, ..., zw−1}) 6= ∅ for all f ∈ F ,
contradicting to the SHF(wh+ 1;n,m, {1, w}) property of F .
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We have that Jx is a (w − 1)-colliding family. By Theorem 2.3, |Jx| ≤(
(w−1)h

h

)
w−2
w−1 .

Note that there are
(
(w−1)h

h

)
different h-subsets of {1, 2, ..., wh + 1}\Imax .

Therefore the number of h-subsets I of {1, 2, ..., wh+ 1}\Imax that x ∈ UI is(
(w − 1)h

h

)
− |Jx| ≥

(
(w − 1)h

h

)
−
(

(w − 1)h

h

)
w − 2

w − 1
=

(
(w − 1)h

h

)
1

w − 1
.

This establishes our claim.

Now we consider UImax
. The number of h-tuples of the form xJ when x ∈ UImax

is at most mh− s

w − 1
by our choice of J . Let the exact number of h-tuples be η,

where η ≤ mh − s

w − 1
. Let X1, . . . , Xη denote the partition of UImax under xJ .

Let j ∈ {1, 2, ..., wh + 1}\J be fixed, and define I0 ∈ Ih+1 by I0 = J ∪ {j}.
Observe that there are at most m symbols occur in the jth coordinate. Hence each
Xi contributes at least |Xi| −m non-unique (h+ 1)-tuples under I0.

Therefore, the number of x ∈ X that are non-unique under I0 is at least

|X\UI0 | ≥
η∑
h=1

(|Xi| −m)

=

η∑
h=1

|Xi| −
η∑
h=1

m

= |UImax | − ηm

≥ (mh+1 + 1− s)−
(
mh − s

w − 1

)
m

= 1 + s(
m

w − 1
− 1)

> s.

Since m ≥ 2(w − 1), which contradicts our choice of Imax.

Thus, n ≤ mh+1 as required.

2.2 Case of length between w and 2w

In this section, we focus on improving the previously known bounds for sep-
arating hash families of type {1, w}, when the length N satisfies w < N ≤ 2w.
We will first compare the previously known results. Then state and prove the new
bounds. Our bound is as least as good as the previously known bounds. Moreover,
it is tight for the case of N = w + 2 as constructed by orthogonal arrays in [5].

Let m,n,w be positive integers greater than 1 and let r be an integer such
that 0 < r ≤ w. Then w < w + r ≤ 2w. From Theorems 1.3 and 1.4, we can
derive the two following results on the upper bound of separating hash families.
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Corollary 2.4. Let m,n,w and r be positive integers where m > w ≥ 2, n ≥ 2
and 0 < r ≤ w. If there exists an SHF(w + r;n,m, {1, w}), then

n ≤ wm2.

Corollary 2.5. Let m,n,w and r be positive integers where m > w ≥ 2, n ≥ 2
and 0 < r ≤ w. If there exists an SHF(w + r;n,m, {1, w}), then

n ≤ γm2 +O (m) ,

where γ = w+r
w−r+2 .

Note that 1 ≤ γ ≤ w, which equality occurs only when r = 1 and r = w. Hence
the leading term in Corollary 2.5 is better than the leading term in Corollary 2.4.

The next theorem is our new result. Notice that the term O (m) is eliminated
from the bounds in Theorem 2.5.

Theorem 2.6. Let m,n,w and r be positive integers where m > w ≥ 2, n ≥ 2
and 0 < r ≤ w. If there exists an SHF(w + r;n,m, {1, w}), then

n ≤ γm2,

where γ = w+r
w−r+2 .

Recall the notions of xi, xI and UI from Section 3. Inspired by the proof of
Theorem 1.4 in [3], we generate the proof as follows.

Proof of Theorem 2.6. Let F = {f1, f2, ..., fw+r : X → Y } be an SHF(w +
r;n,m, {1, w}).

Let S1, S2, ..., Sw be pairwise disjoint subsets of {1, 2, ..., w+r}, where cardinal-
ity of Si is 2 for i ≤ r and 1 otherwise. It is not difficult to see that S1∪S2∪...∪Sw =

{1, 2, ..., w+ r} since Si are pairwise disjoint and

w∑
i=1

|Si| = 2r+ 1(w− r) = w+ r.

Moreover, it can be seen from the following contradiction that US1 ∪US2 ∪ ...∪
USw = X.

Assume for a contradiction that US1
∪US2

∪ ...∪USw
6= X. Then, there exists

x ∈ X\ (US1
∪ US2

∪ ... ∪ USw
). Hence x 6∈ USi

for all i ∈ {1, 2, ..., w}. Therefore,
for every i ∈ {1, 2, ..., w}, there exists yi ∈ X\{x} such that fj(y

i) = fj(x)
for all j ∈ Si, i.e., none of function fj , j ∈ Si can separate x and yi. Let
C1 = {x}, C2 = {y1, ..., yw}. We have |C1| ≤ 1, |C2| ≤ w and C1, C2 are disjoint.
Since S1 ∪ S2 ∪ ... ∪ Sw = {1, 2, ..., w + r}, none of function fj ∈ F can separate
C1 and C2, contradicts the SHF(w + r;n,m, {1, w}) property of F . Therefore,
US1
∪ US2

∪ ... ∪ USw
= X.

Let W =
⋃

S⊆{1,2,...,w+r},
|S|=1

US and let Z = X\W . For any I ⊆ {1, 2, ..., w + r},

define ΓI = UI ∩ Z.
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For any choice of S1, ..., Sw, whenever i ≥ r+1, we have that ΓSi = USi∩Z = ∅
and

ΓS1
∪ ΓS2

∪ ... ∪ ΓSr
= (US1

∩ Z) ∪ (US2
∩ Z) ∪ ... ∪ (USr

∩ Z)

= (US1
∩ Z) ∪ (US2

∩ Z) ∪ ... ∪ (USw
∩ Z)

= X ∩ Z
= Z. (2.1)

Since |U{i}| ≤ m for all i ∈ {1, 2, ..., w+ r} and by the definition of Z and W ,
we have

|Z| = |X\W |
≥ |X| − (|U{1}|+ |U{2}|+ ...+ |U{w+r}|)

= n−
∑

i∈{1,2,...,w+r}

|U{i}|. (2.2)

Next, we improve our upper bound of SHF(w + r;n,m, {1, w}) through the
upper bound on |Z| by double counting the elements of the following set K:

K = {(x, S) : x ∈ ΓS , S ⊆ {1, 2, ..., w + r} of cardinality 2}.

For any x ∈ Z, let Jx be defined by

Jx = {S ⊂ {1, 2, ..., w + r} : |S| = 2 and x 6∈ ΓS}.

Once x is fixed, there are
(
w+r
2

)
− |Jx| choices for S such that (x, S) ∈ K.

Jx is r-colliding since if there exist pairwise disjoint subsets S1, S2, ..., Sr ∈ Jx,
then x 6∈ ΓS1 ∪ ΓS2 ∪ ...∪ ΓSr . This implies x 6∈ Z by (2.1), contradicts our choice
of x. Hence, Jx is r-colliding. Therefore, by Theorem 2.3,

|Jx| ≤
(
w + r

2

)
2(r − 1)

w + r
. (2.3)
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Therefore,

|K| =
∑
x∈Z

((
w + r

2

)
− |Jx|

)
≥
∑
x∈Z

((
w + r

2

)
−
(
w + r

2

)
2(r − 1)

w + r

)
by (2.3)

= |Z|
((

w + r

2

)
−
(
w + r

2

)
2(r − 1)

w + r

)

≥

n− ∑
i∈{1,2,...,w+r}

|U{i}|

((w + r

2

)
−
(
w + r

2

)
2(r − 1)

w + r

)
by (2.2)

=

(
w+r
2

)
γ

n− ∑
i∈{1,2,...,w+r}

|U{i}|

 .

Hence, we have

|K| ≥
(
w+r
2

)
γ

n− ∑
i∈{1,2,...,w+r}

|U{i}|

 . (2.4)

On the other hand, for any fixed S, there are |ΓS | choices for x such that
(x, S) ∈ K. Let S = {i, j}, we have

ΓS = US ∩ Z
= US\W
⊆ US\(U{i} ∪ U{j}).

Hence, for any x in ΓS , x is unique under S, but non-unique under {i} and
{j}. The combination of functions fi and fj can give up to m2 different images
(fi(x), fj(x)) for element x ∈ X. However, each unique symbol a of fi(x) and each
unique symbol b of fj(x) rules out m different images (fi(x), fj(x)) from elements
of ΓS . The image (a, b) is counted twice. Hence there are at most

m2 −m(|U{i}|+ |U{j}|) + |U{i}||U{j}|

different images (fi(x), fj(x)) for element x ∈ ΓS .
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Now, we have

|K| =
∑

S⊆{1,2,...,w+r},
|S|=2

|ΓS |

≤
∑

S⊆{1,2,...,w+r}
|S|=2

(m2 −m(|U{i}|+ |U{j}|) + |U{i}||U{j}|)

=
1

2

∑
i,j∈{1,2,...,w+r}

i6=j

(m2 −m(|U{i}|+ |U{j}|) + |U{i}||U{j}|)

=

(
w + r

2

)
m2 − (w + r − 1)m

∑
i∈{1,2,...,w+r}

|U{i}|+
1

2

∑
i,j∈{1,2,...,w+r}

i 6=j

|U{i}||U{j}|.

So,

|K| ≤
(
w + r

2

)
m2 − (w + r − 1)m

∑
i∈{1,2,...,w+r}

|U{i}|+
1

2

∑
i,j∈{1,2,...,w+r}

i 6=j

|U{i}||U{j}|.

(2.5)

From (2.4) and (2.5), we have(
w+r
2

)
γ

n− ∑
i∈{1,2,...,w+r}

|U{i}|


≤
(
w + r

2

)
m2 − (w + r − 1)m

∑
i∈{1,2,...,w+r}

|U{i}|+
1

2

∑
i,j∈{1,2,...,w+r}

i 6=j

|U{i}||U{j}|.

Therefore,

n ≤ γm2 −


(

(w + r − 1)γm(
w+r
2

) − 1

) ∑
i∈{1,2,...,w+r}

|U{i}| −
γ

2
(
w+r
2

) ∑
i,j∈{1,2,...,w+r}

i 6=j

|U{i}||U{j}|

 .

If we can show that(
(w + r − 1)γm(

w+r
2

) − 1

) ∑
i∈{1,2,...,w+r}

|U{i}| −
γ

2
(
w+r
2

) ∑
i,j∈{1,2,...,w+r}

i6=j

|U{i}||U{j}| ≥ 0,

then n ≤ γm2 − 0 = γm2, and the theorem follows.
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Consider(
(w + r − 1)γm(

w+r
2

) − 1

) ∑
i∈{1,2,...,w+r}

|U{i}| −
γ

2
(
w+r
2

) ∑
i,j∈{1,2,...,w+r}

i 6=j

|U{i}||U{j}|

=

(
2m

w − r + 2
− 1

) ∑
i∈{1,2,...,w+r}

|U{i}|

− 1

(w − r + 2)(w + r − 1)

∑
i,j∈{1,2,...,w+r}

i 6=j

|U{i}||U{j}|

≥
(

2m

w − r + 2
− 1

) ∑
i∈{1,2,...,w+r}

|U{i}|

− 1

(w − r + 2)(w + r − 1)

∑
i,j∈{1,2,...,w+r}

i 6=j

|U{i}|m

=

(
2m

w − r + 2
− 1

) ∑
i∈{1,2,...,w+r}

|U{i}|

− m

(w − r + 2)

∑
i∈{1,2,...,w+r}

|U{i}|

=
m− w + r − 2

w − r + 2

∑
i∈{1,2,...,w+r}

|U{i}|

≥ (w + 1)− w + 1− 2

w − r + 2

∑
i∈{1,2,...,w+r}

|U{i}|

=0.

This completes the proof.

3 Separating Hash Families Type {w1, w2}
In this section, we state new improved bounds for SHF(N ;n,m, {w1, w2})

when w1 + w2 − 1 < N ≤ 2w2. The bound is as follows:

Theorem 3.1. Let m,n,N be positive integers greater than 1. Let w1, w2 be
positive integers such that 1 ≤ w1 ≤ w2.

If there exists an SHF(N ;n,m, {w1, w2}) where w1 + w2 ≤ N ≤ 2w2, then

n ≤ γm2,

where γ = N−2(w1−1)
2w2−N+2 .
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We are now stating the next lemma as a key stepping stone to obtaining our
result.

Lemma 3.2. Let m,n be positive integers where n ≥ m2, and let w1, w2 be positive
integers in non-decreasing order such that w1+w2 < m. If there exists an SHF(N+
2s;n,m, {w1 + s, w2 + s}), then there exists an SHF(N ;n,m, {w1, w2}).

Proof. We first show that if there exists an SHF(N + 2;n,m, {w1 + 1, w2 + 1}),
then there exists an SHF(N ;n,m, {w1, w2}). The theorem can be obtained from
recursively repeating the result.

Let F = {f1, f2, ..., fN+2 : X → Y } be an SHF(N + 2;n,m, {w1 + 1, w2 + 1}).
Assume for a contradiction that there is no SHF(N ;n,m, {w1, w2}).

Let F ′ = F\{f1, f2}. By our assumption, there is no SHF(N ;n,m, {w1, w2}).
Hence there exist two disjoint subsets C1, C2 of X that |C1| ≤ w1, |C2| ≤ w2 and
none of the functions f ∈ F ′ can separate C1 and C2.

Claim. If there is no SHF(N ;n,m, {w1, w2}), then there exist two distinct elements
x ∈ X\C1 and y ∈ X\(C2 ∪ {x}), such that C ′1 = C1 ∪ {x} and C ′2 = C2 ∪ {y}
cannot be separated by f1 and f2.

Once the claim is justified, we can observe that |C ′1| ≤ w1 + 1, |C ′2| ≤
w2 + 1 and none of the functions f ∈ F can separate C ′1 and C ′2, which con-
tradicts the SHF(N + 2;n,m, {w1 + 1, w2 + 1}) of F . Hence, there exists an
SHF(N ;n,m, {w1, w2}) and the theorem follows.

If both of the two statements below are true, our claim follows.

1. There exists an element x ∈ X\C1 such that f1(x) ∈ f1(C2). So f1 cannot
separate C1 ∪ {x} and C2.

2. There exists an element y ∈ X\(C1 ∪ {x}) such that f2(y) ∈ f2(C1). So f2
cannot separate C1 and C2 ∪ {y}.

If the first statement is not true, any symbol in f1(C2) is not the image of an
element outside C1 and C2 under f1. Therefore, under f1 there are at most m− 1
symbols left for elements in X\(C1 ∪ C2) and at most

min{m(m− 1), |X\(C1 ∪ C2)|}

distinct ordered pairs (f1(c), f2(c)) for an element c in X\(C1 ∪ C2).

Since
⌈
|X\(C1∪C2)|
m(m−1)

⌉
=
⌈
n−|C1|−|C2|
m(m−1)

⌉
≥
⌈
n−(w1+w2)
m2−m

⌉
≥
⌈
n−(m−1)
m2−m

⌉
≥
⌈
m2−m+1
m2−m

⌉
≥

2, by the pigeonhole principle, there are at least 2 elements x and y in X\(C1∪C2)
such that (f1(x), f2(x)) = (f1(y), f2(y)).

Let C ′1 = C1 ∪ {x} and C ′2 = C2 ∪ {y} , then C ′1 and C ′2 cannot be separated
by f1 and f2. Thus, the claim holds when statement 1 is false. Similarly, the claim
holds when statement 2 is false. Therefore, there exists an SHF(N ;n,m, {w1, w2}).
With a little help of an inductive step on s, we obtain the theorem.
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Proof of Theorem 3.1. Let F be an SHF(N ;n,m, {w1, w2}) where w1+w2 ≤ N ≤
2w2. By substituting s in Lemma 3.2 with w1−1, there exists an SHF(N ′;n,m, {1, w})
where N ′ = N − 2(w1 − 1) and w = w2 − (w1 − 1).

Let r = N ′ − w = N − (w1 + w2 − 1). So we have 0 < r ≤ w. Therefore,

n ≤ γm2,

where γ =
w + r

w − r + 2
=

N ′

N ′ − 2r + 2
=
N − 2(w1 − 1)

2w2 −N + 2
.

When w1 = 1, the Theorem 3.1 gives the same bound as in Theorem 2.6.
Hence Theorem 3.1 is the generalised version of Theorem 2.6. Since N ≥ w1 +w2,
we have N − 2(w1 − 1) ≥ 2w2 − N + 2. Hence γ ≥ 1 and γ = 1 only when
N = w1 + w2. Moreover, γ ≤ w1 + w2 − 1 and it reaches equality only when
w1 = 1 and N = 2(w1 +w2 − 1) = 2w2. Theorem 1.3 gives n ≤ (w1 +w2 − 1)m2.
Hence, our leading term is better than any previously known bounds.

4 Discussion

The bounds in Theorems 2.6 and 3.1 improve the bounds for separating hash
families type {w1, w2} of length N ≤ 2w2. The improved bounds are tight in the
case of SHF(N ;n,m, {1, w}), both when N = 1 mod w and N = w+ 2. Moreover,
when w1 + w2 ≤ N ≤ 2w2 we reduce the leading term γ from w1 + w2 − 1 to
N−2(w1−1)
2w2−N+2 .
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