Left and Right Magnifying Elements in Certain Linear Transformation Semigroups

Pongsan Prakitsr ${ }^{1}$
Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi, Thailand, 20230
e-mail : pongsan.pr@ku.th

Abstract

An element a in a semigroup S is called a left (right) magnifying element in S if $a M=S(M a=S)$ for some proper subset M of S. In this paper, we determine whether or not the linear transformation semigroups with infinite nullity and co-rank have left and right magnifying elements, and provide a characterization if such elements exist.

Keywords : left (right) magnifying element; linear transformation semigroups; nullity; co-rank.
2010 Mathematics Subject Classification : 20M20.

1 Introduction

In 1964, Ljapin 11 introduced the notion of left and right magnifying elements in a semigroup, that is, an element a in a semigroup S is said to be a left (right) magnifying element if there is a proper subset M of S such that $a M=S(M a=S)$. Furthermore, a left (right) magnifying element a in S is said to be strong if there is a proper subsemigroup M such that $a M=S(M a=S)$. These were introduced by Tolo [2] in 1969. It is obvious that strongly left (right) magnifying elements in S are left (right) magnifying elements.

Magnifying elements in semigroups have long been studied and many properties have also been investigated. In 1992, Catino and Migliorini 3 characterized when a bisimple semigroup contains left magnifying elements. Gutan 4 showed that semigroups which contain magnifying elements are factorizable. In 1994, Mag-

[^0]ill [5] provided necessary and sufficient conditions for elements in linear transformation semigroups to be left or right magnifying elements. Chinram and Buapradist [6] extended, in 2018, the results of Magill by considering linear transformations with invariant subspaces and gave characterization on these semigroups.

Let V be a vector space and $L(V)$ the semigroup, under composition, of all linear transfomations on V. For any $\alpha \in L(V)$, let $\operatorname{ker} \alpha$ and $\operatorname{im} \alpha$ denote the kernel of α and the image of α, respectively. The dimension of a subspace U of V is denoted by $\operatorname{dim} U$. The quotient of V modulo by a subspace U is written as V / U.

We are interested in studying left or right magnifying elements in some subsemigroups of $L(V)$. For an infinite dimensional vector space V, let

$$
\begin{gathered}
O M(V)=\{\alpha \in L(V) \mid \operatorname{dim}(\operatorname{ker} \alpha) \text { is infinite }\} \\
O E(V)=\{\alpha \in L(V) \mid \operatorname{dim}(V / \text { im } \alpha) \text { is infinite }\}
\end{gathered}
$$

These are subsemigroups of $L(V)$, see [7] for more details. Note that $\operatorname{dim}(\operatorname{ker} \alpha)$ and $\operatorname{dim}(V / i m \alpha)$ are called the nullity of α and the co-rank of α, respectively. Observe that the identity map is not an element in both $O M(V)$ and $O E(V)$. Moreover, $O M(V)$ does not contain any injective linear transformations on V, and similarly, surjective linear transformations on V are not contained in $O E(V)$.

In [5], the author characterized that $L(V)$ contains left (right) magnifying elements if and only if $\operatorname{dim} V$ is infinite. Moreover, in case $\operatorname{dim} V$ is infinite, he provided necessary and sufficient conditions when elements in $L(V)$ are left or right magnifying in $L(V)$, see below.

Theorem 1.1 ([5). Let $\alpha \in L(V)$ where $\operatorname{dim} V$ is infinite. The following statements hold.

1. α is a left magnifying element if and only if α is surjective but not injective.
2. α is a right magnifying element if and only if α is injective but not surjective.

Below is a useful property that will be used in our results.
Proposition 1.2 ([8). Let $\alpha \in L(V)$ and let B_{1} be a basis of $\operatorname{ker} \alpha$, B a basis of V containing B_{1}. Then
(i) for each $v_{1}, v_{2} \in B \backslash B_{1}, v_{1}=v_{2}$ if and only if $\alpha\left(v_{1}\right)=\alpha\left(v_{2}\right)$;
(ii) $\alpha\left(B \backslash B_{1}\right)$ is a basis of im α.

Let B be a basis of V and $u \in V$. A linear transformation on V can be defined on B. Now let $\left\{B_{1}, B_{2}\right\}$ be a partition of B. For $\alpha \in L(V)$ defined by $v \alpha=u$ and $w \alpha=v_{w}$ for all $v \in B_{1}$ and $w \in B_{2}$, we write

$$
\alpha=\left(\begin{array}{cc}
B_{1} & w \\
u & v_{w}
\end{array}\right)_{w \in B_{2}} .
$$

We use this notation for an abbreviation of describing many linear transformations all along in this paper.

2 Left and right magnifiers in $O M(V)$ and $O E(V)$

Throughout this section, let V be an infinite dimensional vector space over a field. Our purpose is to provide a necessary and sufficient conditions for an element in $O M(V)$ and $O E(V)$ to be left or right magnifying elements. It has seen from Theorem 1.1 that a linear map in $L(V)$ that is surjective but not injective is a left magnifying element in $L(V)$. In $O M(V)$, every element is not injective. We first show a necessary and sufficient condition for element in $O M(V)$ to be a left magnifying element in $O M(V)$.
Theorem 2.1. Let $\alpha \in O M(V)$. Then α is a left magnifying element in $O M(V)$ if and only if α is surjective.

Proof. Assume that α is a left magnifying element in $\operatorname{OM}(V)$. Then $\alpha M=$ $O M(V)$ for some proper subset M of $O M(V)$. Let B be a basis of V and let $\left\{B_{1}, B_{2}\right\}$ be a partition of B such that $|B|=\left|B_{1}\right|=\left|B_{2}\right|$. Thus there is a bijection $\phi: B_{2} \rightarrow B$. Define a linear transformation β in $L(V)$ by

$$
\beta=\left(\begin{array}{cc}
B_{1} & v \\
0 & \phi(v)
\end{array}\right)_{v \in B_{2}} .
$$

It can be seen that $\beta \in O M(V)$. Hence there exists $\gamma \in M$ such that $\alpha \gamma=\beta$. To show α is surjective, let $v \in B$. Hence $v=\phi\left(u_{v}\right)=\beta\left(u_{v}\right)=$ $\alpha \gamma\left(u_{v}\right)=\alpha\left(\gamma\left(u_{v}\right)\right)$ for some $u_{v} \in B_{2}$, so α is surjective.

Now suppose that α is surjective. Let

$$
M=\{\gamma \in O M(V) \mid \gamma \text { is not surjective }\} .
$$

Next, let $\beta \in O M(V)$ and B_{1} a basis of $\operatorname{ker} \beta$. Extend it to a basis B of V. Note that for each $v \in B \backslash B_{1}$, there is $u_{v} \in V$ such that $\alpha\left(u_{v}\right)=\beta(v)$ since α is surjective. Define $\gamma \in L(V)$ by

$$
\gamma=\left(\begin{array}{cc}
B_{1} & v \\
0 & u_{v}
\end{array}\right)_{v \in B \backslash B_{1}} .
$$

Thus $\gamma \in O M(V)$ since $\operatorname{dim}(\operatorname{ker} \gamma)=\left|B_{1}\right|$ is infinite. As $\alpha \in O M(V)$, we get γ is not surjective and hence $\gamma \in M$. Observe that for any $v \in B_{1}$, $\alpha \gamma(v)=0=\beta(v)$. Moreover, for any $v \in B \backslash B_{1}$, we have $\alpha \gamma(v)=\alpha\left(u_{v}\right)=$ $\beta(v)$. Therefore, α is a left magnifying element in $O M(V)$.

Remark 2.1. The set M defined in the proof of the sufficiency of Theorem 2.1 is a subsemigroup of $O M(V)$. To show this, let $\gamma_{1}, \gamma_{2} \in M$. Then they are not surjective. It follows that $\gamma_{1} \gamma_{2}$ is also not surjective.

Hence we conclude a characterization for elements in $\operatorname{OM}(V)$ to be strongly left magnifiers.

Corollary 2.2. Let $\alpha \in O M(V)$. Then α is a strongly left magnifying elements if and only if α is surjective.

Therefore the following fact is true.
Corollary 2.3. Any left magnifying elements in $O M(V)$ are strong.
We provide an example of a left magnifying element in $O M(V)$ as follows.

Example 2.4. Let B be a basis of V and let $\left\{B_{1}, B_{2}\right\}$ be a partition of B such that $|B|=\left|B_{1}\right|=\left|B_{2}\right|$ and B_{0} a finite subset of B_{1}. Then there exists a bijection ϕ from B_{2} to $B \backslash B_{0}$. Define $\alpha \in L(V)$ by

$$
\alpha=\left(\begin{array}{ccc}
B_{1} \backslash B_{0} & v & w \\
0 & v & \phi(w)
\end{array}\right)_{v \in B_{0}, w \in B_{2}} .
$$

This map is clearly in $O M(V)$ and surjective. By Theorem 2.1, α is a left magnifying element in $O M(V)$.

Note that any elements in $O M(V)$ are not injective. Next, we find that $O M(V)$ has no right magnifying elements in $O M(V)$.

Theorem 2.5. $O M(V)$ has no right magnifying elements.
Proof. Let $\alpha \in O M(V)$ and B_{1} be a basis of ker α. Extend B_{1} to a basis B of V. Since B_{1} is infinite, there is a partition $\left\{B_{1}^{\prime}, B_{1}^{\prime \prime}\right\}$ of B_{1} such that $\left|B_{1}\right|=\left|B_{1}^{\prime}\right|=\left|B_{1}^{\prime \prime}\right|$. Define $\beta \in O M(V)$ by

$$
\beta=\left(\begin{array}{cc}
B_{1}^{\prime} & v \\
0 & v
\end{array}\right)_{v \in B \backslash B_{1}^{\prime}} .
$$

Then, for any $\emptyset \neq M \subsetneq O M(V)$ and $\gamma \in M, \gamma \alpha(v)=0$ but $\beta(v)=v \neq 0$ for all $v \in B_{1}^{\prime}$. Hence α is not a right magnifying element.

Corollary 2.6. $O M(V)$ has no strongly right magnifying elements.
We note that $O E(V)$ has no surjective elements. The following result is obtained.

Theorem 2.7. $O E(V)$ has no left magnifying elements.
Proof. Let $\alpha \in O E(V)$ and C_{1} a basis of $i m \alpha$. Extend C_{1} to a basis C of V. Since $\alpha \in O E(V)$, we have $C \backslash C_{1}$ is infinite. Let $u \in C \backslash C_{1}$. Define $\beta \in L(V)$ by

$$
\beta=\left(\begin{array}{cc}
C \backslash\{u\} & u \\
0 & u
\end{array}\right)
$$

As $\operatorname{dim}(V / i m \beta)=|C \backslash\{u\}|=|C|$ is infinite, we obtain $\beta \in O E(V)$. It is easy to see that, for any $\emptyset \neq M \subsetneq O E(V), \alpha \gamma \neq \beta$ for all $\gamma \in M$ since $u \notin C_{1}$ and C_{1} is a basis of $\operatorname{im} \alpha$. Hence α is not a left magnifying element in $O E(V)$.
Corollary 2.8. $O E(V)$ has no strongly left magnifying elements.
We next show that an injective linear transformation in $O E(V)$ is a right magnifying element and vice versa.

Theorem 2.9. Let $\alpha \in O E(V)$. Then α is a right magnifying element if and only if α is injective.
Proof. To show the necessity, suppose that α is a right magnifying element in $O E(V)$. Then there exists $M \subsetneq O E(V)$ such that $M \alpha=O E(V)$. Claim that α is injective. Let $u \in \operatorname{ker} \alpha$. Define $\beta \in L(V)$ by

$$
\beta=\left(\begin{array}{cc}
w & u \\
0 & u
\end{array}\right)_{w \notin \operatorname{ker} \alpha}
$$

Thus $\beta \in O E(V)$. It follows that there is $\gamma \in M$ such that $\gamma \alpha=\beta$. Hence $u=\beta(u)=\gamma \alpha(u)=0$, so α is injective.

For the sufficiency, suppose that α is injective. Let B be a basis of V. Then $C_{1}:=\alpha(B)$ is a basis of $i m \alpha$ and let C be a basis of V containing C_{1}. Now let

$$
M=\left\{\gamma \in O E(V) \mid v \in \operatorname{ker} \gamma \text { for all } v \in C \backslash C_{1}\right\} .
$$

Then $M \subsetneq O E(V)$. Next, let $\beta \in O E(V)$. Note that if $v \in C_{1}$, there is $u_{v} \in B$ such that $\alpha\left(u_{v}\right)=v$. Define $\gamma \in L(V)$ by

$$
\gamma=\left(\begin{array}{cc}
C \backslash C_{1} & v \\
0 & \beta\left(u_{v}\right)
\end{array}\right)_{v \in C_{1}}
$$

Then $\gamma \in M$ and $\operatorname{dim}(i m \gamma) \leq \operatorname{dim}(i m \beta)$. This implies that $\operatorname{dim}(V / i m \gamma) \geq$ $\operatorname{dim}(V / \operatorname{im} \beta)$ and so $\gamma \in O E(V)$ since $\operatorname{dim}(V / \operatorname{im} \beta)$ is infinite. Hence, for each $v \in B, \gamma \alpha(v)=\gamma(\alpha(v))=\beta(v)$. Therefore, α is a right magnifying element in $O E(V)$.

We give an example of $\gamma \in O E(V)$ that is not an element in the set M in the proof of the above theorem.

Example 2.10. We still use notations in the proof of the sufficiency of Theorem 2.9. Since $\alpha \in O E(V)$, we have $C \backslash C_{1}$ is infinite. Let $u \in C \backslash C_{1}$. Define $\gamma \in L(V)$ by

$$
\gamma=\left(\begin{array}{cc}
C \backslash\{u\} & u \\
0 & u
\end{array}\right)
$$

Then $\gamma \in O E(V)$ and $u \in C \backslash C_{1}$ but $u \notin \operatorname{ker} \gamma$. Hence $\gamma \notin M$. This guarantees that M is a proper subset of $O E(V)$.

Remark 2.2. In the proof of Theorem 2.9, the set M is a subsemigroup of $O E(V)$. To show this, let $\gamma_{1}, \gamma_{2} \in M$ and $v \in C \backslash C_{1}$. Then $v \in \operatorname{ker} \gamma_{2}$. It follows that $\gamma_{1} \gamma_{2}(v)=0$ and thus $v \in \operatorname{ker}\left(\gamma_{1} \gamma_{2}\right)$. Hence $\gamma_{1} \gamma_{2} \in M$.

Therefore, a characterization for strongly magnifying elements in $O E(V)$ can be described by Theorem 2.9 and Remark 2.2 .

Corollary 2.11. Let $\alpha \in O E(V)$. Then α is a strongly right magnifying element if and only if α is injective.

Corollary 2.12. Any right magnifying elements in $O E(V)$ are strong.
For the sake of completeness, we provide an example of $\alpha \in O E(V)$ which is injective.

Example 2.13. Let B be a basis of V. There is a partition $\left\{B_{1}, B_{2}\right\}$ of B such that $|B|=\left|B_{1}\right|=\left|B_{2}\right|$. Let $\phi: B \rightarrow B_{1}$ be a bijection. Then define $\alpha \in L(V)$ by

$$
\alpha=\binom{v}{\phi(v)}_{v \in B} .
$$

Then $\operatorname{dim}(V /$ im $\alpha)=\left|B \backslash B_{1}\right|=\left|B_{2}\right|$ is infinite. Hence $\alpha \in O E(V)$ and injective. Therefore, by Theorem 2.9, α is a right magnifying element in $O E(V)$.

Acknowledgement(s) : I would like to thank the referee(s) for his/her careful reading of the manuscript with valuable comments and suggestions.

References

[1] E.S. Ljapin, Semigroups. Transl Math Monographs, 3, Rhode Island, 1963.
[2] K. Tolo, Factorizable semigroups, Pacific J. Math. 31 (1969) 523-535.
[3] F. Catino, F. Migliorini, Magnifying elements in semigroups, Semigroup Forum 44 (1992) 314-319.
[4] M. Gutan, Semigroups which contain magnifying elements are factorizable, Comm. Algebra 44 (1997) 314-319.
[5] K.D. Magill, Magnifying elements of transformation semigroups, Semigroup Forum 44 (1994) 314-319.
[6] R. Chinram, S. Buapradit, Magnifying elements in semigroups of linear transformations with invariant subspaces, J. Interdiscip. Math. 21 (6) (2018) 1457-1462.
[7] Y. Kemprasit, Algebraic Semigroup Theory. Pitak Press, Bangkok, 2002 (in Thai).
[8] S. Chaopraknoi, T. Phongpattanacharoen, P. Prakitsri, The natural partial order on linear transformation semigroups with nullity and corank bounded below. Bull. Aust. Math. Soc. 91 (2015) 104-115.
(Received 3 June 2019)
(Accepted 24 December 2019)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: ${ }^{1}$ Corresponding author.
 Copyright (c) 2020 by the Mathematical Association of Thailand. All rights reserved.

