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Some Transformation Semigroups Admitting
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Abstract : Denote by T(X) and P(X) the full transformation semigroup and
the partial transformation semigroup on a nonempty set X, respectively. The
semigroups T(X) and P(X) are known to admit a right nearring structure for
any X and they admit a left nearring structure only the case that |X| = 1. We
generalize these results to the semigroups T(X,Y") and P(X,Y’) under composition
where 0 #Y C X, T(X,Y) = {a € T(X)| rana C Y} and P(X,Y) = {a €
P(X)| rana € Y}. We obtain the analogous results that 7(X,Y) and P(X,Y)
admit a right nearring structure for any ) #Y C X and |Y| =1 is necessary and
sufficient for them to admit a left nearring structure.
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1 Introduction

The cardinality of a set X will be denoted by | X].

If S is a semigroup which does not process a zero or |S| = 1, let S° denote the
semigroup S with zero 0 ; otherwise S° = S.

By a right nearring we mean a triple (N, +, -) where (N, +) is an abelian group,
(N,-) is a semigroup and (z+y)-z=xz-z+y-z for all z,y,z € N. A left nearring
is defined dually. Subnearrings of a right [left] nearring are defined naturally. A
right [left] nearring (N, +, ) has the following basic properties :

0-z=0([z-0=0] for all x € N where 0 is the identity of (N,+),
(—2) y=—(z-y) [ (—y) = —(z-y)]forallz,y e N

([2], page 19). Hence if (N,+,-) is a right [left] nearring, then (N,-) has a left
[right] zero. A right [left] nearring is called zero-symmetric if 0-x =z -0 =0 for
all z € N.

Example 1.1. ([2], page 7 and page 19.) Let (A,+) be an abelian group with
identity 0, M (A) the set of all mappings f: A — A and

Mo(A) = {f € M(A)[f(0) = 0}.
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Then (M (A),+,0) is a right nearring and (My(A), +, o) is a zero-symmetric right
nearring where + and o are the usual addition and composition of functions.

Since the multiplicative structure of a ring is by definition a semigroup with
zero, it is valid to ask whether a given semigroup S has S° isomorphic to the
multiplicative structure of some ring (R, +,-). If ¢ is an isomorphism from the
semigroup S° onto the semigroup (R, -) and define an operation @& on S° by

Ty = (Z)_l(qb(a:) + ¢(y)) for all z,y € S0,

then (S°, @, 0) becomes a ring isomorphic to (R, +, -) through ¢. If the semigroup
S has S° isomorphic to the multiplicative structure of some ring, or equivalently,
there is an operation + on S° such that (5%, +,) is a ring where - is the operation
on S°, then S is said to admit a ring structure. Semigroups admitting ring struc-
ture have long been studied. A very nice brief survey was given by Peinado [7] in
1970. For further study, one can see, for example, in [1], [6], [9], [10] and [11].

Right [left] nearrings are a generization of rings. By definition and their prop-
erties, their multiplicative structures are semigroups with left [right] zero. The
right nearrings in Example 1.1, the zero map 6, that is, f(x) =0 for allx € A, is a
left zero of (M (A), o) which is not a zero if |A| > 1 and 6 is the zero of (My(A), o).
It is valid to ask that for a given semigroup S , whether S or S° is isomorphic to
the multiplicative structure of some right [left] nearring. If it does, S shall be said
to admit a right [left] nearring structure. By the same reason as above, S admits
a right [left] nearring structure if and only if

(i) there is an operation + on S such that (S,+,-) is a right [left] nearring
where - is the operation on S or

(ii) there is an operation + on S° such that (S, +, ) is a (zero-symmetric) right
[left] nearring where - is the operation on S°.

Notice that if S has no left [right] zero, then S cannot satisfies (i).
If X is a set, (A, +) is an abelian group and |X| = |A|, then there is a bijective
¢: X — Aand (X, ®) becomes an abelian group isomorphic to (A, +) by ¢ where

rdy=9¢ '(o(x)+d(y) foralla,yeX.

In fact, the identity of (X,®) is a € X with ¢(a) = 0. Hence if |X| = |A| and
a € X, then there is an operation @ on X such that (X, ®) is an abelian group
with identity a. If X is a finite nonempty set, then | X| = |Z,| for some positive
integer n. Also, if X is infinite and F'(X) is the set of all finite subsets of X, then
|X| = |F(X)] ([8], page 154). Moreover, if we define an operation + on F(X) by

A+B=(ANB)U(B~A) foral A, Bec F(X),
then (F(X),+) is an abelian group having ) as its identity. Note that the inverse

of Ae F(X) in (F(X),+) is A itself.
Therefore we have
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Proposition 1.2. For any nonempty set X, there is an operation + on X such
that (X,+) is an abelian group.

In addition, if a € X is given, then there is an operation + on X such that
(X,+) is an abelian group with identity a.

The first part of this fact was also mentioned in [11].

For a nonempty set X, let T(X) and P(X) be respectively the full trans-
formation semigroup on X (the semigroup, under composition, of all mappings
f: X — X) and the partial transformation semigroup on X (the semigroup, un-
der composition, of all mappings from a subset of X into X). Then T(X) is a
subsemigroup of P(X). Note that 1x, the identity mapping on X, is the identity
of T(X) and P(X) and 0, the empty transformation, is the zero of P(X). The do-
main and the range of f € P(X) will be denoted by domj and ranf, respectively.
For ) # A C X and z € X, let A, denote the constant mapping in P(X) whose
domain and range are A and {x}, respectively. For z,y € X, {z}, may be written

by N
The follwing basic fact of transformation semigroup is useful for our work.

Proposition 1.3. ([5], page 41). Let X be a nonempty set 6 a symbol not repre-
senting any element of X and

Z(Xu{8}) ={g e T(X U{0})|g(0) = 0}.
For each f € P(X), define f* € T(X U{0}) by
R A A
Then the following statements hold.
(i) Z(X U{6}) is a subsemigroup of T(X U{#}) and
Z(Xu{e}) ={flf e P(X)}.

(ii) The mapping f — f* is an isomorphism from P(X) onto the subsemigroup
Z(XU{0}) of T(X U{6}).
The following theorems were provided in [3] and [4].
Theorem 1.4. ([3], [4]). For a nonempty set X, the following statements hold.

(i) T(X) admits a right nearring structure.
(1) T(X) admits a left nearring structure if and only if | X| = 1.

Theorem 1.5. ([3], [4]). For any nonempty set X, the following statements hold.

(i) P(X) admits a right nearring structure.
(1) P(X) admits a left nearring structure if and only if | X| = 1.
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In this paper, Theorem 1.4 is generalized by considering the semigroup T'(X,Y),
under composition, where § #Y C X and

T(X,Y) = {f € T(X)| ranf C Y}.

In 1975, Symons [12] introduced the semigroup T'(X,Y) and described all the
automorphisms of this semigroup. Moreover, he determined when the two semi-
groups of this type are isomorphic. To generalize Theorem 1.5, we introduce the
semigroup P(X,Y) analogously, that is, ) # Y C X,

P(X,Y) = {f € P(X)| ranf C V'}

and the operation is the composition of functions. Notice that T'(X,Y) is a sub-
semigroup of T(X) and T(X,Y) = T(X) if and only if Y = X, and this is also
true for P(X,Y).

2 The Transformation Semigroups 7'(X,Y) and P(X,Y)

The following theorem is our first main result.

Theorem 2.1. Let X be a nonempty set and ) # Y C X. Then the following
statemants hold.

(i) The semigroup T(X,Y) admits a right nearring structure.
(1i) The semigroup T X admits a leﬂ nearring structure if and only if |Y| =

1.

Proof. (i) By Proposition 1.2, there is an operation + on Y such that (Y, +) is an
abelian group. For f,g € T(X,Y), define f + g € T(X,Y) by

(f+9)(x)= f(z)+g(z) forall zeX.

Since (Y, +) is an abelian group. We deduce that (T(X,Y), +) is an abelian group.
We also have that for all f,g,h € T(X,Y),

((f +9)oh)(z) = (f +9)(h(z)) = f(h(z)) + g(h(z)) =(foh+goh)(z)
for all z € X.

Hence (T(X,Y),+,0) is a right nearring. Thus T'(X,Y) admits a right nearring
structure.

(ii) Assume that |Y| > 1. Let a,b be distinct elements of Y. Then X,, X €
T(X,Y). Since X,f = X, and X,f = X, for all f € T(X,Y), it follows that
T(X,Y) has no right zero. Suppose that T'(X,Y") admits a left nearring structure.
Then there is an operation + on T°(X,Y) such that (T°(X,Y),+,0) is a left
nearring. Hence X, + X, = f for some f € T°(X,Y).

Case 1: f =0. Then X, + X =0 and
Xo+Xo=XoXo+ XoXp = Xo(Xo + Xp) = X,0=0
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which implies that X, = X,. This is a contradiction since a # b.

Case 2: f #0. Then
Xa + Xa = Xa(Xa + Xb) = Xaf = Xa
which implies that X, = 0, a contradiction.

This proves that if T(X,Y) admits a left nearring structure, then |Y| = 1.
The converse is obvious since |T'(X,Y)| =11if |Y] = 1. O

Therefore Theorem 1.4 is a direct consequence of Theorem 2.1

Corollary 2.2. Let X be a nonempty set. Then the following statements hold.

(i) T(X) admits a right nearring structure.
(ii) T(X) admits a left nearring structure if and only if | X| = 1.

By the given definitions, if a semigroup S admits a ring structure, then S
admits left [right] nearring structure. From this fact and T9(X,Y) = (Z,,-) if
|Y'| = 1, by Theorem 2.1(ii), we have

Corollary 2.3. Let X be a nonempty set and 0 #Y C X. Then T(X,Y) admits
a ring structure if and only if |Y|=1.
In particular, T(X) admits a ring structure if and only if | X|=1.

In fact, the second part of Corollary 2.3 was given in [11].
To prove the second part of main result, the following lemma is needed.

Lemma 2.4. Let X be a nonempty set and ) #Y C X. If |Y| =1, then P(X,Y)
admits a ring structure.

Proof. Let Y = {a}. We clearly have that
P(X,Y)={0} U{A4,0 # AC X}. (2.1)
Let P(X) be the set of all subsets of X. Define an operation + on P(X) by
A+B=(A~B)U(B~A) forall A, BePX). (2.2)
Then (P(X),+) is an abelian group having ) as its identity. Define ¢ : P(X,Y) —

P(X) by
#(0)=0 and ¢(A,)=A forall)#ACX. (2.3)

Then by (2.1), ¢ is a bijection from P(X,Y) onto P(X), so (P(X,Y),®) is an
abelian group with identity 0 where

fog=9¢""(s(f) +olg) forall f,geP(XY). (2.4)
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It follows from (2.2), (2.3) and (2.4) that for nonempty subsets A, B of X,
A, ®B, =0 A=B, (2.5)
A#B=A,®B,=((ANB)U(B\ A4)),.
Hence (2.1) and (2.5) yield
fof=0 foral fe P(X,Y). (2.7)

Next, we shall show that o is two-sided distributive over @ in P(X,Y). If f,g,h €
P(X,Y) are such that f = 0 or ¢ = 0 or h = 0, then we clearly have that
flgdh) = fg@® fhand (9@ h)f = gf ® hf. Next, let A, B,C be nonempty
subsets of X.

Case 1: B, & C, =0. By (2.5), B=C. Thus

Ay(Ba @ Cy) =0 = (B, ® Cy)Aq,

B,®C,=0 ifa€e A,
A,B, ® A, C, =
000=0 ifag¢A,

B,A, ® CyA, = BoAy ® BoA, =0 by (2.7).

Case 2: B, & C, # 0. From (2.5) and (2.6), we have B # C and B, & C, =
((B~C)U(C N\ B)),, respectively.

Aa(Ba® Cy) = Ag((BNC)U(C' N\ B))a
J((BNC)U(CNB)y=B,®C, ifacA,
(o ifadA,
(Ba ® Cu)Aq = (BN C)U(C N B))aA,

Aq ifae (BNC)U(CN B),
0 ifa¢ (BNC)U(CN B),

Ba@ca lfCLEA

—N— —/

A,B, ® A, C, =
b 0 ifaé A,
A, @0— ifae B\C,
BuA, & O, A, = 0 A, ?faEC\B,
A, ® A, —0 ifae BNC,
060=0 ifa¢ BUC,

_J A ifae (BNC)U(CN B),
o ifag¢ (BNC)U(C\ B).

This shows that o is two-sided distributive over ®. Hence (P(X,Y),®,0) is a left
nearring. Hence the lemma is proved. O
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Theorem 2.5. Let X be a nonempty set and ) #Y C X. Then the following
statemants hold.

(i) The semigroup P(X,Y) admits a right nearring structure.
(1) The semigroup P X admits a lefg nearring structure if and only if |Y| =

1.

Proof. (i) Let 6 be a symbol not representing any element of X. For f € P(X),
define f* € T(X U {6}) as in Proposition 1.3, that is,

v~ _ ) flx) ifxe€domf,
J ) = {9 if v € (X U{6}) \ domf. @1
Fron (2.1), we have
ranf* =ranf U {0} forall f € P(X). (2.2)

Define ¢ : P(X) — T(X U{6}) by ¢(f) = f* for all f € P(X). By Proposition
1.3, ¢ is a monomorphism and

(P(X)) ={f"If € P(X)} ={g e T(X U{0})[g(0) = 6} (2.3)
Hence (2.2) and (2.3) yield the fact that

H(P(X,Y)) ={f"If e P(X,Y)} ={g e T(X U{0}, Y U{0})|g(0) = 0} (2.4)
Note that {g € T(X U{0},Y U{6})|g(0) = 0} is a subsemigroupof T (X U{6},Y U
{0}). By Proposition 1.2, there is an operation + on YU{6} such that (YU{6}, +)
is an abelian group with identity 6. From the proof of Theorem 2.1, (T'(XU{6},Y U
{6}),+,0) is a right nearring where

(f+9)(@) = f(x) +g(x) forall f,geT(XU{0},Y U0}
and z € X U {0}.

If hk e T(X U{0},Y U{0}) are such that h(0) = 0 = k(f), then
(h4+E)(0) = h(0) + k(0) =0+ 6 =0,
(—=h)(0) = —h(§) = -0 =0.

It follows that {g € T(XU{0},YU{0})|g(9) = 0} is a subnearring of (T (XU{60},YU
{0}),4+,0). Since ¢ is a monomorphism, by (2.4), we have that the semigroups
P(X,Y) and {g € T(X U{0},Y U {6})|g(8) = 0} are isomorphic. Consequently
P(X,Y) admits a right nearring structure.

(ii) Assume that [V] > 1. Let a,b € Y be distinct. Then Z , Z) € P(X,Y).
Suppose that there is an operation + on P(X,Y) such that (P(X,Y),+,0) is a
left nearring. Then (a) + (Z) = f for some f € P(X,Y). This implies that

a

(= CHE)=6) - () =-()
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()= 0)(C) () ()-C)
It follows that a = (Z) (a) = <(Z> f) (a) = (Z) f(a) and b = (Z) (a) =

((Z) f) (a) = (Z)f(a) which imply respectively that f(a) = a and f(a) = b.

This is a contradiction since a # b. This proves that if P(X,Y) admits a left
nearring structure, then |Y| = 1.
The converse follows from Lemma 2.4. O

Theorem 1.5 follows directly from Theorem 2.5

Corollary 2.6. Let X be a nonempty set. Then the following statements hold.
(i) P(X) admits a right nearring structure.

(ii) P(X) admits a left nearring structure if and only if | X| = 1.

The following corollary is a direct consequence of Lemma 2.4 and Theorem
2.5.

Corollary 2.7. Let X be a nonempty set and ) #Y C X. Then P(X,Y) admits
a ring structure if and only if |Y| = 1.
In particular, P(X) admits a ring structure if and only if | X| = 1.

The second part of Corollary 2.7 was also proved directly in [11].
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