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Abstract : In this paper, we prove the existence of a common fixed point
for firmly nonspreading mappings and quasi-nonexpansive mappings in CAT(0)
spaces. Using the concept of Ishikawa iterative scheme, we define the sequence
{xn} by

(A)

{
x1 ∈ E,

xn+1 = αnxn ⊕ (1− αn)S(Txn),

for all n ∈ N , where E is a nonempty closed and convex subset of a complete
CAT(0) space, S and T are mappings defined on E.

We prove that the sequence {xn} ∆ - converges to a common fixed point
for firmly nonspreading mappings and quasi-nonexpansive mappings in CAT(0)
spaces.
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1 Introduction
Let (X, d) be a metric space and T : X → X be a mapping. A point x ∈ X

is called fixed point of T if Tx = x. We denote the set of fixed points of T by
F (T ), i.e. F (T ) = {x ∈ X : Tx = x}. A mapping T : X → X is said to be
nonexpansive if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ X. The generalization of non-
expansive mappings which we are interested in are quasi-nonexpansive mappings,
i.e., d(Tx, y) ≤ d(x, y) for all x ∈ X and for all y ∈ F (T ). In 2011, Lin et al. [1]
introduced a generalized nonspreading mapping on CAT(0) spaces, call a general-
ized hybrid mapping : let E be a nonempty closed and convex subset of a CAT(0)
space X, we say that T : E → X is a generalized hybrid mapping if there exist
mappings a1 : E → [0, 1] , a2, a3 : E → [0, 1) such that
P(1) d2 (Tx, Ty) ≤ a1 (x) d

2 (x, y) + a2 (x) d
2 (Tx, y) + a3(x)d

2(x, Ty)
+ k1(x)d

2(Tx, x) + k2(x)d
2(Ty, y) for all x, y ∈ E;

P(2) a1 (x) + a2 (x) + a3 (x) ≤ 1 for all x, y ∈ E;

P(3) 2k1 (x) < 1− a2 (x) and k2 (x) < 1− a3 (x) for all x, y ∈ E.

The authors also introduced the notion of nonspreading mappings on CAT(0)
spaces as follows : let E be a nonempty closed and convex subset of a complete
CAT(0) space X. A mapping T : E → E is said to be a nonspreading mapping if

2d2(Tx, Ty) ≤ d2(Tx, y) + d2(Ty, x)

for all x, y ∈ E. From the definition of a generalized nonspreading mapping, if we
set a1(x) = k1(x) = k2(x) = 0 and a2(x) = a3(x) =

1
2 for all x ∈ E, then T is a

nonspreading mapping. In 2018, Kimura and Kishi [2] introduced the concept of
firmly nonspreading mappings on complete CAT(0) spaces : let E be a nonempty
closed and convex subset of a complete CAT(0) space X. A mapping T : E → E
is said to be a firmly nonspreading mapping if

2d2(Tx, Ty) ≤ d2(Tx, y) + d2(Ty, x)− d2(x, Tx)− d2(y, Ty)

for all x, y ∈ E. We see that firmly nonspreading mapping is a nonspreading
mapping.

To study convergence theorems, we are interested in the iteration of a sequence
defined by, in 1953, W. Robert Mann [3] as follows: let E be a compact and convex
subset of a Banach space X and T : E → E a continuous mapping. Let x ∈ E
and {xn} be a sequence generated by{

x1 = x

xn+1 = αnxn + (1− αn)Txn, n ≥ 1.
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In 1974, Ishikawa [4] defined a new iteration which is a generalization of Mann
iterative scheme by{

yn = βnxn + (1− βn)Txn,

xn+1 = αnxn + (1− αn)Tyn, n ≥ 1,

In this paper, using the concept of Ishikawa iterative scheme, we define the se-
quence {xn} by

(A)

{
x1 ∈ E,

xn+1 = αnxn ⊕ (1− αn)S(Txn), n ≥ 1,

where E is a nonempty closed and convex subset of a complete CAT(0) space,
S and T are mappings defined on E. Furthermore, we prove that the sequence
{xn} ∆ - converges to a common fixed point for firmly nonspreading mappings
and quasi-nonexpansive mappings in CAT(0) spaces.

2 Preliminaries
In 1976, Lim [5] introduced a concept of convergence in a general metric space

which is called ∆-convergence. In 2008, Kirk and Panyanak [6] specialized Lim’s
concept to CAT(0) spaces and showed that many Banach space results involving
weak convergence have precise analogs in this setting. Since then the notion of
∆-convergence has been widely studied and a number of papers have appeared see
for instance [7, 8, 9, 10, 11]. For more detail about CAT(0) spaces see [12].

Let X be a complete CAT(0) space, let {xn} be a bounded sequence in X and
for x ∈ X set

r (x, {xn}) = lim sup
n→∞

d (x, xn) .

The asymptotic radius r ({xn}) of {xn} is given by

r ({xn}) = inf {r (x, {xn}) : x ∈ X}

and the asymptotic center A ({xn}) of {xn} is the set

A ({xn}) = {x ∈ X : r (x, {xn}) = r ({xn})} .

It is known from Proposition 7 of [13] that in a CAT(0) space, A({xn}) consists
of exactly one point.

We now give the definition and collect some basic properties of ∆− convergence
and recall the related concepts which will be used in our work.

Definition 2.1 ([6, 5]). A sequence {xn} in a complete CAT(0) space X is said
to ∆-converge to x ∈ X if x is the unique asymptotic center of {un} for every
subsequence {un} of {xn}. In this case, we write ∆− lim

n→∞
xn = x and call x the

∆ - limit of {xn}.
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Lemma 2.2 ([7]). Let X be a CAT(0) space. Then for all x, y, z ∈ X and t ∈ [0, 1].
(i) d

(
(1− t)x⊕ ty, z

)
≤ (1− t)d (x, z) + td (y, z) .

(ii) d2
(
(1− t)x⊕ ty, z

)
≤ (1− t)d2 (x, z) + td2 (y, z)− t(1− t)d2 (x, y) .

Lemma 2.3 ([6]). Every bounded sequence in a complete CAT(0) space always
has a ∆−convergent subsequence.

Lemma 2.4 ([14]). If E is a closed and convex subset of a complete CAT(0) space
and if {xn} is a bounded sequence in E, then the asymptotic center of {xn} is in
E.

Lemma 2.5 ([7]). Let E be a nonempty closed and convex subset of a CAT(0)
space (X, d). Let {xn} be a bounded sequence in X with A({xn}) = {x}, {un} be
a subsequence of {xn} with A({un}) = {u}. If lim

n→∞
d(xn, u) exists, then x = u.

Lemma 2.6 ([1]). Let X be a CAT(0) space. Let {xn} and {yn} be two bounded
sequences in X with lim

n→∞
d(yn, xn) = 0. If ∆− lim

n→∞
xn = x, then ∆− lim

n→∞
yn = x.

We defined ωw({xn}) := ∪A({un}) where the union is taken over any subse-
quence {un} of {xn}. In order to prove our main theorem, the following facts are
needed.

Lemma 2.7 ([1]). Let E be a nonempty closed and convex subset of a complete
CAT(0) space X and T : E → X be a generalized hybrid mapping. If {xn} is a
bounded sequence in E such that lim

n→∞
d(xn, Txn) = 0 and {d(xn, v)} converges for

all v ∈ F (T ), then ωw({xn}) ⊂ F (T ) . Furthermore, ωw({xn}) consists of exactly
one point.

Remark 2.8 ([1]). The conclusion of Lemma 2.7 is still true if T : E → X is
any one of nonexpansive mappings, firmly nonspreading mapping, nonspreading
mapping, TJ-1 mapping, TJ-2 mapping, and hybrid mapping.(For other mapping,
one can also refer [1].)

Let X be a real Banach space and let E be a nonempty closed and convex
subset of X. A mapping T : E → X is demiclosed (at y) if T (x) = y whenever
{xn} is a sequence in E, xn converges weakly to x and Txn converges strongly to
y.

In 1967, Browder [15] gave the following result called Browder’s demiclosedness
principle, which states that let E be a nonempty closed and convex subset of a
uniformly convex Banach space X and T : E → X be a nonexpansive mapping,
then I − T is demiclosed where I is the identity mapping of X. In 2008, Kirk and
Panyanak [6] extend Lim’s concept [5] to CAT(0) spaces, they obtain the following
result. Let E be a nonempty closed and convex subset of a complete CAT(0) space
X and T : E → E be a nonexpansive mapping. If {xn} is a bounded sequence
in E such that lim

n→∞
d(Txn, xn) = 0 and ∆− lim

n→∞
xn = z for some z ∈ X, then

z ∈ E and z = Tz.
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3 Main Results
Firstly, we need the following lemmas for complete the proof of main results.

Lemma 3.1. Let E be a nonempty closed and convex subset of a complete CAT(0)
space X, and let T : E → X be a quasi-nonexpansive mapping having demiclosed
principle such that F (T ) ̸= ∅. If {xn} is a bounded sequence in E such that
lim
n→∞

d(Txn, xn) = 0 and {d(xn, v)} converges for all v ∈ F (T ), then ωw({xn}) ⊂
F (T ). Furthermore, ωw({xn}) consists of exactly one point.

Proof. By the assumption {xn} is a bounded sequence in E such that
lim
n→∞

d(Txn, xn) = 0. Let u ∈ ωw({xn}), then there exists a subsequence {un}
of {xn} such that A({un}) = {u}. By Lemma 2.3 and Lemma 2.4 there exists a
subsequence {vn} of {un} such that ∆− lim

n→∞
un = v ∈ E. Since lim

n→∞
d(Tvn, vn) =

0, we can conclude that v ∈ F (T ). From Lemma 2.5 and {d(xn, v)} converges for
all v ∈ F (T ), we have u = v ∈ F (T ). This implies that ωw({xn}) ⊂ F (T ). Finally,
ωw({xn}) consists of exactly one point. Indeed, let A({xn}) = {x} and {un} be a
subsequence of {xn} with A({un}) = {u}. Since u ∈ ωw({xn}) ⊂ F (T ), we have
u = v ∈ F (T ) and hence {d(xn, u)} converges. We can apply Lemma 2.5 again to
conclude that x = u.

Lemma 3.2. Let E be a nonempty closed and convex subset of a complete CAT(0)
space X, and let T, S : E → E are quasi-nonexpansive mappings having demiclosed
principle such that F (T ) ∩ F (S) ̸= ∅. If {xn} be a sequence defined by (A) then
lim
n→∞

d(xn, w) exists for all w ∈ F (T ) ∩ F (S).

Proof. Let {xn} be a sequence defined by (A) and w ∈ F (T ) ∩ F (S). Then
d(x,w) ≤ d(x,w) and d(Sy,w) ≤ d(y, w) for all x, y ∈ E. By Lemma 2.2(ii), we
have

d2(xn+1, w) = d2(αnxn ⊕ (1− αn)S(Txn), w)

≤ αnd
2(xn, w) + (1− αn)d

2(S(Txn), w)

− αn(1− αn)d
2(xn, S(Txn))

≤ αnd
2(xn, w) + (1− αn)d

2(Txn, w)

− αn(1− αn)d
2(xn, S(Txn)) (3.1)

≤ αnd
2(xn, w) + (1− αn)d

2(xn, w)

− αn(1− αn)d
2(xn, S(Txn))

≤ d2(xn, w)− αn(1− αn)d
2(xn, S(Txn)) (3.2)

≤ d2(xn, w).

Therefore, {d(xn, w)} is bounded and decreasing sequence which imply that
lim
n→∞

d(xn, w) exists.
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Lemma 3.3. Let E be a nonempty closed and convex subset of a complete CAT(0)
space X and T : E → E be a firmly nonspreading mapping. Suppose that S :
E → E is a quasi-nonexpansive mapping having demiclosed principle such that
F (T ) ∩ F (S) ̸= ∅ and let {xn} be defined as (A). If {αn} is a sequences in (0, 1)
such that lim inf

n→∞
αn(1 − αn) > 0, then lim

n→∞
d(xn, Txn) = 0 and lim

n→∞
d(Txn, w)

exists.

Proof. Let {xn} be a sequence defined by (A) and w ∈ F (T ) ∩ F (S). By Lemma
3.2, we have lim

n→∞
d(xn, w) exists. Since d(Txn, w) ≤ d(xn, w) ≤ d(x1, w), {xn}

and {Txn} are bounded.
From (3.2), we have

d2(xn+1, w) ≤ d2(xn, w)− αn(1− αn)d
2(xn, S(Txn)).

Thus,
αn(1− αn)d

2(xn, S(Txn)) ≤ d2(xn, w)− d2(xn+1, w).

Since lim inf
n→∞

αn(1− αn) > 0 , there exist k > 0 and N ∈ N such that
αn(1− αn) ≥ k for all n ≥ N , and hence

lim sup
n→∞

kd2(xn, S(Txn)) ≤ lim sup
n→∞

αn(1− αn)d
2(xn, S(Txn))

≤ lim sup
n→∞

(
d2(xn, w)− d2(xn+1, w)

)
= 0.

Therefore, 0 ≤ lim inf
n→∞

d2(xn, S(Txn)) ≤ lim sup
n→∞

d2(xn, S(Txn)) ≤ 0, which implies

that lim
n→∞

d2(xn, S(Txn)) = 0 . Thus,

lim
n→∞

d(xn, S(Txn)) = 0. (3.3)

Furthermore, we have from (3.1) that

d2(xn+1, w) ≤ αnd
2(xn, w) + (1− αn)d

2(Txn, w)− αn(1− αn)d
2(xn, S(Txn)).

Therefore,

d2(xn+1, w) ≤ αnd
2(xn, w) + d2(Txn, w)− αnd

2(Txn, w),

and hence

αn[d
2(Txn, w)− d2(xn, w)] ≤ d2(Txn, w)− d2(xn+1, w)

≤ d2(xn, w)− d2(xn+1, w).

Since αn(1− αn) < αn, lim inf
n→∞

αn > 0 .
Using the same argument we can conclude that

lim
n→∞

(d2(Txn, w)− d2(xn, w)) = 0.
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Since w ∈ F (T ),

d2(Txn, w) = d2(Txn, Tw)

≤ 1

2
(d2(xn, Tw) + d2(Txn, w)− d2(xn, Txn)− d2(w, Tw))

≤ d2(xn, Tw)−
1

2
d2(xn, Txn)

= d2(xn, w)−
1

2
d2(xn, Txn).

Thus,

d2(Txn, w) ≤ d2(xn, w)−
1

2
d2(xn, Txn). (3.4)

Again by (3.1), we get

d2(xn+1, w) ≤ αnd
2(xn, w) + (1− αn)d

2(Txn, w).

From (3.4), we get

d2(xn+1, w) ≤ αnd
2(xn, w) + (1− αn)[d

2(xn, w)−
1

2
d2(xn, Txn)]

= d2(xn, w)−
1− αn

2
d2(xn, Txn).

Therefore,
(1− αn)d

2(xn, Txn) ≤ 2(d2(xn, w)− d2(xn+1, w)).

Since αn(1− αn) < (1− αn), lim inf
n→∞

(1− αn) > 0 .
Using the same argument, we have lim

n→∞
d2(xn, Txn) = 0.

This implies that
lim
n→∞

d(xn, Txn) = 0. (3.5)

Since lim
n→∞

(d2(Txn, w)−d2(xn, w)) = 0 and lim
n→∞

d(xn, w) exists, we can conclude
that lim

n→∞
d(Txn, w) exists.

Now we are ready to prove the ∆−convergence theorem as follows.

Theorem 3.4. Let E be a nonempty closed and convex subset of a complete
CAT(0) space X, and T : E → E be a firmly nonspreading mapping. Suppose that
S : E → E is a quasi-nonexpansive mapping having demiclosed principle such that
F (T )∩F (S) ̸= ∅ and let {xn} be a sequence defined by (A). If {αn} is a sequence
in (0, 1) such that lim inf

n→∞
αn(1− αn) > 0, then ∆ − lim

n
xn = w ∈ F (T ) ∩ F (S).

Proof. Let {xn} be a sequence defined by (A) and w ∈ F (T )∩F (S). From Lemma
3.2, we have lim

n→∞
d(xn, w) exists. Then {xn} is bounded. From Lemma 3.3, we
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have lim
n→∞

d(xn, Txn) = 0 and lim
n→∞

d(Txn, w) exists which implies that {Txn}
is also bounded. By (3.5) we have lim

n→∞
d(xn, Txn) = 0 and by (3.3) we have

lim
n→∞

d(xn, S(Txn)) = 0. Since d(S(Txn), Txn) ≤ d(S(Txn), xn) + d(xn, Txn),
lim
n→∞

d(S(Txn), Txn) = 0. By Lemma 3.1 and Remark 2.8, there exist x̄, ȳ ∈ E

such that ωw({xn}) = {x̄} ⊂ F (T ) and ωw({Txn}) = {ȳ} ⊂ F (S). Thus, ∆−
lim
n

xn = x̄ and
∆− lim

n
Txn = ȳ. By using Lemma 2.6, we have x̄ = ȳ.
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