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Abstract : In this paper, we introduce a family A{0,1,5} of representations in
base three with digit set {0, 1, 5}, i.e.,

A{0,1,5} =

{
r∑
i=0

εi3
i : εi ∈ {0, 1, 5}, for 0 ≤ i ≤ r and r ∈ N0

}
.

We discuss a structure and property of the increasing sequence of the elements in
A{0,1,5}. Moreover, we show that a sequence associated with the maximal sets of
consecutive integers called max-sets in A{0,1,5} is related to Pell and Pell-Lucas
numbers.
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1 Introduction

A non-negative integer can be uniquely expressed in the form of
∑r
i=0 εid

i,
where εi ∈ {0, 1, 2, . . . , d− 1}, εr 6= 0 and r ∈ N0. In 1982, Matula [1] introduced
a set P[D] called a radix representation system which is the set of polynomials
with coefficients from finite integer-digit set D, where 0 ∈ D. The set D is basic
for integer base d if each integer n can be uniquely represented in the form of∑r
i=0 εid

i, for some r ≥ 0, where εi ∈ D. In this work, we are interested in the
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area of non-standard representations, which are the representations that the digit
set is not basic.

The non-standard representation has been studied extensively in many aspects
such as the number of representations of an integer n in a given digit set and a
property of number in a representation. In 1989, Reznick [2] computed the number
of representations in base d with a digit set {0, 1, 2, . . . , n − 1} with a condition
that n > d. In 2013, Anders, Dennison, Lansing and Reznick [3] created a digit set
of a representation in base two such that the number of representations is periodic
in modulo 2.

In this research, we are interested in the set of representations in base three
with digit set {0, 1, 5}. We let

A{0,1,5} =

{
r∑
i=0

εi3
i : εi ∈ {0, 1, 5}, for 0 ≤ i ≤ r and r ∈ N0

}
.

We see that 2 6∈ A{0,1,5}; hence, the set {0, 1, 5} is not basic. However, we are
able to apply the method appearing in Matula’s work to the increasing sequence
of numbers in A{0,1,5}.

In this paper, we introduce the definition of A{0,1,5}. We use Matula’s ap-
proach [1] to construct a directed tree of the elements in A{0,1,5} and its comple-
ment. The main result in this research is on a property of a family of maximal
sets of consecutive integers called max-sets in A{0,1,5}. By constructing a relation
between max-sets, we are able to construct a family of isomorphic rooted trees of
max-sets. The sequence of max-sets can be associated with the famous Pell and
Pell-Lucas numbers.

2 Introduction to the ternary representation

A set D is a residue digit for d if, for each i ∈ D, there exists j ∈ {0, . . . , d−1}
such that i ≡ j (mod d). Matula [1] showed that if D is basic for d, then it is a
residue digit for d. However, the converse is not true. Indeed, in this work, we are
interested in a digit set {0, 1, 5} for base 3. We can see that {0, 1, 5} is a residue
digit for 3, but it is not basic because 2 6∈ A{0,1,5}.

Let {x(n)}n≥0 be the increasing sequence of the elements in A{0,1,5} appearing
in [4]:

0, 1, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 20, 24, . . . .

Theorem 2.1 is a part of a theorem given by Matula [1] on the necessary and
sufficient condition for a basic set. Theorem 2.2 is the restriction of Matula’s work
to the set of non-negative integers.

Theorem 2.1 ([1]). For any base d, if D is a residue digit for d, then each element
in {

r∑
i=0

εid
i : εi ∈ D, for 0 ≤ i ≤ r and r ∈ N0

}
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is uniquely represented.

Theorem 2.2 ([1]). Let D be a residue digit set for base d such that |D| = d and
let εmin = min{ε : ε ∈ D}, εmax = max{ε : ε ∈ D}. Then D is basic for d if and
only if there exist a representation for all integers i with εmin

d−1 ≤ i ≤
εmax

d−1 .

By Theorem 2.1, each element in A{0,1,5} is uniquely represented. To prove
Theorem 2.1, Matula used a function p(n) defined by p(n) = n−ε

d , where n ≡ ε
(mod d), for some ε ∈ D and pi(n) = p(pi−1(n)), for i ≥ 1. In this paper, we
use a term predecessor of n to denote p(n). He also showed that the predecessor
is uniquely determined. By Theorem 2.2, we see that the complement AC{0,1,5} =

N0 \ A{0,1,5} is

AC{0,1,5} =

{
2 · 3r +

r−1∑
i=0

εi3
i : εi ∈ {0, 1, 5}, for 0 ≤ i ≤ r − 1 and r ∈ N0

}
.

Hence, A{0,1,5} and AC{0,1,5} partition N0.

For a basic digit set D, Matula [1] used the predecessor function to construct a
directed rooted tree where the vertex set is the set of integers and the edge relation
is (n, p(n)). By the same construction, we are able to construct directed rooted
trees G0 and G2 with the vertex sets V (G0) = A{0,1,5}, V (G2) = AC{0,1,5} and the
edge set are

E(Gi) = {(u, v) ∈ V (Gi)× V (Gi) : v = 3u+ ε, for some ε ∈ {0, 1, 5}},

for i ∈ {0, 2}. Since each v ∈ N0 has a unique predecessor, it follows that the
constructed graphs are directed trees rooted at 0 and 2, respectively.

Figure 1: The underlying graph of G0.

3 Maximal set of consecutive integers

In this section, we investigate a property of the maximal set of consecutive
integers in A{0,1,5}. From now on, for any s, t ∈ N0 such that s ≤ t, we use
notation [s, t] for the set {s, s + 1, . . . , t}. We give structures and properties of
sequences related to two types of max-sets defined in Definition 3.2 and Definition
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3.5. The sequences associated with such max-sets have a beautiful relation with
Pell and Pell-Lucas numbers which is presented in Theorem 3.13 and Theorem
3.15, respectively. Then, later in this section, we construct a tree of blocks and a
tree of dblocks by first creating the edge relations for the max-sets in an arbitrary
subset of A{0,1,5} \ {0} and AC{0,1,5}. Then, we restrict the relations to the family
of blocks and the family of dblocks.

Definition 3.1. For A ( N0, a set [s, t] is a max-set in A if [s, t] is a maximal set
of consecutive integers in A; that is s− 1 6∈ A and t+ 1 6∈ A.

The consecutive 1’s in the sequence of characteristic function of the elements
in A represent the consecutive elements in A and the consecutive 0’s represent the
consecutive elements in AC . Hence, in order to study the max-set in A, we can
instead investigate the properties of the occurrence of 01m0, for m ≥ 1. Allouche
and Shallit [5] showed that the number of occurrences of P ∈ E = 1(0 + 1)∗ in
base d expansion of n with overlapping allowed is 2-regular. However, in order to
count the number of max-sets, the number of each occurrence cannot be counted
multiple times.

Definition 3.2. A block [[s, t]] is a max-set [s, t] in A{0,1,5} and an anti-block
[[x, y]] is a max-set [x, y] in AC{0,1,5}.

In Example 3.3 and 3.4, we give some examples of the blocks and anti-blocks
in A{0,1,5}.

Example 3.3. The following are examples of blocks in A{0,1,5}:
[[0, 1]], [[3, 5]], [[8, 10]], [[12, 17]], [[20, 20]], [[24, 25]], [[27, 32]], [[35, 37]], [[39, 53]],
[[56, 56]], [[60, 61]], [[65, 65]], [[72, 73]], [[75, 77]].

Example 3.4. The following are examples of anti-blocks in A{0,1,5}:
[[2, 2]], [[6, 7]], [[11, 11]], [[18, 19]], [[21, 23]], [[26, 26]], [[33, 34]], [[38, 38]], [[54, 55]],
[[57, 59]], [[62, 64]], [[66, 71]], [[74, 74]], [[78, 79]].

Next, we partition A{0,1,5} \ {0} and AC{0,1,5} by the degree of n which is the

maximum r such that n =
∑r
i=0 εi3

i, where εr ∈ {1, 2, 5} and εi ∈ {0, 1, 5} for all
i < r. For r ≥ 1, let A{0,1,5}|r and AC{0,1,5}|r be the subset of A{0,1,5} and AC{0,1,5}
consisting of all the elements of degree r, respectively, i.e.,

A{0,1,5}|r =

{
r∑
i=0

εi3
i : εi ∈ {0, 1, 5} and εr 6= 0

}

and

AC{0,1,5}|r =

{
2 · 3r +

r−1∑
i=0

εi3
i : εi ∈ {0, 1, 5}

}
.

By considering the max-sets in A{0,1,5}|r and AC{0,1,5}|r, we introduce another kind
of max-sets associated with the degrees of the elements.



A Non-standard Ternary Representation of Integers 273

Definition 3.5. For r ≥ 1, a dblock 〈s, t〉 in A{0,1,5} is a max-set [s, t] in A{0,1,5}|r
with degree r. An anti-dblock 〈s, t〉 in A{0,1,5} is a max-set in AC{0,1,5}|r with degree
r.

In example 3.6, the non-underlined numbers are in A{0,1,5}. They are di-
vided into two parts consisting of elements with even and odd degrees. The non-
underlined bold numbers represent the numbers with odd degree; otherwise, the
degrees are even. In Table 1 and 2, we present the dblocks and the anti-dblocks
in A{0,1,5} ∩ {0, . . . , 80}.

Example 3.6. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64,
65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80.

Degree Dblock

undefined 〈0, 0〉
0 〈1, 1〉 , 〈5, 5〉 ,
1 〈3, 4〉 , 〈8, 8〉 , 〈15, 16〉 , 〈20, 20〉
2 〈9, 10〉 , 〈12, 14〉 , 〈17, 17〉 , 〈24, 25〉 , 〈29, 29〉 , 〈45, 46〉 ,

〈48, 50〉 , 〈53, 53〉 , 〈60, 61〉 , 〈65, 65〉
3 〈27, 28〉 , 〈30, 32〉 , 〈35, 37〉 , 〈39, 44〉 , 〈47, 47〉 , 〈51, 52〉 ,

〈56, 56〉 , 〈72, 73〉 , 〈75, 77〉 , 〈80, 80〉

Table 1: Example of dblocks in A{0,1,5} ∩ {0, . . . , 80}

Degree Anti-dblock

0 〈2, 2〉
1 〈6, 7〉 , 〈11, 11〉 ,
2 〈18, 19〉 , 〈21, 23〉 , 〈26, 26〉 , 〈33, 34〉 , 〈38, 38〉 ,
3 〈54, 55〉 , 〈57, 59〉 , 〈62, 64〉 , 〈66, 71〉 , 〈74, 74〉 , 〈78, 79〉

Table 2: Example of anti-dblocks in A{0,1,5} ∩ {0, . . . , 80}

By comparing Table 1 and Example 3.3, we see that [[0, 1]] and [[3, 5]] represent
two blocks in A{0,1,5} but they are not dblocks in A{0,1,5}.

Let Ā ∈ {A{0,1,5},AC{0,1,5}} and Ar be a subset of Ā consisting of all elements
of degree r.

Later in Theorem 3.13 and 3.15, we show that the number of blocks and the
number of dblocks are related to Pell-numbers and Pell-Lucas numbers. In order
to get the results in Theorem 3.13 and 3.15, we construct a morphism for the
Pell numbers in Lemma 3.7, where a morphism [6] is a homomorphism function
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h between two languages such that h(xy) = h(x)h(y), for all x, y in the domain.
Then, we construct an automaton M -DFAO to encode the characteristic sequence
{χ(n)}n≥0, where χ is the characteristic function of A ⊂ Ā.

Next, let us recall the defenitions and related properties of Pell and Pell-Lucas
numbers. The Pell numbers Pn [7], [8, p. 45] is defined by

Pn = 2Pn−1 + Pn−2, (3.1)

for n ≥ 2 and P0 = 0 and P1 = 1.
The Pell-Lucas numbers Qn [9], [8, p. 23] is defined by

Qn = 2Qn−1 +Qn−2,

for n ≥ 2 and Q0 = 1, Q1 = 1.
The following identities [8, p. 193] are used in this research, for n ≥ 1,

Qn = Pn + Pn−1, (3.2)
n∑
i=0

Pi =
Qn+1 − 1

2
, (3.3)

n∑
i=0

Qi = Pn+1. (3.4)

The sequence of numbers in (3.3) also appears in [10].

Lemma 3.7. Define a morphism φ : {a, b}∗ → {a, b}∗ by

φ(a) = ab and φ(b) = aba.

Then, |φn(a)| = Pn+1, for all n ≥ 0.

Proof. We see that |φ0(a)| = |a| = 1 = P1 and |φ(a)| = |ab| = 2 = P2. Let φni be
the number of i’s in φn(a) for i ∈ {a, b}. So

|φn(a)| = φna + φnb .

Since each a in φn−1(a) contributes to exactly one a and b in φn(a), and each b in
φn−1(a) contributes to two a’s and one b in φn(a), it follows that

φna + φnb = (φn−1a + 2φn−1b ) + (φn−1a + φn−1b )

= 2(φn−1a + φn−1b ) + φn−1b

= 2|φn−1(a)|+ φn−1b

= 2|φn−1(a)|+ |φn−2(a)|.

Thus, |φn(a)| = Pn+1 for all n ≥ 0.
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Figure 2: M -DFAO encoding characteristic sequence {χ(n)}n≥0

In Figure 2, we give an automaton

M = (Q, {0, 1}∗, δ, q0, {a, b}∗, τ)

encoding the characteristic sequence {χ(n)}n≥0. The following are the description
of each state in M :

• q0 is the starting state

• q1 = δ(q0, 0
∗1) is the state that the first element of a max-set appears

• q2 = δ(q0, 0
∗10) indicates that the max-set has only one element; in this

state, we encode a

• q3 = δ(q0, 0
∗111∗) indicates that the max-set has more than one element

• q4 = δ(q0, 0
∗111∗0) indicates the end of the max-set from state q3; the max-

set in this state will be encoded in states q5 or q6

• q5 = δ(q0, 0
∗111∗01) is the state that χ(t + 2) = 1 when there exist s such

that [s, t] is a max-set of size greater than one; the max-set is encoded by a

• q6 = δ(q0, 0
∗111∗00) is the state that χ(t + 2) = 0 when there exist s such

that [s, t] is a max-set of size greater than one; the max-set is encoded by b.

In conclusion, the automaton M encodes a max-set as follows:

• a max-set with one element, i.e., 0∗10, by a
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• a max-set [s, t] with t > s and t+ 2 ∈ A, i.e., 0∗111∗01, by a

• a max-set [s, t] with t > s and t+ 2 6∈ A, i.e., 0∗111∗00, by b.

We note that the automaton M does not encode the max-set that is yet ended.
This encoding is used to calculate the number of max-sets in A. For convenience,
we use notation χ([m,n]) = χ(m) . . . χ(n).

Theorem 3.8. For a max-set [s, t] in A,

τ(δ(q0, χ([3s, 3t+ 6]))) ∈ {ab, aba, ba}.

Especially, if w = χ([s− 1, t+ 1]) and w′ = χ([3s, 3t+ 6]), then

• τ(δ(q0, w
′)) = ba, where w = 010,

• τ(δ(q0, w
′)) = aba, where w = 01t−s+101 and t > s,

• τ(δ(q0, w
′)) = ab, where w = 01t−s+100 and t > s.

Proof. Let [s, t] be a max-set in A. We note that χ(n) = χ(p(n)), where p(n) is
the predecessor of n. If χ([s−1, t+1]) = 010, then, by using case analysis on s+2
modulo 3, we can show that χ(s+ 2) = 0. Hence,

χ([3s, 3s+ 6]) = χ(s)χ(s)χ(s− 1)χ(s+ 1)χ(s+ 1)χ(s)χ(s+ 2) = 120310.

So
τ(δ(q0, χ([3s, 3t+ 6]))) = ba.

If χ([s− 1, t+ 2]) = 01t−s+100, where t > s, then

χ([3s, 3t+ 6]) = 12013(t−s)0010.

So
τ(δ(q0, χ([3s, 3s+ 6]))) = aba.

Next, if χ([s− 1, t+ 2]) = 01t−s+101, where t > s, then

χ([3s, 3t+ 6]) = 12013(t−s)0011.

So
τ(δ(q0, χ([3s, 3t+ 6]))) = ab.

In Theorem 3.8, we see that adding prefix 0∗ to the image and pre-image of χ
does not change the encoding of the max-set. We also note that, in the last case
of Theorem 3.8, the automaton M does not encode the suffix 11.

Corollary 3.9. A max-set encoded by a contributes to two max-sets consisting of
a and b, and a max-set encoded by b contributes to three max-sets consisting of
two a’s and one b.
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Corollary 3.10. If a max-set [s, t] is encoded by a, then χ([3s, 3t+ 6]) is encoded
by either ab or ba. If [s, t] is encoded by b, then χ([3s, 3t+ 6]) is encoded by aba.

For A ⊂ Ā, let I be a family consisting of the max-sets in A. We now define
functions α1, α2, α3 which are the edge relations of the tree of blocks and the tree
of dblocks. Define α1, α2, α3 : A× I → P (N0) by

α1(A, [s, t]) =

{
[3s− 1, 3s+ 1], if s− 2 ∈ A,
[3s, 3s+ 1], otherwise,

(3.5)

α2(A, [s, t]) =

{
[3s+ 3, 3t+ 2], if s 6= t,

∅, otherwise,
(3.6)

α3(A, [s, t]) =

{
[3t+ 5, 3t+ 5], if t+ 2 6∈ A,
∅, otherwise.

(3.7)

We note that the function α1, α2, α3 are not defined on [0, 1], [0, 0]. By the defini-
tion of α1, α2, α3, we see that the automaton M encodes the images of α1 and α3

by a if they are not empty, whereas, the image of α2 is encoded by b. If A is clear
from the context, then we omit A when applying αi’s.

Figure 3: Tree of blocks for A{0,1,5}.

Let [s′, t′] and [s, t] be a disjoint pair of max-sets. If s′ < s, then x < y, for
all x ∈ [s′, t′] and y ∈ [s, t]. We define an order on the max-sets by [s′, t′] ≤ [s, t]
if s′ ≤ s. By the definition of αi’s, if αi([s, t]) 6= ∅ and αj([s, t]) 6= ∅, for some
i, j ∈ {1, 2, 3}, then

αi([s, t]) < αj([s, t]), for i < j. (3.8)

If [s′, t′] < [s, t] and αi([s
′, t′]), αi([s, t]) are not empty, then

αi([s
′, t′]) < αi([s, t]), for all i = 1, 2, 3. (3.9)
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So, α1, α2, α3 preserve the order of the max-sets. For a family of max-sets I, we
write

αi(I) = {αi(x) : x ∈ I}.

Next we define a function α from a family of max-sets to a set of non-negative
integers by

α(I) =
⋃

Y ∈α1(I)∪α2(I)∪α3(I)

Y. (3.10)

Lemma 3.11. Let I be the family of max-sets in A. For each max-set z ∈ α1(I)∪
α2(I) ∪ α3(I), there exists a unique max-set x ∈ I and a unique i ∈ {1, 2, 3} such
that z = αi(x).

Proof. Let [s, t], [s′, t′] ∈ I. Suppose αi([s, t]) = αj([s
′, t′]), for some i, j ∈ {1, 2, 3}.

For the case [s, t] 6= [s′, t′], without loss of generality, we suppose that [s, t] <
[s′, t′]. It follows that αi([s, t]) < αi([s

′, t′]), and hence, i 6= j. If i < j, then
αi([s, t]) < αi([s

′, t′]) < αj([s
′, t′]). If i > j, we have (i, j) ∈ {(2, 1), (3, 1), (3, 2)}.

Since, for any max-set x ∈ A, |αi(x)| = 1 if and only if i = 3. It remains to
consider (i, j) = (2, 1). Suppose that α2([s, t]) = α1([s′, t′]). It follows that either
[3s+ 3, 3t+ 2] = [3s′ − 1, 3s′ + 1] or [3s+ 3, 3t+ 2] = [3s′, 3s′ + 1]. We see that in
either case, the last elements in the max-sets are incongruent modulo three. This
completes the proof.

Lemma 3.11 allows us to compute the number of blocks and dblocks by count-
ing the encoding obtained by the automaton M . It also allows us to construct a
directed rooted trees of max-sets in Figure 3 and a tree of dblocks in Figure 5.

Lemma 3.12. For r ≥ 3, the minimum and maximum blocks in A{0,1,5} ∩ {8 ·
3r−3, . . . , 8 · 3r−2 − 1} are

[[8 · 3r−3, 8 · 3r−3 + 1]] and

[[
5(3r−1 − 1)

2
,

5(3r−1 − 1)

2

]]
,

respectively.

Proof. For r = 3, the minimum and the maximum blocks are [[8, 10]] and [[20, 20]],
respectively. Let [s, t], [s′, t′] ∈ B. By (3.8) and (3.9), the minimum block is
αr−31 ([[8, 10]]) = [[8 ·3r−3, 8 ·3r−3−1]] and the maximum block is αr−33 ([[20, 20]]) =[[

5(3r−1−1)
2 , 5(3

r−1−1)
2

]]
.

Theorem 3.13. For each r ∈ N, the number of blocks in A{0,1,5}∩{0, . . . , 8·3r−1}
is Pr.

Proof. For each x ≤ 8 · 3r − 1, we see that p(x) ≤
⌊
8·3r−1

3

⌋
. Since p(8 · 3r) 6∈

[0, 8 · 3r−1− 1], it follows that [0, 8 · 3r− 1] is the maximal set that the predecessor
of each element is contained in [0, 8 · 3r−1 − 1]. We note that χ(8 · 3r − 1) =
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0 = χ(8 · 3r − 2). By inputing χ([0, 8 · 3r − 1]) to M , it encodes all the max-sets
in A{0,1,5} ∩ {0, . . . , 8 · 3r − 1}. So, we are able to find the number of blocks
by considering the length of the output of M . Since τ(δ(q0, χ([0, 0]))) = a and
τ(δ(q0, χ([0, 7]))) = ab, it follows that

|τ(δ(q0, χ([0, 0])))| = 1 and |τ(δ(q0, χ([0, 7])))| = 2.

By Corollary 3.9 and the induction on r, we have

τ(δ(q0, χ(α([0, 8 · 3r − 1])))) = |φr(a)| = Pr+1.

Corollary 3.14. For r ∈ N, let Br be the set of blocks in [8·3r−1, 8·3r−1]∩A{0,1,5}.
Then |Br| = Qr.

Proof. By Theorem 3.13 and (3.4), |Br| = Pr+1 − Pr = Qr.

For each m ∈ N, let χm be the characteristic function of{
n ∈ N : n = m · 3r +

r−1∑
i=0

εi3
i, where εi ∈ {0, 1, 5}, r ∈ N0

}
.

Theorem 3.15. For each positive integer r, let Dr be the set of dblocks of degree
r in A{0,1,5} \ {0}. Then |Dr| = 2Pr and the number of anti-dblocks with degree r
is Pr.

Proof. We note that AC{0,1,5}|r ⊂ {2 · 3
r, · · · , 2 · 3r+1 − 1}. To ensure that the

automaton M encodes every dblocks of such degree, for each m ∈ {1, 2, 5}, we
construct χ′m by adding suffix 00 to χm([m · 3r,m · 3r+1 − 1]), i.e.,

χ′m = χm([m · 3r,m · 3r+1 − 1])00, where m ∈ {1, 2, 5}.

Since

χ′1([1, 2]) = 103, χ′2([2, 5]) = 105 and χ′5([5, 14]) = 1012,

it follows that

τ(δ(q0, χ
′
1([3, 8]))) = τ(δ(q0, χ

′
2([5, 14]))) = τ(δ(q0, χ

′
5([5, 14]))) = a.

Similar to Theorem 3.13, we can conclude that, for m ∈ {1, 2, 5},

|τ(δ(q0, χ
′
m([m · 3r,m · 3r+1 − 1])))| = Pr.

Therefore, |Dr| = 2Pr and the number of anti-blocks with degree r is Pr.
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4 Tree of max-sets

Next, we construct a rooted tree of max-set [s, t], we use notation G[s,t] for
a tree rooted at [s, t] with αi’s as the relations of the edges, for i = 1, 2, 3. We
say that a vertex v ∈ G[s,t] is in the r-th row if the distance from [s, t] to v is
r − 1. In this section, we show that if a pair of max-sets is similar, then there is
an isomorphism function preserving the similarity of the max-sets.

For a pair of sets Ā, B̄ ∈
{
A{0,1,5} \ {0}, AC{0,1,5}

}
, let A ⊂ Ā and B ⊂ B̄.

Definition 4.1. A max-set [s, t] in A and a max-set [s′, t′] in B with t−s = t′−s′
are said to be similar, denoted [s, t] ∼ [s′, t′], if one of the following is true;

• either s− 2 ∈ A and s′ − 2 ∈ B or s− 2 6∈ A and s′ − 2 6∈ B,

• either t+ 2 ∈ A and t′ + 2 ∈ B or t+ 2 6∈ A and t′ + 2 6∈ B.

We note that a pair of similar max-sets is encoded by the same alphabet in the
automaton M ; however, the converse is not true. We refer to the term children of
a block and a dblock as the children of the corresponding vertex in the tree.

Definition 4.2. Let [s, t] and [s′, t′] be a pair of disjoint max-sets in A and B,
respectively. We say that [s, t] and [s′, t′] are c-similar if they have the same
number of children. We write [s, t]∼̊[s′, t′] if [s, t] and [s′, t′] are c-similar.

Remark 4.3. A pair of max-sets are c-similar if and only if they are encoded by
the same alphabet in the automaton M .

Remark 4.4. Let [s, t], [s′, t′] be a pair of max-sets in A and B, respectively. If
[s, t] ∼ [s′, t′], then, for i = 1, 2, 3

1. αi([s, t]) ∼ αi([s′, t′]),
2. αi([s, t])∼̊αi([s′, t′]).

Proof. Suppose that [s, t] ∼ [s′, t′]. By the definitions of α1, α2 and α3, we have
αi([s, t]) ∼ αi([s′, t′]). By the fact that any pair of max-sets encoded by the same
alphabet has the same number of children, we have αi([s, t])∼̊αi([s′, t′]).

The Remark 4.4 implies that the function αi’s preserve the similarity of the
max-sets stated in Definition 4.1.

By Remark 4.4, automaton M encodes the max-sets with 2 children and 3

children by a and b, respectively. For a max-set [s, t], let I
[s,t]
r be the family of the

max-sets in the r-th row in G[s,t].

Theorem 4.5. Let [s, t], [s′, t′] be a pair of max-sets in A and B, respectively. If
[s, t] ∼ [s′, t′], then there exists a graph isomorphism

f : G[s,t] → G[s′,t′] (4.1)

preserving the similarity of the max-sets such that

f |
I
[s,t]
r

: I [s,t]r → I [s
′,t′]

r . (4.2)
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Proof. For convenience, we denote f |
I
[s,t]
r

by fr. Firstly, we construct a bijective

map fr : I
[s,t]
r → I

[s′,t′]
r , for r ≥ 1, such that [u, v] ∼ fr([u, v]). For r = 1, the

function is defined by
f1([s, t]) = [s′, t′].

Suppose there exists such bijective function fr : I
[s,t]
r → I

[s′,t′]
r in the r-th row.

We inductively construct the map fr+1 : I
[s,t]
r+1 → I

[s′,t′]
r+1 by defining

fr+1(αi([u, v])) = αi([u
′, v′]),

where [u, v] and [u′, v′] are max-sets in the r-th row such that fr([u, v]) = [u′, v′].
Let Dom(αi) and Im(αi) be the domain and image of αi respectively. By Lemma
3.11, the function αi : Dom(αi)→ Im(αi) is bijective. So, the diagram in Figure 4

Figure 4: Commutative Diagram.

commutes. By Lemma 3.11, we can conclude that fr+1|Im(αi|
I
[s,t]
r

) is bijective. By

Remark 4.4 and the induction hypothesis, the function fr+1|Im(αi|
I
[s,t]
r

) preserves

the similarity of the max-sets, i.e., αi([u, v]) ∼ αi([u′, v′]), for i = 1, 2, 3. Since

Im(α1|I[s,t]r
) ∪ (Im(αi|I[s,t]r

)) ∪ (Im(αi|I[s,t]r
)) = I

[s,t]
r+1

and
Im(αi|I[s,t]r

) ∩ Im(αj |I[s,t]r
) = ∅,

for i 6= j. It follows that fr+1 is bijective. Let f =
⋃∞
r=1 fr. Then f is a bijection.

By the definition of fr, the function f preserves the edges and the similarity of
the max-sets between G[s,t] and G[s′,t′]. Thus, the function f satisfies the given
condition.

Corollary 4.6. If [s, t] ∼ [s′, t′], then
∣∣∣I [s,t]r

∣∣∣ =
∣∣∣I [s′,t′]r

∣∣∣.
Corollary 4.7. Let [s, t] be a max-set in A and [s′, t′] be a max-set in B such that
[s, t]∼̊[s′, t′]. For r ≥ 1, the following statements are true:
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• The number of the max-sets with 2 children in I
[s,t]
r is equal to the number

of the max-sets with 2 children in I
[s′,t′]
r .

• The number of the max-sets with 3 children in I
[s,t]
r is equal to the number

of the max-sets with 3 children in I
[s′,t′]
r .

•
∣∣∣I [s,t]r

∣∣∣ =
∣∣∣I [s′,t′]r

∣∣∣.

Figure 5: Tree of dblocks in G〈1,1〉.
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