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Abstract : The randomized singular value decomposition (rSVD) method is
a powerful dimension reduction technique that uses random projection matrices
to project the data onto lower dimensional subspace. A crucial step of rSVD
algorithm is the sampling process, which will be used further to generate a low-
dimensional basis for the subspace of available data. To improve computational
performance, this paper incorporates rSVD with different efficient sampling strate-
gies, which include Gaussian sampling, uniform sampling, sparse sampling and
sampling with K-mean clustering. The numerical tests compare the accuracy and
the execution time used in computing optimal low-rank basis by applying rSVD
with each of these sampling methods for an image reconstruction application.
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1 Introduction

The singular value decomposition (SVD) was discovered independently by Bel-
trami [1] in 1873 and Jordan [2] in 1874 during their research on linear algebra.
Both are deemed the progenitors in SVD, however many mathematicians have
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been working on discovering its properties and developing algorithms for its com-
putation [3, 4]. SVD is a well-known technique for dimensionality reduction which
applied for solving many problems, such as low-rank matrix approximations [5, 4]
which is a good approximation to the original matrix, least squares problems [6],
image processing [7] and model order reduction to compress the high-dimensional
data space into a lower-dimensional space [8]. However, the tradition way of
computing the full SVD of a high-dimension matrix is often expensive as well as
memory intensive.

T. Sarlos (2006) [9], E. Liberty et. al.(2007) [10] and Halko et al. (2011)
[13] introduced a more robust approach based on random projections that is the
randomized singular value decomposition (rSVD) method. These method can de-
crease the computational work of extracting low-rank approximations and are more
accurate than SVD method. The rSVD algorithms focus on efficiently sampling
the important matrix elements. Many sampling strategies, including Gaussian
sampling [10]-[14], uniform sampling [15], [16], sparse sampling [17, 18], and sam-
pling with K-means clustering [19, 20] have been proposed. The random sampling
method is effective when estimating characteristics of the whole data by a rela-
tively small sample and the Johnson-Lindenstrauss Lemma [13] guarantees that
the distances between points can be preserved by the projection from the high
dimension space to a lower dimensional subspace. As a result, compared to full
SVD, randomized SVD methods are memory efficient and can often obtain good
low-rank approximations in a significantly faster way.

The task of randomized singular value decomposition (rSVD) to computing
a low-rank approximation to a given matrix can be split naturally into two com-
putational stages. The first is using random sampling methods to construct a
low-dimensional subspace that captures the action of the matrix. Here, we are
interested in several kind of sampling. The second is to restrict the matrix to the
subspace and then compute a standard factorization (QR, eigendecomposition,
SVD, etc.) of the reduced matrix.

In this paper, we present the randomized singular value decomposition (rSVD)
methods that using three different approaches for constructing the reduce ma-
trix, QR decomposition, eigendecomposition and SVD. Moreover, for each rSVD
method, we incorporate the algorithm with different efficient sampling strategies,
which include Gaussian sampling, Uniform sampling, Sparse sampling, and sam-
pling with K-mean clustering. The results of rSVD are shown by the numerical
experiments and the comparisons of the computation time and accuracy by apply-
ing rSVD with each of these sampling methods with image processing problem.

The remainder of this paper is organized as follows. In Section 2, we give a
detailed overview of rSVD and consider the three approaches for constructing the
reduce matrix as reviewed in Section 2.1 for the rSVD by using QR decomposition,
Section 2.2 for the rSVD by using eigendecomposition, and Section 2.3 for the
rSVD by using SVD. The different sampling strategies are considered in Section
3, including Gaussian sampling in Section 3.1, uniform sampling in Section 3.2,
Sparse sampling in Section 3.3 and in Section 3.4 for the sampling with K-mean
clustering. Then, we consider an application of image processing problem in image
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reconstruction in Section 4. In Section 5, we show the numerical experiments of the
rSVD with each of these sampling methods for constructing the projection basis
and compare the CPU times together with the reconstruction errors. Finally, some
concluding remarks are given in Section 6.

2 The Overview of Randomized Singular Value
Decomposition

To begin with, we review some classical deterministic matrix decomposition meth-
ods and give defining terms and notations.

The singular value decomposition (SVD) of a matrix X ∈ Rm×n with rank r
can be expressed as

X = USV T , (2.1)

where U ∈ Rm×r and V ∈ Rn×r are matrices with orthonormal columns. The
column vectors of U and V are left and right singular vectors, respectively, denoted
as ui ∈ Rm and vi ∈ Rn. S ∈ Rr×r is a diagonal matrix with σ1 ≥ σ2 ≥ ... ≥ σr >
0, are known as singular values.

The truncated Xk can be obtained by computing full SVD and then truncating
it by selecting the top k dominant singular values and their corresponding singular
vectors such that

Xk = UkSkV
T
k =

k∑
i=1

σiuiv
T
i , (2.2)

where k < r, and Uk ∈ Rm×k, Vk ∈ Rn×k are matrices with orthonormal columns.
Sk ∈ Rk×k is a diagonal matrix with the singular values σ1 ≥ σ2 ≥ ... ≥ σk > 0
on its diagonal entries. For a fixed dimension k < r, Xk is the optimal solution of
least-squares problem:

min
W∈Rm×n

‖X −W‖22, rank(W ) = k, (2.3)

and the corresponding minimum error is given by ‖X − Xk‖22 =
∑r

`=k+1 σ
2
` . In

this case, the orthonormal basis of rank k formed by the k columns in Uk =
[u1, . . . , uk] ∈ Rn×k is called proper orthogonal decomposition (POD) basis
of dimension k for the matrix X.

We define the randomized singular value decomposition (rSVD) of X as,

X̂k = ÛkŜkV̂
T
k , (2.4)

where k < r, and Ûk ∈ Rm×k, V̂k ∈ Rn×k are matrices with orthonormal columns.
Ŝk ∈ Rk×k is a diagonal matrix with the singular values σ̂1 ≥ σ̂2 ≥ ... ≥ σ̂k > 0.
Details are given as follows.

Define the random projection of a matrix as, Y = XΩ, where Ω is a ran-
dom matrix, which is obtained by the sampling strategies explained later in this
section. The rSVD algorithm as considered by [13] explores approximate matrix
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factorizations using random projections, separating the process into two stages: in
the first stage, random sampling is used to obtain a reduced matrix whose range
approximates the range of the data matrix, in the second stage, the reduced ma-
trix is factorized. The first stage of the method is common to many approximate
matrix factorization methods: for a given ε > 0, we wish to find a matrix Q with
orthonormal columns such that

‖X −QQTX‖22 ≤ ε. (2.5)

Without loss of generality, we assume Q ∈ Rm×`, `� n. The columns of Q form
an orthogonal basis for the range of XΩ which is an approximation to the range
of X, where Ω is a matrix composed of the random vectors.

The second stage of the rSVD method is to compute the SVD of the reduced
matrix B := QTX. Suppose B = Ũ ŜV̂ T is the SVD of B, which can be obtained
from the orthogonal projection of X onto the low dimensional subspace spanned
by columns of Q. Then, we finally obtain the approximated POD basis or Û of X
from the product QŨ .

We would like the basis matrix Q to contain as few columns as possible, but
it is even more important to have an accurate approximation of the input ma-
trix. However, there are many methods for constructing a matrix Q such as QR,
SVD, and eigendecomposition. In this work, we will consider three approaches for
computing this matrix as shown next.

2.1 The rSVD by using QR decomposition

In this section, we considered the rSVD algorithm by using QR decomposition for
constructing Q. From above, we can summarize the computational steps of rSVD
algorithm using QR decomposition in Algorithm 1.

Algorithm 1: The rSVD-QR algorithm [13]
INPUT : A data matrix X ∈ Rm×n with target rank k

and an oversampling parameter p

OUTPUT : The rSVD of X: Û , Ŝ, V̂
Step 1. Draw a random matrix Ω with dimension n× (k + p).
Step 2. Form the matrix product Y = XΩ.
Step 3. Construct Q from the QR decomposition of Y .
Step 4. Set B = QTX.

Step 5. Compute an SVD of the small matrix: B = Ũ ŜV̂ T .

Step 6. Set Û = QŨ .

2.2 The rSVD by using Eigendecomposition

In this section, we considered the rSVD algorithm by using eigendecomposition.
Recall, the eigenvalue decomposition of a square matrix Z ∈ R`×`, is defined as
Z = TDT−1, where T ∈ R`×` is a nonsingular matrix whose ith column is an
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eigenvector of Z and D ∈ R`×` is a diagonal matrix whose ith diagonal entry is
the corresponding eigenvalue.

Given a matrix X ∈ Rm×n, with rank k, we define a random matrix Ω ∈ Rn×`

and suppose that Y = XΩ. We first form a smaller matrix Z := Y TY ∈ R`×`,
then computing the eigendecomposition Z = TDT−1. Since Z is real symmetric
matrix, the eigenvalues are non-negative real numbers and the eigenvectors are
orthogonal to each other, i.e T−1 = TT . Note that T ∈ R`×` is the right singular
matrix of Y and

√
D ∈ R`×` is the diagonal matrix that contains the singular

values of Y on its diagonal entries.
If ` > k, we truncate the decomposition, by extracting the first k dominant

eigenvectors (or right singular vectors), so that we get Tk ∈ R`×k and singular

values S̃ =
√
Dk ∈ Rk×k.

From the SVD of X = USV T , it follows that the left and right singular vectors
can be derived from each other as U = XV S−1 and V = XTUS−1, respectively.
Thus, the approximate left singular vectors of Y is Ũ := Y TkS̃

−1. By setting
B = ŨTX, we can compute the SVD of B so that B := QŜV̂ T .

Hence, Ũ(ŨTX) = ŨB =: Ũ [QŜV̂ T ] =: (ŨQ)ŜV̂ T =: Û ŜV̂ T ≈ X. The
computational steps are summarized in Algorithm 2.

Algorithm 2: The rSVD-Eigen algorithm
INPUT : A data matrix X ∈ Rm×n with target rank k

and an oversampling parameter p

OUTPUT : The rSVD of X: Û , Ŝ, V̂
Step 1. Draw a random matrix Ω ∈ Rn×` where ` = k + p.
Step 2. Form the matrix product Y = XΩ and then

the square matrix Z = Y TY .

Step 3. (Ensure symmetry by Z =
1

2
(Z + ZT ) )

Step 4. Computing the eigendecomposition, Z = TDTT .

Step 5. Truncating Tk ∈ R`×k, and calculating S̃ =
√
Dk

where Dk ∈ Rk×k.

Step 6. Approximate, Ũ := Y TkS̃
−1 then set B = ŨTX.

Step 7. Compute an SVD of B = QŜV̂ .

Step 8. Set Û = ŨQ.

2.3 The rSVD by using SVD

In this section, we considered the rSVD algorithm by applying SVD on the reduced
matrix Y . For a given matrix X ∈ Rm×n with rank k, we define a random matrix
Ω and suppose that Y = XΩ. First, we compute the SVD of Y as Y = QSV T .
Then, we form B = QTX and compute the SVD of B = Ũ ŜV̂ T . Finally, we obtain
the approximated POD basis or the left singular vectors of X from the product
QŨ . The computational steps are summarized in Algorithm 3.
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Algorithm 3: The rSVD-SVD algorithm
INPUT : A data matrix X ∈ Rm×n with target rank k

and an oversampling parameter p

OUTPUT: : The rSVD of X: Û , Ŝ, V̂
Step 1. Draw a random matrix Ω ∈ Rn×` where ` = k + p.
Step 2. Form the matrix Y = XΩ
Step 3. Computing the truncated SVD of Y then Y = QSV T

Step 4. Form B = QTX

Step 5. Compute SVD of B = Ũ ŜV̂ T .

Step 6. Set Û = QŨ .

Note that, Algorithm 3 presents a different implementation that is slightly more
computationally expensive than Algorithm 2. However, the accuracy and numer-
ical stability of Algorithm 3 is improved by computing the deterministic SVD of
Y in Step 3, instead of forming Z = Y TY and using the eigendecomposition of
the smaller matrix Z. In practice, this algorithm is suitable for fat matrices, i.e.
m < n. However, for tall and skinny matrices, i.e. m > n which have a large di-
mension m it becomes more efficient to form the smaller matrix Z first, as outlined
in Algorithm 2.

3 Random test matrices

In this section, we will present the random sampling strategies that are used
to draw the random matrix Ω, projecting a high-dimensional data to a lower-
dimensional space. Specifically, we seek a matrix with independent identically dis-
tributed (i.i.d.) entries from certain distribution, which ensures that its columns
are linearly independent with high probability. The interesting choices for con-
structing the random test matrix as explained next.

3.1 Gaussian random matrix

Gaussian random matrix is the simplest random matrix ([10]-[14]) to construct
a random test matrix is to draw entries from the standard normal distribution
N (0, 1), (Mean µ = 0, Standard deviation σ = 1). Then, the probability density

function of x is given by f(x) =
1√
2π

exp
−
x2

2 , for −∞ < x <∞.

This matrix is the most popular to be used because it has random entries that
are i.i.d. However, it is expensive to generate and dense matrix multiplications
are computationally intensive.

3.2 Uniform random matrix

The uniform random matrix ([15, 16]) is consisting of the random variables which
follow the uniform distribution with parameters a and b. We write x ∼ U(a, b).
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The random variable x is uniformly distributed on the interval [a, b] if it has the

following probability density function f(x) =
1

b− a
, for a ≤ x ≤ b and otherwise

f(x) = 0. In particular, we use x ∼ U(0, 1), i.e. the random variables are uniformly
distributed on the interval [0, 1] or the unit uniform random variable.

3.3 Sparse matrix

The sparse matrix [17, 18] is from the sparse random projections, originally in-
troduced by Achlioptas [5]. This matrix has only a few nonzero random entries,
which are i.i.d. This matrix is better than a dense random test matrix in term
of computational complexity. The sparse matrix can be constructed by drawing
entries ωij from the following distribution

ωij =
√
c

 −1, with prob. 1
2c ;

0, with prob.1− 1
c ;

1, with prob. 1
2c .

The parameter c controls the density of the nonzero entries, e.g. c = 2, 3. In this
paper, we use c = 3 and, therefore, the sparse matrix will have entries −

√
3, 0,

and
√

3 with probability 1
6 ,

1
3 , and 1

6 , respectively.

3.4 K-mean sampling matrix

K-means clustering, or Lloyd’s algorithm [19, 20] is an iterative, data-partitioning
algorithm. It assigns n observations to exactly one of k clusters defined by cen-
troids, (k- partition of the columns of the original matrix). Given x1, x2, ..., xm ∈

Rn, we wish to have k points (µ1, µ2, ..., µk ∈ Rn) that satisfy

n∑
i=1

min
j=1:k

‖xi−µj‖2.

In this paper, we use K-mean sampling matrix whose column vectors are formed
by µ1, µ2, ..., µk ∈ Rn.

4 Application in image reconstruction

This section describes the standard projection-based approach [21] to reconstruct
missing data of incomplete image. This approach uses the least-squares method
for estimating missing data with an optimal low-rank basis in Euclidean norm,
which is also called proper orthogonal decomposition (POD) basis.

Approximating an incomplete data vector will use a projection onto a subspace
spanned by a basis that represents the related complete data vectors. First, we
define complete and incomplete data vectors. Let {x1, x2, . . . , xns} ⊂ Rn be a
complete data set and form a matrix of a complete data X = [x1, x2 . . . xns ] ∈
Rn×ns .

Suppose x̂ ∈ Rn is an incomplete sample and n = nc +ng where nc, ng are the
numbers of known and unknown components respectively.
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Suppose that C = [ec1 , . . . , ecnc
] ∈ Rn×nc and G = [eg1 , . . . , egng

] ∈ Rn×ng ,
where eci , egi ∈ Rn are the ci-th, gi-th column of the identity matrix In, for
{c1, c2, . . . , cnc

}, {g1, g2, . . . , gng
} ⊂ {1, 2, . . . , n} are the indices of the known and

unknown components.
Let x̂c := CT x̂ ∈ Rnc and x̂g := GT x̂ ∈ Rng . Then, the known components

and the unknown components are given in the vectors x̂c and x̂g, respectively.
Note that, pre-multiplying CT is equivalent to extracting the nc rows corre-

sponding to the indices c1, . . . , cnc
. Similarly, GT is equivalent to extracting the

ng rows corresponding to the indices g1, . . . , gng
.

The missing components contained in x̂g will be approximated by first pro-
jecting x̂ onto the column span of a basis matrix U with rank k

x̂ ≈ Ua, or x̂c ≈ Uca and x̂g ≈ Uga,

for some coefficient vector a ∈ Rk, and where Uc := CTU ∈ Rnc×k, Ug := GTU ∈
Rng×k.

The known components contained in x̂c are then used to determine the coeffi-
cient vector a through the approximation x̂c ≈ Uca from the following least-squares
problem:

min
a∈Rk

‖x̂c − Uca‖22. (4.1)

The solution of the above problem is given by a = U†c x̂c, where U†c = (UT
c Uc)

−1UT
c

is the Moore-Penrose psudoinverse. That is,

x̂g ≈ Uga = UgU
†
c x̂c. (4.2)

The steps described above, which will called POD-LS approach, are summarized
in Algorithm 4 below.

Algorithm 4: Standard POD-LS approach for approximating missing
data [21]

INPUT : - Complete data set {xj}ns
j=1 ⊂ Rn and,

dimension k ≤ rank({xj}ns
j=1)

- Incomplete data x̂ ∈ Rn with known entries in x̂c ∈ Rnc and
unknown entries in x̂g ∈ Rng , where n = nc + ng.

OUTPUT : Approximation of x̂g
Step 1. Create snapshot matrix : X = [x1, . . . , xns

] ∈ Rn×ns and
let r = rank(X)

Step 2. Construct basis U of rank k ≤ r for x.
Step 3. Find coefficient vector a from x̂c using least-squares problem in

(4.1): mina∈Rk ‖x̂c − Uca‖22.
Step 4. Compute the approximation x̂g ≈ Uga.

Next, we consider the optimal basis which is obtained from the singular value
decomposition (SVD) because it is optimal in the least-squares sense. It follows
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from [11] and [21] that the basis defined above can be obtained from the left
singular vector of the matrix X.

Let X = [x1, . . . , xns
] ∈ Rn×ns and k < r = rank(X). The SVD of X

is X = USV T , where U = [u1, . . . , ur] ∈ Rn×r and V = [v1, . . . , vr] ∈ Rns×r

are matrices with orthonormal columns and S = diag(σ1, . . . , σr) ∈ Rr×r with
σ1 ≥ σ2 ≥ · · · ≥ σr > 0. As stated previously, the optimal solution of least-
squares problem minW ‖X −W‖22, rank(W ) = k is Xk = UkSkV

T
k with minimum

error ‖X−Xk‖22 =
∑r

`=k+1 σ
2
` . The optimal orthonormal basis of rank k (the POD

basis) is formed by the columns in Uk = [u1, . . . , uk] ∈ Rn×k, k ≤ r. However, we
will use the rSVD methods in the previous section to find the approximate optimal
orthonormal basis, which can significantly reduce the computational complexity,
and therefore computational time, of the standard approach for computing SVD.

5 Numerical Experiments

In this section, we show the numerical experiments of the three rSVD methods
with each of these sampling approaches for constructing the projection basis and
compare the CPU times together with the reconstruction errors. Here, we use the
relative error in 2-norm.

We use a standard test image in the field of image processing, called Lena
picture, to compare the accuracy and efficiency of the basis used in missing data
reconstruction. We consider this image with 10% and 30% missing pixels and
each image will be considered as a matrix with gray scale color, which are shown
in Figure 1.

Figure 1: The original image and the incomplete image with 10% missing data and
30% missing data.

The reconstructed images from three different approaches are shown below
when k = 40 is used, for example, the reconstructed images of the rSVD-QR
method with four sampling are shown in Figure 2.

The error and computational time for constructing basis set by using the rSVD-
QR, the rSVD-eigen, and the rSVD-SVD methods with four sampling techniques
including Gaussian sampling, uniform sampling, sparse sampling and the sampling
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Figure 2: The reconstructed images of 10% missing data by using the rSVD-QR
method

with K-mean clustering are shown in Figure 3, Figure 4 and Figure 5. In each
of these figures, the accuracy of these approaches are shown through the plots of
the relative errors for different truncated dimension k. It can be seen that the
accuracy can be improved by increasing dimension k up to certain value where the
stagnation occurs. In the table of each figure, the comparison of computational
time is given in terms of both actual CPU time (seconds) and speedup, which is
scaled with the maximum CPU time of K-mean approach for each fixed dimension
k.

These results show that the K-mean sampling strategies gives less error than
the others in all numerical examples. However, the computational times of the
three rSVD methods with K-mean sampling take longer than other sampling ap-
proaches. More discussion of the results is also provided in the next section.
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Figure 3: [Numerical Test 1] Relative error and CPU time of the rSVD-QR method for
computing basis used in the reconstruction of the Lenna picture when 30% of pixels are
missing.

6 Conclusions and Discussion

This work performed numerical studies of the rSVD methods that use three differ-
ent approaches for constructing the reduce matrix, which are QR decomposition,
eigendecomposition and SVD. Moreover, for each rSVD method, we incorporate
the algorithm with different efficient sampling strategies, which include Gaussian
sampling, uniform sampling, sparse sampling, and sampling with K-mean cluster-
ing.

By applying these approaches in reconstructing missing image data with the
least-squares approximation, using the K-mean sampling was shown to give mini-
mum error for computing projection basis when compared with Gaussian sampling,
uniform sampling and sparse sampling. By visual inspection, the computational
time is hardly noticeable. This is because the size of image is small and the rSVD
methods approximates the column space of the input matrix. However, in most
practical applications that require to process a large number of high-dimensional
images, this computational efficiency become significant as shown through the
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Figure 4: [Numerical Test 2] Relative error and CPU time of the rSVD-Eigen method
for computing basis used in the reconstruction of the Lenna picture when 30% of pixels
are missing.

speedup comparison in the tables of Figure 3, Figure 4 and Figure 5. We observed
a trade-off between the accuracy and the computational time. In particular, while
the K-mean sampling approach gives higher accuracy, it takes roughly more than
16-32 longer CPU time than the other three sampling techniques for each truncated
dimension k.

The numerical procedures presented in this work can be extended to use with
large-scale image processing problems or other applications that require to use
SVD computation to speedup the overall simulation time while maintaining the
accuracy of the original problems.



A Numerical Study of Efficient Sampling Strategies for Randomized ... 383

Figure 5: [Numerical Test 3] Relative error and CPU time of the rSVD-SVD method
for computing basis used in the reconstruction of the Lenna picture when 30% of pixels
are missing.
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