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1 Introduction

In the field of differential equations, the studies of initial value problems
(IVPs) and boundary value problems (BVPs) in the ordinary differential equa-
tions (ODEs) have attracted the attention of many mathematicians and physicists.
Many methods including numerical and perturbation methods have been used to
solve such types of problems [1]. Many powerful and efficient methods which can
solve both singularity and non-singularity problems have been developed to ob-
tain solutions of the initial and boundary value problems. These methods include
the Haar wavelet collocation method (HWCM) [1], the Haar-quasilinearization
method, the Laguerre wavelets method, the differential transform method (DTM)
[2], the homotopy perturbation method (HPM) [3], the Laplace-variational iter-
ation method (LVIM) [4], the Adomian decomposition method (ADM), and the
Chebyshev wavelet collocation method.

One of the popular families of wavelets is Haar wavelet. Due to its simplic-
ity, Haar wavelet has become an effective tool for solving differential equations. In
1997, the Haar wavelet was introduced in a system analysis by Chen and Hsiao [5],
who first derived a Haar operational matrix for the integrals of the Haar func-
tion vector and provided the applications for the Haar analysis into the dynamic
systems. In 2007, Lepik [6] applied the HWCM to differential and integral equa-
tions to obtain numerical solutions. In 2008, Bujurke et al. [7] employed the
Haar wavelet method to obtain the solutions of nonlinear oscillator equations, stiff
systems, and regular Sturm-Liouville problems, etc. In 2010, Islam et al. [8] ob-
tained the numerical solutions of second-order boundary-value problems using the
HWCM for the different boundary conditions.

However, the quasilinearization method [9, 10] is a well-known technique to
obtain approximate solutions of nonlinear differential equations with rapid con-
vergence. The fundamental of the method of quasilinearization lies in the theory
of dynamical programming. Indeed, the quasilinearization technique is a variant
version of Newton’s method. It can be used to solve for both IVPs and BVPs.
Generally, this method is implemented for the problems with convex or concave
nonlinearities. The method of quasilinearization has recently been studied and
extended extensively. For example, Bellman and Kalaba [10] used the method of
quasilinearization as a generalization of the Newton-Raphson method [11] to solve
the individual or system of nonlinear ordinary and partial differential equations.
Recently, applications of the approach, which can be found in [9], are quite won-
drous and easy for obtaining approximate solutions of nonlinear differential equa-
tions with finite or infinite delay, integral equations, functional equations, and so
on. Hence, the quasilinearization approach is suitable for obtaining solutions of
general nonlinear ordinary differential equations.

We introduce the generalized second order differential equation with variable
coefficients as

d2y(x)

dx2
= a(x) + b(x)y(x) + c(x)y2(x) + d(x)y3(x), (1.1)
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where the coefficients a(x), b(x), c(x), and d(x) are real-valued functions. In this

paper, we let a(x) = ε2

2 g1, b(x) = ε2g2, c(x) = 3
2ε

2g3, and d(x) = 2ε2g4 where ε,
g1, g2, g3 and g4 are constants. Then Eq. (1.1) is reduced to

d2y(x)

dx2
= ε2

(
g1
2

+ g2y(x) +
3

2
g3y

2(x) + 2g4y
3(x)

)
, (1.2)

Eq. (1.2) is called the second order elliptic differential equation. In particular, we
set ε = 1, g1 = λ, g2 = −1, g3 = ρ and g4 = 0 where λ and ρ are constants. Then
Eq. (1.2), becomes

d2y(x)

dx2
=
λ

2
− y(x) +

3

2
ρy2(x), (1.3)

which is called the planetary motion equation [12]. The aim of this paper is to
construct numerical solutions of the elliptic differential equation (1.2) and the
planetary motion equation (1.3) using the Haar wavelet-quasilinearization method
with the following various initial and/or boundary conditions.

• Initial conditions : y(0) = α1, y′(0) = β1,

• Dirichlet boundary conditions : y(0) = α2, y(1) = β2,

• Neumann-Robin boundary conditions : y′(0) = ω, α3y(1) + β3y
′(1) = γ,

• Dirichlet-Neumann boundary conditions : y(0) = α4, y′(1) = β4,

where αi, βi, (i = 1, 2, 3, 4), ω, and γ are real constants.

2 Haar Wavelets

In this section, we first briefly review the Haar wavelets and its properties
which can be found in [13–17]. The Haar wavelet family defined on the interval
[0, 1) consists of the following Haar functions:

h1(x) =

{
1, x ∈ [0, 1),
0, otherwise,

(2.1)

and for i = 2, 3, . . .

hi(x) =

 1, x ∈
[
k
m ,

k+0.5
m

)
,

−1, x ∈
[
k+0.5
m , k+1

m

)
,

0, otherwise.
(2.2)

where the integer m = 2j , j = 0, 1, . . . , J indicates the level of the wavelet with the
maximal level of resolution J and k = 0, 1, . . . ,m− 1 is the translation parameter.
The index i in Eq. (2.2) is expressed by the intergers m and k as i = m+k+1. It is
obvious that the minimal value of i is i = 2 when m = 1, k = 0 and the maximal
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value of i is i = 2J+1 when m = 2J , k = 2J − 1. The Haar wavelet functions
satisfy the following properties:∫ 1

0

hi(x)dx =

{
1, if i = 1,
0, if i = 2, 3, . . . ,

(2.3)

and the orthogonal property for i, l = 1, 2, . . .∫ 1

0

hi(x)hl(x)dx =

{
2−j , i = l = 2j + k,
0, i 6= l.

(2.4)

Haar wavelet functions construct a very good transform basis which is used to

represent any square integrable function u(x) defined on [0, 1), i.e.,

∫ 1

0

u2(x)dx <

∞. Therefore, any function u(x) can be expressed in terms of an infinite sum of
the Haar wavelets as follows.

u(x) =

∞∑
i=1

aihi(x), i = 2j + k, j > 0, 0 6 k 6 2j , x ∈ [0, 1), (2.5)

where the Haar coefficients

ai = 2j
∫ 1

0

u(x)hi(x)dx. (2.6)

In general, the series expansion of u(x) involves infinite terms. Practically, the
continuous function u(x) can be approximated using the finite sum of the Haar
wavelets, that is

u(x) ≈ u2M (x) :=

2M∑
i=1

aihi(x), (2.7)

where M = 2J and the integral square error is defined as

E =

∫ 1

0

[u(x)− u2M (x)]
2
dx. (2.8)

The approximation u2M (x) can be written as

u2M (x) = aTh, (2.9)

where aT =
[
a1, a2, . . . , a2M

]
is called the coefficient vector and

h =
[
h1(x), h2(x), . . . , h2M (x)

]T
is the Haar function vector.

Defining the wavelet collocation points xl as

xl =
l − 0.5

2M
, l = 1, 2, . . . , 2M, (2.10)
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and constructing the Haar wavelet matrix H2M of order 2M in which its columns
are the Haar function vectors evaluated at xl, l = 1, 2, ..., 2M . In other words,
H2M (i, l) = hi(xl), or the 2M × 2M matrix H2M is

H2M =


h1(x1) h1(x2) . . . h1(x2M )
h2(x1) h2(x2) . . . h2(x2M )

...
...

. . .
...

h2M (x1) h2M (x2) . . . h2M (x2M )

 . (2.11)

For example, if J = 2 ⇒ 2M = 2J+1 = 8, then the Haar wavelet matrix of order
8 is

H8 =



1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1


. (2.12)

In consequence, we have

UT
2M = aTH2M , (2.13)

where UT
2M =

[
u2M (x1), u2M (x2), . . . , u2M (x2M )

]
is called the discrete form of

the continuous function u(x).
Finally, we concisely provide the basic idea of the integrals of the Haar func-

tions hi(x) of order n denoted by pi,n(x) which can be calculated analytically as
follows:
For i = 1 : the integral of the Haar wavelet, h1(x) of order n [18] is

pi,n(x) =
xn

n!
, where n = 1, 2, . . .

For i = 2, 3, . . . : the integrals of the Haar wavelet, hi(x), of the first order [19]
are

pi,1(x) =

∫ x

0

hi(s)ds =

 x− k
m , x ∈

[
k
m ,

k+0.5
m

)
,

k+1
m − x, x ∈

[
k+0.5
m , k+1

m

)
,

0, otherwise,
(2.14)

and the integrals of the Haar wavelet, hi(x), of order n are given by

pi,n(x) =

∫ x

0

pi,n−1(s)ds, n = 2, 3, . . . (2.15)

=
1

n!


(
x− k

m

)n
, x ∈

[
k
m ,

k+0.5
m

)
,(

x− k
m

)n − 2
(
x− k+0.5

m

)n
, x ∈

[
k+0.5
m , k+1

m

)
,(

x− k
m

)n − 2
(
x− k+0.5

m

)n
+
(
x− k+1

m

)n
, x ∈

[
k+1
m , 1

)
,

0, otherwise.
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Then we define the 2M operational matric of integrations Pn and its element is
computed using the relation Pn(i, l) = pi,n(xl), where xl is defined in Eq. (2.10).
For example, if J = 2 ⇒ 2M = 8 and n = 1, then from Eq. (2.14), the Haar
wavelet integral matrix of the first order as

P1 =
1

16



1 3 5 7 9 11 13 15
1 3 5 7 7 5 3 1
1 3 3 1 0 0 0 0
0 0 0 0 1 3 3 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1


, (2.16)

and when n = 2, the Haar wavelet integral matrix of order 2 is computed by using
Eq. (2.16) as

P2 =
1

512



1 9 25 49 81 121 169 225
1 9 25 49 79 103 119 127
1 9 23 31 32 32 32 32
0 0 0 0 1 9 23 31
1 7 8 8 8 8 8 8
0 0 1 7 8 8 8 8
0 0 0 0 1 7 8 8
0 0 0 0 0 0 1 7


. (2.17)

2.1 Haar-quasilinearization method

Consider the nonlinear second order differential equation of the form

y′′(x) = f(y(x), x). (2.18)

where f is a function that depends on a function y(x) and x. Applying the Taylor
series expansion for f(y(x), x) about the initial function y0(x), the function f can
be then expressed around the function y0(x) as

y′′(x) = f(y0(x), x)+ (y(x)− y0(x)) fy(y0(x), x)

+
1

2!
(y(x)− y0(x))

2
fyy(y0(x), x) + . . . (2.19)

Ignoring the second and higher order terms of Eq. (2.19), we get

y′′(x) = f(y0(x), x) + (y(x)− y0(x)) fy(y0(x), x), (2.20)

where y0(x) is given. In procedure of the quasilinearization technique to Eq. (2.20),
we first obtain the recursive formula for y1(x) by replacing y(x) in Eq. (2.20) with
y1(x) as follows.

y′′1 (x) = f(y0(x), x) + (y1(x)− y0(x)) fy(y0(x), x), (2.21)
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where y′′1 (x) can be approximated by Haar wavelet, y′′1 (x) =

2M∑
i=1

a
(1)
i hi(x).

By the Haar wavelet method, it obtains y1(x) from solving Eq. (2.21). Again,
substituting y(x) in Eq. (2.20) with y2(x) and replacing y0(x) in the equation with
y1(x), we then obtain the new recursive formula as

y′′2 (x) = f(y1(x), x) + (y2(x)− y1(x)) fy(y1(x), x), (2.22)

where the function y′′2 (x) =

2M∑
i=1

a
(2)
i hi(x).

We keep continuing the same procedure for obtaining the higher accurate re-
cursive relations, which are based on the Haar-quasilinearization technique. The
general form of the recursive scheme is of the form

y′′r+1(x) = f(yr(x), x) + (yr+1(x)− yr(x)) fy(yr(x), x), (2.23)

where the function y′′r+1(x) =

2M∑
i=1

a
(r+1)
i hi(x), r = 0, 1, 2, . . . and yr(x) is a known

function.

2.1.1 Initial conditions

Given the initial conditions: yr+1(0) = α1 and y′r+1(0) = β1 to Eq. (2.18).

Integrating y′′r+1(x) =

2M∑
i=1

aihi(x) from 0 to x and using the initial condition

y′r+1(0) = β1, we obtain

y′r+1(x) = y′r+1(0) +

2M∑
i=1

aipi,1(x) = β1 +

2M∑
i=1

aipi,1(x), (2.24)

where pi,1(x) is defined in Eq. (2.14). Again integrating Eq. (2.24) and then using
the initial condition yr+1(0) = α1, we have

yr+1(x) = yr+1(0) + β1x+

2M∑
i=1

aipi,2(x) = α1 + β1x+

2M∑
i=1

aipi,2(x), (2.25)

where pi,2(x) is expressed in Eq. (2.16).

2.1.2 Dirichlet boundary conditions

Given the Dirichlet boundary conditions: yr+1(0) = α2 and yr+1(1) = β2 to
Eq. (2.18). From Eq. (2.24), we have

y′r+1(x) = y′r+1(0) +

2M∑
i=1

aipi,1(x), (2.26)
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where y′r+1(0) will be determined later. Integrating Eq. (2.26) and then using the
Dirichlet boundary condition yr+1(0) = α2, we have

yr+1(x) = α2 + xy′r+1(0) +

2M∑
i=1

aipi,2(x). (2.27)

By substituting x = 1 into Eq. (2.27) and applying the Dirichlet boundary con-
dition yr+1(1) = β2, the unknown term y′r+1(0) in Eq. (2.27) can be calculated
as

y′r+1(0) = β2 − α2 −
2M∑
i=1

aipi,2(1). (2.28)

When we replace the obtained value of y′r+1(0) in Eq. (2.27), then we eventually
obtain

yr+1(x) = α2 + x (β2 − α2) +

2M∑
i=1

ai (pi,2(x)− xpi,2(1)) . (2.29)

2.1.3 Neumann-Robin boundary conditions

Given the Neumann-Robin boundary conditions: y′r+1(0) = ω and α3yr+1(1)+
β3y
′
r+1(1) = γ to Eq. (2.18). Applying the Neumann-Robin boundary condition

y′r+1(0) = ω to Eq. (2.26), we then have

y′r+1(x) = ω +

2M∑
i=1

aipi,1(x). (2.30)

Integrating Eq. (2.30) with respect to x, we get

yr+1(x) = yr+1(0) + xω +

2M∑
i=1

aipi,2(x). (2.31)

Substituting x = 1 into Eqs. (2.30) and (2.31), we obtain

y′r+1(1) =ω +

2M∑
i=1

aipi,1(1), (2.32)

yr+1(1) =yr+1(0) + ω +

2M∑
i=1

aipi,2(1), (2.33)

respectively. From the property (2.3), we have that

2M∑
i=1

aipi,1(1) = a1

∫ 1

0

h1(x)dx+ a2

∫ 1

0

h2(x)dx+ · · ·+ a2M

∫ 1

0

h2M (x)dx = a1.

(2.34)
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Applying Eqs. (2.32)-(2.34) to the rest boundary condition, we have

α3

[
yr+1(0) + ω +

2M∑
i=1

aipi,2(1)

]
+ β3 [ω + a1] = γ,

yr+1(0) =
γ

α3
− β3
α3

[ω + a1]− ω −
2M∑
i=1

aipi,2(1). (2.35)

Substituting yr+1(0) in Eq. (2.35) into Eq. (2.31), the Haar-quasilinearization so-
lution of Eq. (2.18) equipped with the given Neumann-Robin boundary conditions
is

yr+1(x) =
γ

α3
− β3
α3

[ω + a1] + (x− 1)ω +

2M∑
i=1

ai (pi,2(x)− pi,2(1)) . (2.36)

2.1.4 Dirichlet-Neumann boundary conditions

Given the Dirichlet-Neumann boundary conditions: yr+1(0) = α4 and y′r+1(1) =

β4 to Eq. (2.18). Integrating y′′r+1(x) =

2M∑
i=1

aihi(x) with respect to x with the lower

limit x = 0 and the upper limit x = 1 and then using the condition y′r+1(1) = β4
and Eq. (2.34), we get

y′r+1(0) =y′r+1(1)−
2M∑
i=1

ai

∫ 1

0

hi(x)dx = β4 − a1. (2.37)

Hence, we substitute the above result into Eq. (2.26) to obtain

y′r+1(x) = β4 − a1 +

2M∑
i=1

aipi,1(x). (2.38)

Finally, we integrate Eq. (2.38) with respect to x and then use the rest boundary
condition yr+1(0) = α4 to obtain the desired relation as follows:

yr+1(x) = α4 + (β4 − a1)x+

2M∑
i=1

aipi,2(x). (2.39)

3 Numerical Results and Discussion

Examining the accuracy and applicability of the Haar-quasilinearization method
(HQM), we will firstly use the Haar-quasilinearization method to numerically solve
the second order elliptic differential equation (1.2) that equipped with some kinds
of the following conditions: the initial conditions, Dirichlet boundary conditions,
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Neumann-Robin boundary conditions, and Dirichlet-Neumann boundary condi-
tions. Secondly, this method will be used to solve the initial value problem of the
planetary motion equation (1.3). Our obtained numerical solutions of the con-
sidering problems will be compared with their exact solutions for some types of
the error. The error types are used in our simulations are the absolute error, the
L2-norm of the error and the L∞-norm of the error, which are defined as [20]

Abs. error = |y(x)− yh(x)| , (3.1)

L2 =

(
2M∑
l=1

|y(xl)− yh(xl)|2
) 1

2

, (3.2)

L∞ = max
x∈[0,1]

|y(x)− yh(x)| , (3.3)

respectively. The solutions y(x) and yh(x) in Eqs. (3.1)-(3.3) represent an exact
solution and a numerical solution. All of the HQM computations will be performed
using the HQM coding that is generated in the Maple program.

3.1 The second order elliptic differential equation

Problem 1: Consider the following initial value problem

d2y(x)

dx2
=− 1.3025y(x) + 0.605y3(x),

y(0) = 0.819, y′(0) = 0.513.

(3.4)

The differential equation in Eq. (3.4) is obtained by substituting ε = 1, g1 = g3 = 0,
g2 = −(1 + κ2), g4 = κ2 where κ = 0.55 into Eq. (1.2). The exact solution of this
problem is y(x) = sn

(
x+ 1, 1120

)
with the modulus k = 11

20 , which sn(u, k) is the
Jacobi elliptic sine function with modulus 0 6 k 6 1 .

The Haar-quasilinearization method (HQM) with the maximal level of reso-
lution J = 3 and the Runge-Kutta Fehlberg method (RKF) which is the default
one for solving initial value problems in the Maple program package are used to
solve Eq. (3.4) for numerical solutions. The exact solution y(x) and the numerical
solutions ( yRKF (x) and yHQM (x)) are evaluated at some collocation points in
[0, 1] which their numerical values are shown in Table 1. In addition, Table 1
also shows the absolute errors between the exact values and the numerical values
generated using the two methods. The graphical representations of these solutions
are plotted in Fig. 1.

Next, we investigate the effective maximal values of resolution J used in the
HQM for improving the obtained numerical solutions for Eq. (3.4). The graphs
of the absolute errors |y(x)− yRKF (x)| and |y(x)− yHQM (x)| calculated at the
maximal levels of resolution for J = 3, 4, 5, 6 can be depicted in the Fig. 2.
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Table 1: Comparisons of the solutions y(x)(exact), yRKF (x) and
yHQM (x)(J = 3) in Eq. (3.4) in the sense of the absolute error.

x Exact RKF HQM |y(x)− yRKF (x)| |y(x)− yHQM (x)|
1/32 0.83424570 0.83424570 0.83424541 2.0766e-11 2.8895e-7

5/32 0.88974212 0.88974230 0.88974134 1.7684e-7 7.8430e-7

9/32 0.93379771 0.93379775 0.93379749 4.3859e-8 2.1710e-7

13/32 0.96654869 0.96654876 0.96654936 6.1556e-8 6.6471e-7

17/32 0.98816247 0.98816255 0.98816375 7.7920e-8 1.2799e-6

21/32 0.99878152 0.99878157 0.99878275 5.9023e-8 1.2370e-6

25/32 0.99848537 0.99848543 0.99848571 5.6831e-8 3.3854e-7

29/32 0.98727173 0.98727179 0.98727032 5.8937e-8 1.4166e-6

Figure 1: Graphs of y(x), yRKF (x) and yHQM (x)(J = 3) for Eq. (3.4).

Problem 2: Consider the following boundary value problem

d2y(x)

dx2
= −1.0729y(x) + 2y3(x),

y(0) =0.0424, y(1) = −0.3596.

(3.5)

The differential equation in Eq. (3.5) is obtained by substituting ε = 1, g1 = g3 = 0,
g2 = −(1 + κ2), g4 = 1 where κ = 0.27 into Eq. (1.2). The exact solution of this
problem is given by y(x) = 0.503sn (0.905x+ 3.354, 0.556) for modulus k = 0.556.

The Haar-quasilinearization method (HQM) with the maximal levels of res-
olution J = 4 and the finite difference technique with Richardson extrapolation
method (REM) which is the default one for solving boundary value problems in
the Maple program package are used to solve Eq. (3.5) for numerical solutions.
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Figure 2: Graphs of RKF=|y(x)− yRKF (x)| and HQM=|y(x)− yHQM (x)|
with J = 3, 4, 5, 6 for Eq. (3.4).

The exact solution y(x), the numerical solutions yREM (x) and yHQM (x) are eval-
uated at some collocation points in [0, 1] which their numerical values are shown
in Table 2. In addition, Table 2 also shows the absolute errors between the exact
values and the numerical values generated using the two methods at such selected
points.

Next, we investigate the effect of values of the resolution J used in the HQM
for improving the numerical solutions for Eq. (3.5). The graphs of the absolute
errors |y(x)− yREM (x)| and |y(x)− yHQM (x)| calculated at the wavelet colloca-
tion points for the maximal levels of resolution J = 3, 4, 5, 6 can be plotted in the
Fig. 3.



Numerical Solutions of the Elliptic Differential and the Planetary Motion ... 363

Table 2: Comparisons of y(x) (exact) and the numerical results yRKF (x),
yHQM (x)(J = 4) in Eq. (3.5) in the sense of the absolute error.

x Exact REM HQM |y(x)− yREM (x)| |y(x)− yHQM (x)|
1/64 3.53023e-2 3.53025e-2 3.53025e-2 1.3318e-7 1.0296e-7

9/64 -2.15855e-2 -2.15855e-2 -2.15846e-2 6.7180e-8 9.4754e-7

17/64 -7.81134e-2 -7.81133e-2 -7.81117e-2 9.5449e-8 1.7272e-6

25/64 -0.133352 -0.133352 -0.13335 1.1507e-7 2.3065e-6

33/64 -0.18644 -0.18644 -0.18644 1.2416e-7 2.5781e-6

41/64 -0.236613 -0.23661 -0.23661 1.1000e-7 2.4723e-6

49/64 -0.28325 -0.28325 -0.28324 7.7895e-8 1.9633e-6

57/64 -0.32585 -0.325854 -0.325853 3.7551e-8 1.0657e-6

Figure 3: Graphs of REM=|y(x)− yREM (x)| and HQM=|y(x)− yHQM (x)|
with J = 3, 4, 5, 6 for Eq. (3.5).

Problem 3: Consider the following boundary value problem

d2y(x)

dx2
= −0.9688y(x) + 0.0312y3(x),

y′(0) =0.52625, 2y(1) + y′(1) = 1.4715.

(3.6)
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The differential equation in Eq. (3.6) is obtained by substituting ε = 1, g1 = g3 = 0,

g2 = κ2−2
2 , g4 = κ2

4 where κ = 0.25 into Eq. (1.2). The exact solution is

y(x) = sn
(√

61
8 x+ 1,

√
61
61

)
at the modulus k =

√
61
61 .

The Haar-quasilinearization method (HQM) with the maximal levels of res-
olution J = 5 and the finite difference technique with Richardson extrapolation
method (REM) are used to solve Eq. (3.6) for numerical solutions. The exact so-
lution y(x), the numerical solutions yREM (x) and yHQM (x) are evaluated at some
collocation points in [0, 1] which their numerical values are plotted in Fig. 4.

Figure 4: Graphs of the exact solution and the numerical solutions
(yRKF (x) and yHQM (x)(J = 5)) for Eq. (3.6).

The improvement of the obtained numerical solutions for Eq. (3.6) is studied
by the effective maximal values of resolution J . In other words, the L2-norm
and the L∞-norm of errors calculated at the wavelet collocation points in [0, 1]
for J = 2, 3, 4, 5, 6 are reported in Table 3. As a result, the higher values of
resolution J promisingly provide the better numerical solutions compared with
the lower values of resolution J .

Table 3: L2 and L∞ of the errors obtained using the HQM with J = 2, 3,
4, 5, 6 for Eq.(3.6).

J 2 3 4 5 6
2M 8 16 32 64 128

L2 4.872e-3 1.72e-3 6.077e-4 2.148e-4 7.594e-5

L∞ 2.16e-3 5.447e-4 1.368e-4 3.426e-5 8.574e-6
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Problem 4: Consider the following boundary value problem

d2y(x)

dx2
= −1.9025y(x) + 2y3(x),

y(0) =0.2129, y′(1) = −0.2734.

(3.7)

The differential equation in Eq. (3.7) is attained by replacing ε = 1, g1 = g3 = 0,
g2 = −(1 + κ2), g4 = 1 where κ = 0.95 into Eq. (1.2). The exact solution of
this problem is y(x) = 0.2151sn (1.3624x+ 1.4341, 0.1579) with the modulus k =
0.1579. For this problem, the numerical results generated using the HQM are only
compared with y(x). The absolute errors |y(x)− yHQM (x)| are computed at the
collocation points for the maximal levels of resolution J = 3, 4, 5, 6 in the HQM.
Their graphs are shown in Fig. 5. We can observe from Fig. 5 that the resolution
J = 6 for the HQM gives the best numerical solution for the problem.

Figure 5: Comparison of the absolute errors between y(x) and yHQM (x)
with the maximal levels of resolution J = 2, 3, 4, 5, 6 for Eq. (3.7).

Next, we study how to improve the obtained numerical solutions for Eq. (3.7)
by increasing the maximal values of resolution J in the HQM. This can be done
by computing the L2-norm and the L∞-norm errors calculated at the wavelet
collocation points in [0, 1] for J = 2, 3, 4, 5, 6. These errors are numerically
reported in Table 4. As a result, using the higher values of J in the HQM quite
gaurantees that the better numerical solutions of the problem are obtained.

Problem 5: Consider the following boundary value problem

d2y(x)

dx2
= 1.125ex − 2.930625y(x) + 3.375xy2 + 4.5x2y3(x),

y(0) = 0.8186, y(1) = 0.7813.

(3.8)

The differential equation in Eq. (3.8) is attained by replacing ε = 1.5, g1 = ex,
g2 = −(1 + κ2), g3 = x, g4 = x2 where κ = 0.55 into Eq. (1.2). This problem is
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Table 4: L2 and L∞ errors obtained using the HQM with J = 2, 3, 4, 5, 6
for Eq.(3.7).

J 2 3 4 5 6
2M 8 16 32 64 128

L2 2.51497e-3 8.9169e-4 3.1549e-4 1.1156e-4 3.9445e-5

L∞ 1.3554e-3 3.4575e-4 8.7196e-5 2.1887e-5 5.4824e-6

quite special and different from the previous problems because g1, g3, and g4 are
functions of x, not constants. Since it is hard to find the exact solution of this
problem, then numerical solutions obtained using the REM and HQM with J = 5
are only computed at the selected collocation points. These numerical solutions
of this problem are portrayed in Fig. 6.

Figure 6: Numerical solutions obtained using the yREM (x) and yHQM (x)
with J = 5 for Eq. (3.8).

3.2 The planetary motion equation

Problem 1: Consider the following initial value problem

d2y(x)

dx2
+y(x) = 0.0435 +

3

2
y2(x),

y(0) = 0.895, y′(0) = 0.

(3.9)

The differential equation in Eq. (3.9) is obtained by substituting λ = 0.087, ρ = 1
into the planetary motion equation (1.3). The exact solution of this problem
is y(x) = 0.1511 + 0.7439nc2(0.4851x, 0.2096) with modulus k = 0.2096, which
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nc(u, k) is a reciprocal of the Jacobi elliptic cosine function.
The Haar-quasilinearization method (HQM) with the maximal levels of res-

olution J = 5 and the Runge-Kutta Fehlberg method (RKF) are used to solve
Eq. (3.9) for numerical solutions. The exact solution y(x), yRKF (x) and yHQM (x)
are evaluated at some wavelet collocation points in [0, 1] which their numerical
values are shown in Table 5. Moreover, Table 5 also shows the absolute errors
between the exact values and the numerical values generated using the two meth-
ods at such selected points. The graphical representations of these solutions are
plotted in Fig. 7.

Table 5: Comparisons of the numerical results (y(x), yRKF (x) and
yHQM (x)(J = 5)) in Eq. (3.4) in the sense of the absolute error.

x Exact RKF HQM |y(x)− yRKF (x)| |y(x)− yHQM (x)|
1/128 0.8950107 0.8950107 0.8950107 6.8830e-10 1.1461e-9

11/128 0.8962940 0.8962939 0.8962939 1.2862e-7 1.0401e-7

21/128 0.8997304 0.8997288 0.8997288 1.6675e-6 1.5833e-6

31/128 0.9053588 0.9053508 0.9053510 7.9644e-6 7.7796e-6

41/128 0.9132434 0.9132188 0.9132191 2.4623e-5 2.4293e-5

51/128 0.9234757 0.9234159 0.9234164 5.9785e-5 5.9268e-5

61/128 0.9361759 0.9360514 0.9360522 1.2455e-4 1.2379e-4

71/128 0.9514972 0.9512637 0.9512647 2.3348e-4 2.3242e-4

81/128 0.9696284 0.9692230 0.9692245 4.0540e-4 4.0395e-4

91/128 0.9908004 0.9901361 0.9901380 6.6429e-4 6.6237e-4

101/128 1.0152915 1.0142508 1.0142533 1.0406e-3 1.0382e-3

111/128 1.0434364 1.0418633 1.0418665 1.5731e-3 1.5699e-3

121/128 1.0756363 1.0733257 1.0733297 2.3106e-3 2.3066e-3

4 Conclusions

In this paper, we have proposed the quasilinearization technique including the
Haar wavelet method to numerically solve the second order elliptic differential
and planetary motion equations that equipped with one of the following condi-
tions: initial conditions, Dirichlet boundary conditions, Neumann-Robin bound-
ary conditions, and Dirichlet-Neumann boundary conditions. Using the HQM, the
numerical results of each problem have been compared with their exact solutions
(if any) and the numerical solutions obtained by the other default methods in the
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Figure 7: Graphs of y(x), yRKF (x) and yHQM (x) with J = 5 for Eq. (3.9).

Maple program package. Certain kinds of the errors such as the absolute error,
the L2-norm of error and the L∞-norm of error have been calculated using these
solutions. Comparisons among the resulting solutions and the errors have been
graphically shown to confirm that the HQM yields the highly accurate and rapidly
convergent results depending upon the resolution level. The Haar wavelet quasi-
linearization method could be effectively applied to solve a wide range of nonlinear
differential equations including the case of variable coefficients.
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