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Abstract : Population-based incremental learning algorithm (PBIL) is proposed
to solve parallel machines scheduling problem with machine dependent processing
time. The initial population of proposed algorithm is created based on probability
vector resulting from the solution obtained from applying shortest processing time
(SPT) dispatching rule for parallel machines to represent the jobs assigned on
the machines. Local search is performed during the process to move a job to
an appropriate machine that makespan is minimized. The performance of the
algorithm is illustrated by numerical examples. The solutions obtained from PBIL
are compared to the solution from SPT. The results show that the assignment of
jobs by using PBIL combined with local search can reduce makespan and it is
suitable for solving parallel machines scheduling problem with machine dependent
processing time.
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1 Introduction

Parallel machines scheduling is an optimization problem associated with the
assignment of n jobs to m parallel machines. In general, parallel machines envi-
ronment is designed to reduce the maximum total completion time or makespan
(Cmax). Makespan is varied due to the different processing time of jobs on each
machine. Processing time may depend on machines and sometimes, setup time
to prepare for processing the next job may be included. By the literature on
parallel machines scheduling problem with the objective to minimize makespan,
there are many researches presenting the methods to assign the jobs on each ma-
chine and some procedures are inserted to improve the solution or enhance the
performance. Arnaout et al. [1] introduced Ant Colony Optimization (ACO) al-
gorithm for the non-preemptive unrelated parallel machines scheduling problem
with machine-dependent and sequence-dependent setup times. Li et al. [2] consid-
ered the identical parallel machines scheduling problem in which processing time
is linear decreasing function of the consumed resource. Simulated annealing algo-
rithm was used to obtain the solution. Balin [3] proposed new crossover operator
and optimality criterion to adapt genetic algorithm (GA) for solving non-identical
parallel machines scheduling problem. Vallada and Ruiz [4] presented GA for
the unrelated parallel machines scheduling in which machine and job sequence
dependent setup times were considered. Local search was included to enhance
crossover and mutation operators. Alcan and Başlıigil [5] studied the problem of
non-identical parallel machines with triangular fuzzy processing times by using
GA. Cappadonna et al. [6] addressed the unrelated parallel machine scheduling
problem with limited human resources. Processing and setup times depend on the
machine. Mixed integer linear programming (MILP) was provided for solving the
problem. Parallel machines scheduling with learning effects and fuzzy processing
time was addressed by Yeh et al. [7]. Two heuristic algorithms were proposed,
simulated annealing algorithm and GA. Unrelated parallel machines scheduling
problem with sequence and machine dependent setup times and machine depen-
dent processing time was studied by Joo and Kim [8]. In their woik, mathematical
model and hybrid GA with three dispatching rules were proposed to solve for
optimal solution and large-sized problems, respectively. An immune-inspired algo-
rithm was presented by Diana et al. [9] for unrelated parallel machines scheduling
problem with sequence dependent setup time. A Variable Neighbourhood Descent
(VND) was used as local search to guide the solution to a local optimum. Sels
et al. [10] developed three heuristic approaches for solving the problem of un-
related parallel machines, GA, tabu search algorithm and hybridization of these
two heuristics with a truncated branch and bound procedure. The hybridization
was applied to accelerate the search process to near optimal solution. Kılıç and
Yüzgeç [11] presented antlion optimization algorithm (ALO) inspired by nature
and animals for solving unrelated parallel machine scheduling problem with setup
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time. Machine dependent processing time was also considered.

Population-based incremental learning algorithm is an evaluation algorithm
that combines the mechanism of genetic algorithm and competitive learning. PBIL
works with probability vector used to create a new set of solutions called population
through learning (Baluja [12], Folly [13]). Some applications of using PBIL for
solving optimization problem can be found in the previous works. Pang et al. [14]
proposed adaptive PBIL algorithm for solving flow shop and job shop scheduling
problem. Wan and Qiu [15] solved vehicle routing optimization problem by using
advanced PBIL algorithm with the objective to minimize the cost and meet the
time restriction. Chen et al. [16] applied PBIL to cloud computing resource
scheduling problem. Chen et al. [17] used an artificial immune system combined
with PBIL and collaborative filtering to develop a classifier for network intrusion
and anomaly detection in electronic commerce environments. Meng et al. [18]
selected the cities with small penalty values in serial colored traveling salesman
problem by applying PBIL.

In this paper, makespan minimization for parallel machines scheduling prob-
lem with machine dependent processing time is studied. PBIL combined with local
search is proposed to solve the problem. The notations and problem descriptions
are given in section 2. Solution representation and shortest processing time pro-
cedure adapted to parallel machines are also described in this section. Section 3
details the solution procedure associated with the applications of PBIL and local
search. The performance and results obtained from using the proposed algorithm
are discussed in section 4. Finally, the conclusion is presented in section 5.

2 Preliminaries

In this section, the notations and problem descriptions for parallel machines
scheduling problem with machine dependent processing time are presented. To
explain the job assignment on the machine, solution representation in the matrix
form is proposed and the principle of shortest processing time are then described.

N : number of jobs.

M : number of machines.

pim : processing time of job i on machine m where i ∈ {1, 2, ..., N} and m ∈
{1, 2, ...,M}.

Cm : total completion time of machine m, where m ∈ {1, 2, ...,M}.

Cmax : maximum completion time or makespan.

P : probability vector.

probk : probability of k-th position in probability vector P.
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t : number of iterations

LR : learning rate.

The problem descriptions are as follows.

(1) All jobs are available to process at time zero.

(2) Job can be processed on any machine and job processing time is machine
dependent.

(3) Job is completed by only one machine without interruption.

(4) Job can be started immediately after precedent job is completed.

2.1 Solution Representation

Because parallel machines scheduling problem is associated with the assign-
ment of jobs to machines, an M × N matrix such that all elements are 0 or 1
is presented for scheduling problem with N jobs and M machines. The value of
element x(i, j) in the matrix indicates job j which will be processed by machine i.
For example, if there are 8 jobs which are assigned to 3 machines, solution repre-
sentation can be written in 3× 8 matrix form. Suppose the values of all elements
are given in matrix X1 as follow.

X1 =


0 1 0 1 0 0 1 0

1 0 1 0 0 0 0 1

0 0 0 0 1 1 0 0


It means that machine 1 operates jobs 2, 4 and 7 while machine 2 operates jobs 1, 3
and 8. The remaining jobs are operated on machine 3. Because a job is completed
by only one machine, there is only one element valued 1 in each column.

2.2 Shortest Processing Time

Shortest processing time (SPT) is a dispatching rule applied to single machine
scheduling problem with the objective to minimize job tardiness. Job sequence of
SPT algorithm depends on job processing time, job with smaller processing time
is firstly chosen to schedule. In the case that the decrease of total completion time
is of interest, parallel machines environment is applied and many job assignment
procedures are used to assign jobs to machines. SPT is one of them that has been
used for the job assignment. Due to machine dependent processing time, sum of
job processing time on all machines is calculated. Job with sum the smaller is
firstly selected to process on a machine having the least total completion time.
The steps of SPT applied to parallel machines scheduling problem with machine
dependent processing time are as follows.
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Step 1 : Sort the jobs according to the sum of processing time of each job on all
machines and put them to set S, S = {j1, j2, ..., jN}

Step 2 : Let S′ = ∅ and assign the first job in S to the machine with shortest
processing time and put it to set S′, S′ = S′ ∪ {j1}, and S = S − {j1}.

Step 3 : Assign the next job jk in S to all machines and calculate Cm, m ∈
{1, 2, ...,M}.

Step 4 : Choose the machine leading to minimum Cm and assign job jk in step 3 to
such a machine. If there are two or more values of Cm are equal, job jk is scheduled
to the machine with minimum index. Then, S′ = S′ ∪ {jk} and S = S − {jk}.

Step 5 : Update Cm and Cmax. Go to step 3 and continue until S = ∅ and
S′ = {j1, j2, ..., jN}.

Example 2.1. Suppose that there are 8 jobs to be scheduled on 3 machines and
let p be 3× 8 matrix of processing time as follow.

p =


7 6 4 9 5 8 6 5

5 4 6 3 7 4 7 8

4 5 3 6 6 2 5 9


By sorting the jobs according to the sum of processing time of each job on all
machines, set of job order S = {3, 6, 2, 1, 4, 5, 7, 8}. Job schedule obtained from
applying SPT procedure mentioned previously is shown in Fig.1 with Cmax = 15.
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Figure 1: The assignment of 8 jobs to 3 machines by using SPT.
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3 Solution Procedure

In general, parallel machines scheduling problem is divided into two parts,
assignment of jobs to machines and improvement of schedule. In this study, PBIL
is used to assign n independent jobs to m parallel machines and local search
is performed to improve schedule. The procedure of PBIL and local search are
presented in the following sections.

3.1 Population-based incremental learning algorithm

In order to represent the job assignment to machines which is the solution
of scheduling problem, population-based incremental learning algorithm (PBIL)
is used to created a set of solutions called population. As mentioned in section
2.1, the solutions are written in the matrix form and all elements are valued
either 0 or 1 as seen from matrix X1. In PBIL, these values can be derived
from probability vector. Probability vector defines probability of each position in
solution containing 0 or 1. To create a population based on probability vector, the
procedure is explained in the following example.

Example 3.1. Suppose that P is a 1× 8 probability vector such that

P =
[
0.75 0.6 0.2 0.4 0.35 0.4 0.8 0.5

]
.

Given 8 jobs to be assigned to 3 machines, a 3× 8 matrix X2 such that

X2 =


0 1 0 0 0 0 1 0

1 0 1 0 0 0 0 1

0 0 0 1 1 1 0 0


is created according to the probability vector P. For an element P(1, 1) = 0.75,
it means that probability generating 1 for X2(i, 1), i = 1, 2, 3, is 0.75 (prob1 =
0.75). Simulataneously, the probability generating 0 for X2(i, 1), i = 1, 2, 3, is
0.25 obtained by subtracting prob1 from 1. Similarly, probabilities to generate 1
for X2(i, j), where i = 1, 2, 3 and j = 2, 3, ..., 8 are P(1, j), j = 2, 3, ..., 8 while
probabilities to generate 0 for X2(i, j) are obtained by 1 − probj . It can be seen

that X2 satisfies the property that
∑M

i=1 x(i, j) = 1 for j = 1, 2, ..., N indicating
a job is completed by only one machine.

In PBIL, probability vector will be improved for each iteration to create higher
quality of solution with higher probability. The procedure of PBIL applied to
scheduling problem is as follows.

Step 1 : set an initial 1×N probability vector P.

Step 2 : create a set of solutions (population) according to probability vector P.
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Step 3 : evaluate makespan, Cmax, of each solution and find the best solution from
populations in step 2.

Step 4 : update P by using equation (3.1).

prob
(t)
k = prob

(t−1)
k (1− LR) +Best

(t−1)
k (LR) (3.1)

for k = 1, 2, ..., N and Best
(t−1)
k is binary integer (0 or 1) of the best solution at

iteration t− 1.

Step 5 : do step 2 to 4 until the stopping criteria is satisfied. Stopping criteria
used in this study is set to a maximum number of iterations, 500 iterations. After
t iteration, values of probk are approached to either 0 or 1.

3.2 Local search

The second part of parallel machines scheduling problem is to improve the
solutions. Once the job assignment is carried out by using PBIL, local search is
applied to move a job to a new machine with decreasing makespan. Vallada and
Ruiz [4] presented the acceptance criterion of the job movement between pairs of
machines by the comparison of the amount of completion time reduced on one
machine, the amount of completion time increased on the other machine and the
values of makspan before and after the movement. The movement is accepted if
it satisfies one of the following cases.

(1) Completion time of both machines is reduced.

(2) Completion time of one machine is decreased while completion time of the
other machine is increased. Simultaneously, The amount of time decreased
is greater than the amount of time increased and the value of makspan is
not increased.

In order to move the jobs in this study, the machines with maximum and
minimum total completion times are considered. The condition used to decide
whether a job should be moved or not is the makespan values before and after the
movement. The steps of local search are as follows.

Step 1 : Let m and m′ be the machines with maximum and minimum total com-
pletion time, respectively. Compute Cm, Cm′ and Cmax.

Step 2 : Determine a job i with longest processing time on machine m. If there are
jobs that processing times are equal, job with smaller processing time on machine
m′ is chosen. Then, job i is moved to machine m′.

Step 3 : Compute new makespan, C∗max, and consider the following conditions.

(1) If C∗max < Cmax, update Cmax = C∗max and Ck for k = 1, ...,M . Do step 1.
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(2) If C∗max ≥ Cmax, determine a new job j with shortest processing time on
machine m. Then, job j is moved to machine m′. Compute new values of
C∗max. In the case that C∗max is still greater than or equal to Cmax, the
algorithm is terminated.

The algorithm is continued from step 1 to step 3 until it is terminated.

Example 3.2. Given 8 jobs to be assigned to 3 machines. Suppose that the
job assignment obtained from using PBIL is defined by matrix X2 as shown in
example 3.1. Thus, jobs 2 and 7 are processed on machine 1 while jobs 1,3 and 8
are processed on machine 2. The remaining jobs are processed on machine 3. By
applying the matrix of processing time p in example 2.1 to X2, the gantt chart for
the job assignment is shown in Fig.2 with Cmax = 19.
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Figure 2: Gantt chart for the job assignment defined by matrix X2.

Iteration 1 :

Step 1 : As seen from Fig.2, the machines with maximum and minimum total
completion times are machine 2 and machine 1, respectively. Thus, a job on
machine 2 is moved to machine 1. Now, C2 = 19, C1 = 12 and Cmax = 19.

Step 2 : Determine a job with longest processing time on machine 2. Then, job 8
is selected for moving to machine 1.

Step 3 : Compute new makespan, C∗max = 17. Because C∗max < Cmax, job 8 is
processed on machine 1 and job schedule is presented in Fig.3(a). Update C1 = 17,
C2 = 11, C3 = 14 and Cmax = 17.

Iteration 2 :

Step 1 : As seen from Fig.3(a), the machines with maximum and minimum total
completion times are machine 1 and machine 2, respectively. Thus, a job on
machine 1 is moved to machine 2. Now, C1 = 17, C2 = 11 and Cmax = 17.
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Figure 3: (a) Job schedule at iteration 1 with Cmax = 17. (b) Job schedule
at iteration 2 with Cmax = 15.

Step 2 : Determine a job with longest processing time on machine 1. It can be
seen that processing time of job 2 and job 7 are equal, job 2 is selected due to
shortest processing time on machine 2.

Step 3 : Compute new makespan, C∗max = 15. Because C∗max < Cmax, job 2 is
processed on machine 2 and job schedule is presented in Fig.3(b). Update C1 = 11,
C2 = 15, C3 = 14 and Cmax = 15.

Iteration 3 :

Step 1 : As seen from Fig.3(b), the machines with maximum and minimum total
completion times are machine 2 and machine 1, respectively. Thus, a job on
machine 2 is moved to machine 1. Now, C1 = 11, C2 = 15 and Cmax = 15.

Step 2 : Determine a job with longest processing time on machine 1. Then, job 3
is selected to move.

Step 3 : Compute new makespan, C∗max = 15. Because C∗max = Cmax, job 2 is
selected instead for moving to machine 1 because of minimum processing time.
Now, C∗max = 17. It can be seen that C∗max is greater than Cmax. Thus, there is
no job should be moved and job schedule at iteration 2 is final. The algorithm is
terminated.



334 Thai J. Math. (Special Issue, 2020)/ P. Sompong and S. Srisomporn

4 Experiments and Results

The performance and efficiency of the proposed PBIL algorithm combined with
local search for the problem addressed previously are presented in this section. The
problem instances consist of 20, 40, 60, 80 and 100 jobs. According to parallel
machines and machine dependent processing time, the number of machines and
job processing time are randomly generated as follows (Joo and Kim [8] and Hung
et al. [19]).

(1) The number of machines is calculated by M =

[
N

γ
+ 0.5

]
, where M is

varied by three values of parameter γ, γ = 4, 5, 6, and [x] is the greatest integer
less than x.

(2) The based processing time of job i and the machine adjusting factor of job
i on machine m , bi and δim, are randomly generated in the range of [3, 25] and
[0.5, 1.5], respectively.

(3) Processing time of job i on machine m, pim, is calculated by bi × δim.

To validate and illustrate the performance of the proposed algorithm, 5 prob-
lems are randomly generated for each level of parameters and 5 run times are
performed for each problem such that the least one is selected to be the best solu-
tion of such a problem. By the different levels of parameters used to generate the
problems, a total of 375 instances are tested. In order to obtain job schedule of
the problems, PBIL combined with local search addressed in section 3 is applied.
Population size used in the study is 100 and the initial probabilities of all positions
in probability vector is set based on the solution obtained from SPT algorithm in
which local search is applied and such a solution is set to be one of population.
Learning rate, LR = 0.05, is used to update the probability vector for the next
iteration. The stopping criteria is set to a maximum number of iterations, 500 it-
erations. The results obtained from the proposed algorithm are compared to SPT
stated in section 2.2 and the relative percentage deviation (RPD) of each problem
can be calculated by equation (4.1).

RPD =
SPTsol − PBILsol

PBILsol
× 100 (4.1)

where SPTsol and PBILsol are solutions derived from SPT and PBIL combined
with local search, respectively.

Table 1 is shown the average RPD between makespan obtained from SPT
and the proposed algorithm for each level of parameters indicating the decrease
of makespan. For γ = 4, the number of machines is more than the other cases
resulting in the opportunity to move a job to a new machine in local search step
and the average RPD is more than 20 % for all cases. The number of machines can
be decreased by the increase of γ. It can be seen that the average RPD is decreased
when the number of machines is decreased. By this situation, the result is shown
that PBIL introduced in the study has performed better than SPT algorithm
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Table 1: The average RPD between makespan of SPT and PBIL for each
instance.

Number of jobs γ Number of machines Average RPD

4 5 23.88
20 5 4 24.93

6 3 23.49

4 10 24.75
40 5 8 24.29

6 7 19.91

4 15 28.25
60 5 12 23.92

6 10 23.38

4 20 22.25
80 5 16 18.40

6 13 20.77

4 25 22.55
100 5 20 18.19

6 17 16.75

although the average RPD is decreased, as seen from average RPD which is more
than 16%. Overall, the results shown in table 1 indicate good performance of
proposed algorithm.

5 Conclusion

Minimization of makespan for parallel machines scheduling problem with ma-
chine dependent processing time is studied. The problem is divided into two parts,
assignment of jobs to machines and improvement of schedule. PBIL is used to rep-
resent the jobs assignment on the machines. The initial population is created based
on the solution obtained from SPT algorithm in which local search step is applied.
To improve the solutions, local search is performed after job assignment is carried
out by using PBIL to move a job to new machine with decreasing makespan. To
show the efficiency of proposed algorithm, the average RPD between makespan
obtained from SPT and PBIL combined with local search is presented. The re-
sults show that using the proposed algorithm can reduce makespan although the
number of machines is decreased and it is suitable for solving parallel machines
scheduling problem with machine dependent processing time.
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