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Abstract : In this paper, a non-autonomous system of the HPA axis, i.e., the
hypothalamic-pituitary-adrenal axis. The periodic bell-shaped circadian rhythm
function is used in the model. The HPA axis regulates the levels of glucocorticoid
hormones in the blood. The axis is an endocrine system which is responsible for
coping with stress and depression. Non-negativity of solutions of the model is
established. Some sufficient conditions for the permanence of the model are ob-
tained by using the comparison theorem. The global attractivity of the model is
proved by constructing a Lyapunov function and using the right upper Dini deriva-
tive. Some time series solutions and phase portraits of the model are numerically
presented to confirm the analytical results.
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1 Introduction

Depression is a disease characterized by an emotional disorder. The patient
suffers from the disease because it discourages learning, working and living. By
the World Health Organization, 1 in 20 of the world’s population is ill with this
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disease and the risk of the disease recurrence is 50-70%. Depression is the leading
cause of committing suicide among adolescents. In Thailand, adolescents aged
10-19 years are at risk for depressive disorder by 44% or about 3 million from all
adolescents 8 million [1].

In biological and psychosocial factors, depression is a disease, which is caused
by abnormal hormonal changes of the three endocrine glands, i.e., malfunctions
in the Hypothalamic-Pituitary-Adrenal (HPA) axis. In consequence, the level of
cortisol, which is produced and released by the adrenal cortex, is too high (hyper-
cortisolism) or too low (hypocortisolism). These cause depression if maintained
over longer periods of time. The secretion of cortisol is controlled by a feedback
system. Corticotropin releasing hormone (CRH) is secreted from the hypothala-
mus and transfered to the anterior pituitary. When CRH stimulates the anterior
pituitary which synthesizes and secretes adrenocorticotropic hormone (ACTH)
into the systemic circulation. ACTH is subsequently transported to the adrenal
cortex stimulating the synthesis and secretion of cortisol. The level of cortisol hor-
mone has a significant effect on a human body. If it is too high or too low, then
it will potentially interfere with the synthesis and secretion of CRH and ACTH.
In addition, the hormone cortisol is essential for balancing of body homeostasis
as a response to both mental and physical stress. Too high level of the hormone
cortisol can cause depression, diabetes, visceral obesity or osteoporosis. On the
other hand, if the level of cortisol is lower than a regular level, then it may cause a
disturbed memory formations or life-threatening adrenal crisis beyond depression
[2].

In 2005, Savic and Jelic [3] presented five versions of a qualitative mathemat-
ical model of the HPA axis activity. To observe the changes in each model for
the HPA axis, the designed mathematical models are based on fluctuations due
to the normal rhythm of the hormones on a daily basis. In 2011, Vinther et al.
[4] investigated a model of ordinary differential equations for the Hypothalamic-
Pituitary-Adrenal (HPA) axis using analytical and numerical methods and bio-
logical knowledge including physiological mechanisms. Later in 2013, Andersen et
al. [5] developed HPA models to be more accurate by taking into account satura-
tion concentration. In 2014, Hoeyer et al. [6] studied depression associated with
malfunctions in the HPA axis causing abnormal hormone synthesis. So they im-
proved a mathematical model for the HPA axis by adding a differential equation
of the regular substance (REG) into the original system consisting of the three
differential equations to control the CRH and increase the resolution of hormonal
changing in the system. In 2017, Bangsgaard et al. [2] investigated and developed
a mathematical model of depression in order to make the model more accurate
by adding the circadian rhythm function (C(t)) into the HPA axis model. The
studied model was classified into three types of hormones: CRH, ACTH and Cor-
tisol denoted by (x1), (x2) and (x3), respectively. The diagram demonstrating the
relationship among these hormones is shown in Figure 1.
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Figure 1: Diagram for the HPA axis model studied by Bangsgaard et al.

The HPA axis model introduced by Bangsgaard et al. can be described by a
system of non-autonomous differential equations as follows [2]:

dx1
dt

= a0 + C(t)
a1

1 + a2x23

x1
µ+ x1

− ω1x1, (1.1)

dx2
dt

=
a3x1

1 + a4x3
− ω2x2, (1.2)

dx3
dt

= a5x
2
2 − ω3x3, (1.3)

where C(t) is a circadian rhythm and the interpretation of parameters [2] in
Eqs. (1.1)-(1.4) can be found in Table 1 in which all of them are positive.

Table 1: The description of the parameters of the HPA axis model (1.1)-
(1.3).

Meaning Unit

a0 Basic level of secretion of CRH pg/(mL ·min)
a1 Maximal synthesis of CRH pg/(mL ·min)
a2 The inhibition of the synthesis of CRH through cortisol (dL/µg)2

a3 Stimulation of ACTH by CRH min−1

a4 Inhibition of the synthesis of ACTH by cortisol dL/µg

a5 Stimulation of cortisol by ACTH µg/dL

min(pg/mL)2

ω1 The elimination rates of CRH min−1

ω2 The elimination rates of ACTH min−1

ω3 The elimination rates of Cortisol min−1

δ Time shifting of the circadian rhythm min
k Steepness of the increasing function at point (t− δ) = α −
l Steepness of the decreasing function at point (t− δ) = β −
µ Half-saturation constant pg/mL
α Half saturation point of k min
β Half saturation point of l min
ε Basic contribution from circadian clock during the night −
Nc Normalization constant −
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The proposed circadian rhythm C(t) used in the model is given by

C(t) = Nc

(
tkm

tkm + αk
· (T − tm)l

(T − tm)l + βl
+ ε

)
, t > 0, (1.4)

where tm = (t − δ) modulo T with T = 1440 mins corresponding to 24 hours.
The function C(t) as shown above is obviously positive, continuous and bounded
between ε and 1. The function C(t) in Eq. (1.4) is a periodic bell-shaped curve as
shown in Figure 2.

Figure 2: Graph of the circadian rhythm C(t) in Eq. (1.4) for four days
(7200 minutes).

2 Preliminaries

In this section, we will give some definitions, notations and some relevant
theorems which will be useful for our main results.

Lemma 2.1 ([7, 8]). Consider the non-autonomous linear equation

dx

dt
= A(t)−B(t)x, (2.1)

where the functions A(t) and B(t) are bounded and continuous on R+ = [0, ∞)
and A(t) > 0 for all t > 0. Suppose that there are constants ηi > 0 (i = 1, 2) such
that

lim inf
t→∞

∫ t+η1

t

A(θ)dθ > 0 and lim inf
t→∞

∫ t+η2

t

B(θ)dθ > 0. (2.2)

Then there exists constants m > 0 and M > 0 such that for any solution x(t) of
Eq. (2.1)

m < lim inf
t→∞

x(t) 6 lim sup
t→∞

x(t) < M. (2.3)

Theorem 2.2. (Comparison theorem [9]) Suppose f(t, u) is continuous in t and
u and Lipschitz continuous in u. Suppose u(t), v(t) are C1 for t > t0 and satisfy

u′(t) 6 f(t, u(t)), v′(t) = f(t, v(t)), (2.4)

and u(t0) 6 v(t0). Then u(t) 6 v(t) for t > t0.
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Definition 2.3. (Dini derivative [10]) The right upper Dini derivative D+f(t) of
a continuous function f : R→ R at t is

D+f(t) = lim sup
h→0+

f(t+ h)− f(t)

h
.

If f is differentiable at t, then D+f(t) = df(t)/dt, where df(t)/dt is the usual
derivative at t.

Definition 2.4 ([11]). Let f : D → R be a function. We say that f is uniformly
continuous on the domain D if for every ε > 0 there exists δ > 0 such that for
every x, y ∈ D with |x− y| < δ, we have that

|f(x)− f(y)| < ε.

Lemma 2.5. (Barbalat’s lemma [12]) Let f be a non-negative function defined
on [0,∞) such that f is integrable on [0,∞) and uniformly continuous on [0,∞),
then lim

t→∞
f(t) = 0.

3 Main Results

3.1 Non-negative solutions of the HPA axis model

Firstly, we show in the following lemma that all solutions of the HPA axis
model in Eqs. (1.1)-(1.3) are non-negative.

Lemma 3.1. All solutions of Eqs. (1.1)-(1.3) with non-negative initial conditions
are non-negative for all t > 0.

Proof. Let (x1(t), x2(t), x3(t))T be a solution of the initial value problem consisting
of system (1.1)-(1.3) and the non-negative initial condition (x1(0), x2(0), x3(0))T .
Assuming there exists a time t1 > 0 such that x1(t1) = 0 and dx1(t1)/dt 6 0.
Substituting x1(t1) = 0 into Eq. (1.1), we obtain

dx1(t1)

dt
= a0 > 0,

which contradicts to dx1(t1)/dt 6 0. Thus, x1(t) is non-negative for all t > 0.
Next, it is not difficult to see that Eq. (1.3) is linear in x3(t) and its solution

is of the form

x3(t) = x3(0)exp (−ω3t) + a5exp (−ω3t)

∫ t

0

x22(s)exp (ω3s) ds,

> x3(0)exp (−ω3t) > 0.

The solution x3(t) in the above equation is obviously non-negative for all t > 0.
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Finally, the same process for x3(t) is applied to Eq. (1.2) for obtaining the
solution x2(t), which is expressed as

x2(t) = x2(0)exp (−ω2t) + a3exp (−ω2t)

∫ t

0

(
x1(s)

1 + a4x3(s)

)
exp (ω2s) ds,

> x2(0)exp (−ω2t) > 0.

The solution x2(t) as shown above is non-negative for all t > 0 since x1(t) and
x3(t) are non-negative as shown before. Therefore, all solutions of the HPA axis
model are non-negative for t > 0.

3.2 Permanence of all hormones for the HPA axis model

On the permanence of hormones x1, x2 and x3, we investigate levels of these
three hormones are bounded as follows.

Theorem 3.2. All solutions of the HPA axis model in Eqs. (1.1)-(1.3) with any

non-negative initial conditions are permanent, if lim inf
t→∞

∫ t+η2

t

C(θ)dθ <
(
ω1η2(1+

a2M
2
3 )(µ + M1)

)
/a1 where η2 > 0 and M1, M3 are the positive constants which

are determined later.

Proof. From Eq. (1.1), we have that for all t > 0,

dx1(t)

dt
= a0 + C(t)

a1
1 + a2x23(t)

x1(t)

µ+ x1(t)
− ω1x1(t),

6 A(t)− B(t)x1(t), (3.1)

where A(t) = (a0 + C(t)a1) and B(t) = ω1. Since C(t) > 0, then for η1 > 0 we
obtain

lim inf
t→∞

∫ t+η1

t

A(θ)dθ = lim inf
t→∞

∫ t+η1

t

(a0 + C(θ)a1)dθ,

= a0η1 + a1 lim inf
t→∞

∫ t+η1

t

C(θ)dθ,

> a1 lim inf
t→∞

∫ t+η1

t

C(θ)dθ > 0. (3.2)

In addition, for η2 > 0 we have

lim inf
t→∞

∫ t+η2

t

B(θ)dθ = lim inf
t→∞

∫ t+η2

t

(ω1)dθ,

= ω1η2 > 0. (3.3)

Using (3.1), (3.2) and (3.3), then we obtain the resulting inequality as shown in
the result of Lemma 2.1. Applying the comparison theorem to the obtained result,
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consequently there exist positive constants M1 and T1, where M1 is independent
of any positive solution of system (1.1)-(1.3), such that

x1(t) 6M1 for all t > T1. (3.4)

Next, Eq. (1.2) it is obvious that a3x1(t)/(1+a4x3(t)) < a3x1(t) and a3x1(t) 6
a3M1 for t > T1. Hence, we obtain

dx2(t)

dt
=

a3x1(t)

1 + a4x3(t)
− ω2x2(t),

6 C(t)−D(t)x2(t), (3.5)

where C(t) = a3M1 and D(t) = ω2. For η1 > 0, we have

lim inf
t→∞

∫ t+η1

t

C(θ)dθ = lim inf
t→∞

∫ t+η1

t

a3M1dθ,

= a3M1η1 > 0, (3.6)

and for η2 > 0, we get

lim inf
t→∞

∫ t+η2

t

D(θ)dθ = lim inf
t→∞

∫ t+η2

t

ω2dθ,

= ω2η2 > 0. (3.7)

Employing (3.5), (3.6) and (3.7), then we obtain the inequality as shown in the
result of Lemma 2.1. Then we similarly apply the comparison theorem to the
obtained result so that there exist positive constants M2 and T2 > T1, where M2

is independent of any positive solution of the system, such that

x2(t) 6M2 for all t > T2. (3.8)

From Eq. (1.3), we get that for t > T2

dx3(t)

dt
= a5(x2(t))2 − ω3x3(t),

6 E(t)−F(t)x3(t), (3.9)

where E(t) = a5M
2
2 and F(t) = ω3. Then for η1 > 0, we get

lim inf
t→∞

∫ t+η1

t

E(θ)dθ = lim inf
t→∞

∫ t+η1

t

a5M
2
2 dθ,

= a5M
2
2 η1 > 0, (3.10)

and for η2 > 0, we have that

lim inf
t→∞

∫ t+η2

t

F(θ)dθ = lim inf
t→∞

∫ t+η2

t

ω3dθ,

= ω3η2 > 0. (3.11)
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Using (3.9), (3.10) and (3.11), then we get the resulting inequality as shown in
the result of Lemma 2.1. Applying the comparison theorem to the obtained re-
sult, consequently there exist positive constants M3 and T3 > T2, where M3 is
independent of any positive solution of the system, such that

x3(t) 6M3 for all t > T3. (3.12)

Therefore, any positive solution (x1(t), x2(t), x3(t))
T

of system (1.1)-(1.3) is ulti-
mately bounded.

On the other hand, we demonstrate that all solutions of the system are bounded
below. From Eq. (1.1), we have that for all t > T3

dx1(t)

dt
= a0 + C(t)

a1
(1 + a2x3(t)2)

x1(t)

(µ+ x1(t))
− ω1x1(t),

> a0 +

(
C(t)a1

(1 + a2M2
3 )(µ+M1)

− ω1

)
x1(t),

= G(t)−H(t)x1(t), (3.13)

where G(t) = a0 and H(t) = ω1 − (C(t)a1)/
(
(1 + a2M

2
3 )(µ + M1)

)
. Then for

η1 > 0, we get

lim inf
t→∞

∫ t+η1

t

G(θ)dθ = lim inf
t→∞

∫ t+η1

t

(a0)dθ,

= a0η1 > 0. (3.14)

For η2 > 0, we have

lim inf
t→∞

∫ t+η2

t

H(θ)dθ = lim inf
t→∞

∫ t+η2

t

(
ω1 −

C(θ)a1
(1 + a2M2

3 )(µ+M1)

)
dθ,

= ω1η2 −
(

a1
(1 + a2M2

3 )(µ+M1)

)
lim inf
t→∞

∫ t+η2

t

C(θ)dθ.

From the assumption as stated above,

lim inf
t→∞

∫ t+η2

t

H(θ)dθ > 0. (3.15)

Utilizing (3.13), (3.14) and (3.15), we then obtain the resulting inequality as shown
in the result of Lemma 2.1. Applying the comparison theorem to the obtained
result, consequently there exist positive constants m1 and T4 > T3, where m1 is
independent of any positive solution of the system, such that

x1(t) > m1 for all t > T4. (3.16)

Next, from Eq. (1.2) of the model and for t > T4, we directly have

dx2(t)

dt
=

a3x1(t)

1 + a4x3(t)
− ω2x2(t),

> I(t)− J (t)x2(t), (3.17)
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where I(t) = (a3m1)/(1 + a4M3) and J (t) = ω2. Then for η1 > 0, we get

lim inf
t→∞

∫ t+η1

t

I(θ)dθ = lim inf
t→∞

∫ t+η1

t

a3m1

1 + a4M3
dθ,

=
a3m1η1

1 + a4M3
> 0, (3.18)

and for η2 > 0, we have

lim inf
t→∞

∫ t+η2

t

J (θ)dθ = lim inf
t→∞

∫ t+η2

t

ω2dθ,

= ω2η2 > 0. (3.19)

Using (3.17), (3.18) and (3.19), then we obtain the resulting inequality as shown
in the result of Lemma 2.1. Applying the comparison theorem to the obtained
result, consequently there exist positive constants m2 and T5 > T4, where m2 is
independent of any positive solution of the system, such that

x2(t) > m2 for all t > T5. (3.20)

From Eq. (1.3) of the HPA axis model, we have for t > T5

dx3(t)

dt
= a5(x2(t))2 − ω3x3(t),

> K(t)− L(t)x3(t), (3.21)

where K(t) = a5m
2
2 and L(t) = ω3. Then for η1 > 0, we get

lim inf
t→∞

∫ t+η1

t

K(θ)dθ = lim inf
t→∞

∫ t+η1

t

a5m
2
2dθ,

= a5m
2
2η1 > 0, (3.22)

and for η2 > 0, we get

lim inf
t→∞

∫ t+η2

t

L(θ)dθ = lim inf
t→∞

∫ t+η2

t

ω3dθ,

= ω3η2 > 0. (3.23)

Using (3.21), (3.22) and (3.23), then we obtain the resulting inequality as shown
in the result of Lemma 2.1. Applying the comparison theorem to the obtained
result, consequently there exist positive constants m3 and T6 > T5, where m3 is
independent of any positive solution of the system, such that

x3(t) > m3 for all t > T6. (3.24)

From Eqs. (3.4),(3.8),(3.12),(3.16),(3.20) and (3.24), we finally attain the following
inequalities

mi 6 lim inf
t→∞

xi(t) 6 lim sup
t→∞

xi(t) 6Mi, i = 1, 2, 3.

This completes the theorem 3.2.
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3.3 Global attractivity for non-autonomous model

In this section, we next investigate the global attractivity of the HPA axis
model based on using the following definition.

Definition 3.3 ([7]). The HPA axis model in Eqs. (1.1)-(1.3) is said to be globally

attractive, if for any two solutions
(
x
(1)
1 (t), x

(1)
2 (t), x

(1)
3 (t)

)T
and

(
x
(2)
1 (t), x

(2)
2 (t), x

(2)
3 (t)

)T
of model Eqs. (1.1)-(1.3), we have

lim
t→∞

|x(1)i (t)− x(2)i (t)| = 0, i = 1, 2, 3. (3.25)

Theorem 3.4. Suppose that there exist constants µi > 0 (i = 1, 2, 3) such that
lim inf
t→∞

Ai(t) > 0, i = 0, 1 and A2 > 0, where

A0(t) = µ1sign(x
(1)
1 (t)− x(2)1 (t))

{
a1C(t)M1

(
1

(1 + a2M2
3 )(µ+M1)

− 1

(µ+m1)

)}
+µ2sign(x

(1)
2 (t)− x(2)2 (t))

{
a3M1

(
1

1 + a4M3
− 1

1 + a4m3

)}
, (3.26)

A1(t) = µ1ω1 −
µ1a1C(t)

(1 + a2m2
3)(µ+m1)

− µ2a3
1 + a4m3

, (3.27)

A2 = µ2ω2 − 2µ3a5M2, (3.28)

where m1, m3, M1, M2 and M3 are given in the proof of Theorem 3.2. Then the
solution of model (1.1)-(1.3) is globally attractive.

Proof. Let x1 =
(
x
(1)
1 (t), x

(1)
2 (t), x

(1)
3 (t)

)T
and x2 =

(
x
(2)
1 (t), x

(2)
2 (t), x

(2)
3 (t)

)T
be

any two positive solutions of the model in Eqs. (1.1)-(1.3). From Theorem 3.2, we
have, for all t > T6 and for j = 1, 2,

m1 6 x
(j)
1 (t) 6M1, m2 6 x

(j)
2 (t) 6M2, m3 6 x

(j)
3 (t) 6M3, (3.29)

where mi, Mi, i = 1, 2, 3 are defined in Theorem 3.2.
Choosing the Lyapunov function (V (t)) as follows:

V (t) = µ1V1(t) + µ2V2(t) + µ3V3(t), (3.30)

where Vi = |x(1)i (t) − x(2)i (t)|, for i = 1, 2, 3. The function V (t) defined above is
positive definite if x1 6= x2. Taking the right upper Dini derivative on both sides
of Eq. (3.30), we then have

D+V (t) = µ1D
+V1(t) + µ2D

+V2(t) + µ3D
+V3(t). (3.31)
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From Eq. (3.29), we first obtain the following inequality for D+V1(t):

D+V1(t) = D+µ1|x(1)1 (t)− x(2)1 (t)|,

= µ1sign(x
(1)
1 (t)− x(2)1 (t))

{
D+x

(1)
1 (t)−D+x

(2)
1 (t)

}
,

= µ1sign(x
(1)
1 (t)− x(2)1 (t))

{
a1C(t)

(
x
(1)
1 (t)(

1 + a2
(
x
(1)
3 (t)

)2)(
µ+ x

(1)
1 (t)

)
− x

(2)
1 (t)(

1 + a2
(
x
(2)
3 (t)

)2)(
µ+ x

(2)
1 (t)

)
)
− ω1(x

(1)
1 (t)− x(2)1 (t))

}
,

6 µ1sign(x
(1)
1 (t)− x(2)1 (t))

{
a1C(t)

(
x
(1)
1 (t)

(µ+m1)
− x

(2)
1 (t)

(1 + a2M2
3 )(µ+M1)

)
−ω1(x

(1)
1 (t)− x(2)1 (t))

}
,

= µ1sign(x
(1)
1 (t)− x(2)1 (t))

{
a1C(t)

(
x
(1)
1 (t)

(µ+m1)
− x

(2)
1 (t)

(µ+m1)

+
x
(2)
1 (t)

(µ+m1)
− x

(2)
1 (t)

(1 + a2M2
3 )(µ+M1)

)
− ω1(x

(1)
1 (t)− x(2)1 (t))

}
,

6 µ1sign(x
(1)
1 (t)− x(2)1 (t))

{
a1C(t)

(µ+m1)

(
x
(1)
1 (t)− x(2)1 (t)

)
+a1C(t)M1

(
1

(µ+m1)
− 1

(1 + a2M2
3 )(µ+M1)

)
− ω1(x

(1)
1 (t)− x(2)1 (t))

}
,

= µ1sign(x
(1)
1 (t)− x(2)1 (t))

{
a1C(t)M1

(
1

(µ+m1)
− 1

(1 + a2M2
3 )(µ+M1)

)}
+µ1

{(
a1C(t)

(µ+m1)
− ω1

)
|x(1)1 (t)− x(2)1 (t)|

}
. (3.32)

Using Eq. (3.29), we secondly obtain the following inequality:

D+V2(t) = D+µ2|x(1)2 (t)− x(2)2 (t)|,

= µ2sign(x
(1)
2 (t)− x(2)2 (t))

{
D+x

(1)
2 (t)−D+x

(2)
2 (t)

}
,

= µ2sign(x
(1)
2 (t)− x(2)2 (t))

{
a3

(
x
(1)
1 (t)

1 + a4x
(1)
3 (t)

− x
(2)
1 (t)

1 + a4x
(2)
3 (t)

)

−ω2(x
(1)
2 (t)− x(2)2 (t))

}
,

6 µ2sign(x
(1)
2 (t)− x(2)2 (t))

{
a3

(
x
(1)
1 (t)

1 + a4m3
− x

(2)
1 (t)

1 + a4M3

)

−ω2(x
(1)
2 (t)− x(2)2 (t))

}
,
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D+V2(t) = µ2sign(x
(1)
2 (t)− x(2)2 (t))

{
a3

(
x
(1)
1 (t)

1 + a4m3
− x

(2)
1 (t)

1 + a4m3

+
x
(2)
1 (t)

1 + a4m3
− x

(2)
1 (t)

1 + a4M3

)
− ω2(x

(1)
2 (t)− x(2)2 (t))

}
,

6 µ2sign(x
(1)
2 (t)− x(2)2 (t))

{
a3

1 + a4m3

(
x
(1)
1 (t)− x(2)1 (t)

)
+a3M1

(
1

1 + a4m3
− 1

1 + a4M3

)
− ω2(x

(1)
2 (t)− x(2)2 (t))

}
,

6 µ2sign(x
(1)
2 (t)− x(2)2 (t))

{
a3M1

(
1

1 + a4m3
− 1

1 + a4M3

)}
+µ2

{
a3

1 + a4m3
|x(1)1 (t)− x(2)1 (t)| − ω2|x(1)2 (t)− x(2)2 (t)|

}
. (3.33)

Similarly, using Eq. (3.29), we finally have the inequality for D+V3(t) as follows:

D+V3(t) = D+µ3|x(1)3 (t)− x(2)3 (t)|,

= µ3sign(x
(1)
3 (t)− x(2)3 (t))

{
D+x

(1)
3 (t)−D+x

(2)
3 (t)

}
,

= µ3sign(x
(1)
3 (t)− x(2)3 (t))

{
a5

((
x
(1)
2 (t)

)2
−
(
x
(2)
2 (t)

)2)
−ω3(x

(1)
3 (t)− x(2)3 (t))

}
,

= µ3sign(x
(1)
3 (t)− x(2)3 (t))

{
a5
(
x
(1)
2 (t)− x(2)2 (t)

)(
x
(1)
2 (t) + x

(2)
2 (t)

)
−ω3(x

(1)
3 (t)− x(2)3 (t))

}
,

6 µ3sign(x
(1)
3 (t)− x(2)3 (t))

{
2a5M2(x

(1)
2 (t)− x(2)2 (t))

−ω3(x
(1)
3 (t)− x(2)3 (t))

}
,

6 µ3

{
2a5M2|x(1)2 (t)− x(2)2 (t)| − ω3|x(1)3 (t)− x(2)3 (t)|

}
. (3.34)

From Eqs. (3.31)-(3.34), we have

D+V (t) 6 −
[
µ1sign(x

(1)
1 (t)− x(2)1 (t))

{
a1C(t)M1

(
1

(1 + a2M2
3 )(µ+M1)

− 1

(µ+m1)

)}
+µ2sign(x

(1)
2 (t)− x(2)2 (t))

{
a3M1

(
1

1 + a4M3
− 1

1 + a4m3

)}]
−
(
µ1ω1 −

µ1a1C(t)

(µ+m1)
− µ2a3

1 + a4m3

)
|x(1)1 (t)− x(2)1 (t)|

− (µ2ω2 − 2µ3a5M2) |x(1)2 (t)− x(2)2 (t)|

− (µ3ω3) |x(1)3 (t)− x(2)3 (t)|,
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= −
(
A0(t) +A1(t)|x(1)1 (t)− x(2)1 (t)|+A2|x(1)2 (t)− x(2)2 (t)|

+A3|x(1)3 (t)− x(2)3 (t)|
)
, (3.35)

where Ai(t), i = 0, 1 and A2 are defined in Eqs. (3.26), (3.27) and (3.28), respec-
tively and A3 = µ3ω3 > 0. Because lim inf

t→∞
Ai(t) > 0, i = 0, 1, then there exist

constants ξ̃ > 0 and T0 > T6 such that Ai(t) > ξ̃, i = 0, 1 for all t > T0. Then

we select ξ > 0 such that ξ = min{ξ̃, A2, A3}. In consequence, we obtain for all
t > T0

D+V (t) 6 −ξ
(
1 + |x(1)1 (t)− x(2)1 (t)|+ |x(1)2 (t)− x(2)2 (t)|+ |x(1)3 (t)− x(2)3 (t)|

)
,

6 −ξ
(
|x(1)1 (t)− x(2)1 (t)|+ |x(1)2 (t)− x(2)2 (t)|+ |x(1)3 (t)− x(2)3 (t)|

)
,

= −ξ z(t), (3.36)

where z(t) = |x(1)1 (t)− x(2)1 (t)|+ |x(1)2 (t)− x(2)2 (t)|+ |x(1)3 (t)− x(2)3 (t)|.
Integrating Eq. (3.36) from T0 to t, then we have

V (t)− V (T0) 6 −ξ
∫ t

T0

z(s)ds,

V (t) + ξ

∫ t

T0

z(s)ds 6 V (T0).

Since V (t) is positive, we get

ξ

∫ t

T0

z(s)ds 6 V (T0) <∞.

Thus, z(t) is integrable on [T0, ∞). By Eq. (3.29), we have |x(1)i (t)− x(2)i (t)|, i =

1, 2, 3 are bounded on [T0, ∞) and then d
dt

(
x
(1)
i (t)− x(2)i (t)

)
, i = 1, 2, 3 are

bounded for t > T0. Therefore, |x(1)i (t)− x(2)i (t)|, i = 1, 2, 3 are uniformly contin-
uous on [T0, ∞). Using Lemma 2.5, we can conclude that lim

t→∞
z(t) = 0. Then we

finally have

lim
t→∞

|x(1)i (t)− x(2)i (t)| = 0, i = 1, 2, 3.

This shows that Eqs. (1.1)-(1.3) are globally attractive.
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4 Numerical Results

In this section we investigate the numerical results for the HPA axis model
in Eqs. (1.1)-(1.3) using two sets of the parameter values. The first parameter
set is for healthy population consisting of normal healthy people or depressive
patients who are under medical supervision. This group is called the treated
depressed patients. The second parameter set is for hypercortisolemic depressed
patients whose levels of cortisol hormone are higher than normal levels. With
the high level of cortisol, it may cause depression and put patients at risk to
hurt themselves or the people around them. The two parameter sets used in our
numerical experiments are shown in Table 2 in which their values are refered from
[2].

Table 2: Two sets of the parameter values used in the simulations for system
(1.1)-(1.3).

Treated patient Hypercortisolemic patient

a0 3.9031× 10−4 1.3110× 10−1

a1 6.8390× 1012 1.2921× 1013

a2 1.7809× 109 1.7809× 109

a3 2.2803× 104 2.2803× 104

a4 1.7745× 105 1.7745× 105

a5 4.6170× 10−4 3.0311× 10−4

ω1 0.0337 0.0457
ω2 0.0205 0.0146
ω3 0.0238 0.0210
δ 83.8 20.1
k 5 5
l 6 6
µ 583 583
α 300 300
β 950 950
ε 0.01 0.01
Nc 0.5217 0.5217

To better understand the permanence behaviors of the hormones x1(t), x2(t)
and x3(t) in the model, we simulate the numerical solutions for a long period of

time using the following two initial conditions (x1(0), x2(0), x3(0))
T

= (2, 5, 10)T ,
(60, 50, 18)T . Figure 3 does not only represent the phase portraits of the levels
of the hormones for treated and hypercortisolemic depressed patients but also
shows that all of the hormones are bounded, which is the solution curves finally
converge into closed curves in 3-D space. All graphs in this figure are plotted for
t ∈ [0, 7200] using the parameter values in Table 2 and the above initial conditions.

Next, we study behaviors of each hormone between the two groups. This
can be done by comparing each time series hormone level for a treated patient
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(a) (b)

Figure 3: Phase portraits of the model (1.1)-(1.3) for t ∈ [0, 7200] using
the different initial conditions: (a) a treated patient (b) a hypercortisolemic
patient.

and a hypercortisolemic depressed patient. Figure 4 shows the comparison of the
time series solutions of each hormone for treated and hypercortisolemic depressed
patients. These graphs are depicted on t ∈ [0, 7200] with the initial condition
(2, 5, 10)T . It is found from Figure 4 that the hormone levels of a hypercortisolemic
depressed patient are much significantly higher than the hormone levels of a treated
patient. In Table 3, the difference values of the hormone levels for these two types
of people are numerically computed at some specific times for two days such as 6
a.m., noon, 6 p.m., and midnight of each day. Moreover, the normal levels of each
hormone at such specific times are shown in Table 3 as well. We can observe from
Table 3 that the biggest differences of each hormone level mainly occur around 6
a.m. of each day.

Table 3: The normal level of the hormones and the differences of the hor-
mone levels of a hypercortisolemic patient deviated from the normal levels
at some specific times.

Time xT1 xT2 xT3 |xT1 − xH1 | |xT2 − xH2 | |xT3 − xH3 |
60 0.273 5.697 3.801 0.132 2.217 0.392
360 19.802 26.162 13.075 119.064 11.14 9.276
720 13.757 19.784 9.645 12.497 2.294 5.557
1080 3.010 11.598 2.027 2.460 8.521 0.600
1440 1.515 9.265 1.399 0.105 9.724 4.692
1800 10.760 12.782 3.938 157.921 54.210 8.046
2160 17.004 15.605 4.218 16.272 0.958 8.382
2520 1.593 6.685 1.247 1.552 3.984 0.370
2880 1.367 6.875 0.826 0.482 9.118 4.816
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(a)

(b)

(c)

Figure 4: Comparison of the time series hormone levels between a treated
patient (blue curve) and a hypercortisolemic depressed patient (red curve).
All graphs are generated from the initial condition (2, 5, 10)T and plotted
for 5 days : (a) x1(t), (b) x2(t), (c) x3(t).

In this part, the investigation of the global attractivity of model (1.1)-(1.3)
is considered. We separate this study for the two types of patients: treated and
hypercortisolemic depressed patients. The experimental simulations for such two
types of patients are obtained using the parameter values in Table 2 and the initial
conditions: (2, 5, 10)T and (60, 50, 18)T . Using the above initial conditions, we first
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plot the hormone levels x1(t), x2(t), and x3(t) of a treated patient for 5 days in
Figure 5. It can be observed from Figure 5 (a) that the curves of x1(t) generated
using the distinct initial conditions have the greatest difference for the first day
and the difference between these two curves are then gradually decreasing for the
second and third days. Eventually, these two graphs are very close to each other for
the last two days. In a remarkably similar fashion, the hormones x2(t) and x3(t)
of a treated patient are considered to have the same globally attractive behaviors
as the behavior of x1(t) when the specified initial conditions employed.

(a)

(b)

(c)

Figure 5: Globally attractive behaviors of the hormones for a treated pa-
tient using the initial conditions: (2, 5, 10)T (blue curves) and (60, 50, 18)T

(green curves): (a) x1(t), (b) x2(t), (c) x3(t).
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Next, the globally attractive study of the hormone levels x1(t), x2(t), and x3(t)
of the model for a hypercortisolemic depressed patient can be attained using the
same procedure as for a treated patient. The numerical results in Figure 6 reveal
that the two curves of each hormone level have a very different phase and structure
for the first three days and they comes closer to each other for the last two days.
Of course, the hormone levels for a hypercortisolemic depressed patient are much
higher than the levels for a treated people.

(a)

(b)

(c)

Figure 6: Globally attractive behaviors of the hormones for a hypercor-
tisolemic depressed patient using the initial conditions: (2, 5, 10)T (blue
curves) and (60, 50, 18)T (green curves): (a) x1(t), (b) x2(t), (c) x3(t).
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In the final part, we combine the phase portraits of the model for treated
and hypercortisolemic depressed patients to compare the permanence areas of
them. In Figure 7, the phase portraits of the hormone levels for treated and
hypercortisolemic depressed patients are portrayed using the parameter values as
described in Table 2 and starting with the same initial condition (2, 5, 10)T . It is
noticed that the permanence of the hormone levels for a treated patient is limited
in a smaller region than the region of the permanence for a hypercortisolemic
depressed patient.

(a) (b)

(c)

Figure 7: Permanence regions of the model for (a) a treated patient, (b) a
hypercortisolemic depressed patient, (c) combined between the two types
of patients.

5 Conclusions

Different from previous work [2], in this article we have investigated the non-
autonomous HPA axis model (1.1)-(1.3) in many aspects. For example, the non-
negativity of solutions of the model has been proved. We have established the
sufficient conditions for the permanence of the model. In other words, the bound-
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edness of the hormone levels is shown. Furthermore, the sufficient conditions for
the global asymptotic stability of the model have been provided. Some interest-
ing numerical results have been demonstrated to verify the obtained theoretical
results. The numerical results, which are shown in section 4, help us better un-
derstand the changes of levels of the studied three hormones between treated and
hypercortisolemic depressed patients at the monitored different times. These could
be some benefits for clinical diagnosis of depression.
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