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Some Transformation Semigroups Admitting
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Ng. Danpattanamongkon, P. Udomkavanich and Y. Kemprasit

Abstract : Denote by T (X) and P (X) the full transformation semigroup and
the partial transformation semigroup on a nonempty set X, respectively. The
semigroups T (X) and P (X) are known to admit a right nearring structure for
any X and they admit a left nearring structure only the case that |X| = 1. We
generalize these results to the semigroups T (X, Y ) and P (X, Y ) under composition
where ∅ 6= Y ⊆ X, T (X, Y ) = {α ∈ T (X)| ranα ⊆ Y } and P (X, Y ) = {α ∈
P (X)| ranα ⊆ Y }. We obtain the analogous results that T (X,Y ) and P (X, Y )
admit a right nearring structure for any ∅ 6= Y ⊆ X and |Y | = 1 is necessary and
sufficient for them to admit a left nearring structure.
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1 Introduction

The cardinality of a set X will be denoted by |X|.
If S is a semigroup which does not process a zero or |S| = 1, let S0 denote the

semigroup S with zero 0 ; otherwise S0 = S.
By a right nearring we mean a triple (N, +, ·) where (N, +) is an abelian group,

(N, ·) is a semigroup and (x+y) · z = x · z +y · z for all x, y, z ∈ N . A left nearring
is defined dually. Subnearrings of a right [left] nearring are defined naturally. A
right [left] nearring (N, +, ·) has the following basic properties :

0 · x = 0 [x · 0 = 0] for all x ∈ N where 0 is the identity of (N, +),
(−x) · y = −(x · y) [x · (−y) = −(x · y)] for all x, y ∈ N

([2], page 19). Hence if (N, +, ·) is a right [left] nearring, then (N, ·) has a left
[right] zero. A right [left] nearring is called zero-symmetric if 0 · x = x · 0 = 0 for
all x ∈ N .

Example 1.1. ([2], page 7 and page 19.) Let (A,+) be an abelian group with
identity 0, M(A) the set of all mappings f : A → A and

M0(A) = {f ∈ M(A)|f(0) = 0}.
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Then (M(A),+, ◦) is a right nearring and (M0(A), +, ◦) is a zero-symmetric right
nearring where + and ◦ are the usual addition and composition of functions.

Since the multiplicative structure of a ring is by definition a semigroup with
zero, it is valid to ask whether a given semigroup S has S0 isomorphic to the
multiplicative structure of some ring (R, +, ·). If φ is an isomorphism from the
semigroup S0 onto the semigroup (R, ·) and define an operation ⊕ on S0 by

x⊕ y = φ−1(φ(x) + φ(y)) for all x, y ∈ S0,

then (S0,⊕, ◦) becomes a ring isomorphic to (R, +, ·) through φ. If the semigroup
S has S0 isomorphic to the multiplicative structure of some ring, or equivalently,
there is an operation + on S0 such that (S0, +, ·) is a ring where · is the operation
on S0, then S is said to admit a ring structure. Semigroups admitting ring struc-
ture have long been studied. A very nice brief survey was given by Peinado [7] in
1970. For further study, one can see, for example, in [1], [6], [9], [10] and [11].

Right [left] nearrings are a generization of rings. By definition and their prop-
erties, their multiplicative structures are semigroups with left [right] zero. The
right nearrings in Example 1.1, the zero map θ, that is, θ(x) = 0 for all x ∈ A, is a
left zero of (M(A), ◦) which is not a zero if |A| > 1 and θ is the zero of (M0(A), ◦).
It is valid to ask that for a given semigroup S , whether S or S0 is isomorphic to
the multiplicative structure of some right [left] nearring. If it does, S shall be said
to admit a right [left ] nearring structure. By the same reason as above, S admits
a right [left] nearring structure if and only if

(i) there is an operation + on S such that (S, +, ·) is a right [left] nearring
where · is the operation on S or

(ii) there is an operation + on S0 such that (S0, +, ·) is a (zero-symmetric) right
[left] nearring where · is the operation on S0.

Notice that if S has no left [right] zero, then S cannot satisfies (i).
If X is a set, (A,+) is an abelian group and |X| = |A|, then there is a bijective

φ : X → A and (X,⊕) becomes an abelian group isomorphic to (A, +) by φ where

x⊕ y = φ−1(φ(x) + φ(y)) for all x, y ∈ X.

In fact, the identity of (X,⊕) is a ∈ X with φ(a) = 0. Hence if |X| = |A| and
a ∈ X, then there is an operation ⊕ on X such that (X,⊕) is an abelian group
with identity a. If X is a finite nonempty set, then |X| = |Zn| for some positive
integer n. Also, if X is infinite and F (X) is the set of all finite subsets of X, then
|X| = |F (X)| ([8], page 154). Moreover, if we define an operation + on F (X) by

A + B = (ArB) ∪ (B rA) for all A,B ∈ F (X),

then (F (X), +) is an abelian group having ∅ as its identity. Note that the inverse
of A ∈ F (X) in (F (X), +) is A itself.

Therefore we have
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Proposition 1.2. For any nonempty set X, there is an operation + on X such
that (X, +) is an abelian group.

In addition, if a ∈ X is given, then there is an operation + on X such that
(X, +) is an abelian group with identity a.

The first part of this fact was also mentioned in [11].
For a nonempty set X, let T (X) and P (X) be respectively the full trans-

formation semigroup on X (the semigroup, under composition, of all mappings
f : X → X) and the partial transformation semigroup on X (the semigroup, un-
der composition, of all mappings from a subset of X into X). Then T (X) is a
subsemigroup of P (X). Note that 1X , the identity mapping on X, is the identity
of T (X) and P (X) and 0, the empty transformation, is the zero of P (X). The do-
main and the range of f ∈ P (X) will be denoted by domf and ranf , respectively.
For ∅ 6= A ⊆ X and x ∈ X, let Ax denote the constant mapping in P (X) whose
domain and range are A and {x}, respectively. For x, y ∈ X, {x}y may be written

by
(

x

y

)
.

The follwing basic fact of transformation semigroup is useful for our work.

Proposition 1.3. ([5], page 41). Let X be a nonempty set θ a symbol not repre-
senting any element of X and

Z(X ∪ {θ}) = {g ∈ T (X ∪ {θ})|g(θ) = θ}.

For each f ∈ P (X), define f∗ ∈ T (X ∪ {θ}) by

f∗(x) =

{
f(x) if x ∈ domf,

θ if x ∈ (X ∪ {θ})r domf.

Then the following statements hold.

(i) Z(X ∪ {θ}) is a subsemigroup of T (X ∪ {θ}) and

Z(X ∪ {θ}) = {f∗|f ∈ P (X)}.

(ii) The mapping f 7→ f∗ is an isomorphism from P (X) onto the subsemigroup
Z(X ∪ {θ}) of T (X ∪ {θ}).

The following theorems were provided in [3] and [4].

Theorem 1.4. ([3], [4]). For a nonempty set X, the following statements hold.

(i) T (X) admits a right nearring structure.
(ii) T (X) admits a left nearring structure if and only if |X| = 1.

Theorem 1.5. ([3], [4]). For any nonempty set X, the following statements hold.

(i) P (X) admits a right nearring structure.
(ii) P (X) admits a left nearring structure if and only if |X| = 1.
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In this paper, Theorem 1.4 is generalized by considering the semigroup T (X, Y ),
under composition, where ∅ 6= Y ⊆ X and

T (X, Y ) = {f ∈ T (X)| ranf ⊆ Y }.
In 1975, Symons [12] introduced the semigroup T (X,Y ) and described all the
automorphisms of this semigroup. Moreover, he determined when the two semi-
groups of this type are isomorphic. To generalize Theorem 1.5, we introduce the
semigroup P (X, Y ) analogously, that is, ∅ 6= Y ⊆ X,

P (X,Y ) = {f ∈ P (X)| ranf ⊆ Y }
and the operation is the composition of functions. Notice that T (X,Y ) is a sub-
semigroup of T (X) and T (X,Y ) = T (X) if and only if Y = X, and this is also
true for P (X, Y ).

2 The Transformation Semigroups T (X, Y ) and P (X, Y )

The following theorem is our first main result.

Theorem 2.1. Let X be a nonempty set and ∅ 6= Y ⊆ X. Then the following
statemants hold.

(i) The semigroup T (X, Y ) admits a right nearring structure.
(ii) The semigroup T (X, Y ) admits a left nearring structure if and only if |Y | =

1.

Proof. (i) By Proposition 1.2, there is an operation + on Y such that (Y, +) is an
abelian group. For f, g ∈ T (X, Y ), define f + g ∈ T (X, Y ) by

(f + g)(x) = f(x) + g(x) for all x ∈ X.

Since (Y, +) is an abelian group. We deduce that (T (X, Y ), +) is an abelian group.
We also have that for all f, g, h ∈ T (X,Y ),

((f + g) ◦ h)(x) = (f + g)(h(x)) = f(h(x)) + g(h(x)) = (f ◦ h + g ◦ h)(x)
for all x ∈ X.

Hence (T (X, Y ), +, ◦) is a right nearring. Thus T (X,Y ) admits a right nearring
structure.

(ii) Assume that |Y | > 1. Let a, b be distinct elements of Y . Then Xa, Xb ∈
T (X, Y ). Since Xaf = Xa and Xbf = Xb for all f ∈ T (X, Y ), it follows that
T (X, Y ) has no right zero. Suppose that T (X,Y ) admits a left nearring structure.
Then there is an operation + on T 0(X,Y ) such that (T 0(X, Y ), +, ◦) is a left
nearring. Hence Xa + Xb = f for some f ∈ T 0(X, Y ).

Case 1: f = 0. Then Xa + Xb = 0 and

Xa + Xa = XaXa + XaXb = Xa(Xa + Xb) = Xa0 = 0
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which implies that Xb = Xa. This is a contradiction since a 6= b.

Case 2: f 6= 0. Then

Xa + Xa = Xa(Xa + Xb) = Xaf = Xa

which implies that Xa = 0, a contradiction.

This proves that if T (X, Y ) admits a left nearring structure, then |Y | = 1.
The converse is obvious since |T (X, Y )| = 1 if |Y | = 1.

Therefore Theorem 1.4 is a direct consequence of Theorem 2.1

Corollary 2.2. Let X be a nonempty set. Then the following statements hold.

(i) T (X) admits a right nearring structure.
(ii) T (X) admits a left nearring structure if and only if |X| = 1.

By the given definitions, if a semigroup S admits a ring structure, then S
admits left [right] nearring structure. From this fact and T 0(X, Y ) ∼= (Z2, ·) if
|Y | = 1, by Theorem 2.1(ii), we have

Corollary 2.3. Let X be a nonempty set and ∅ 6= Y ⊆ X. Then T (X,Y ) admits
a ring structure if and only if |Y | = 1.

In particular, T (X) admits a ring structure if and only if |X| = 1.

In fact, the second part of Corollary 2.3 was given in [11].
To prove the second part of main result, the following lemma is needed.

Lemma 2.4. Let X be a nonempty set and ∅ 6= Y ⊆ X. If |Y | = 1, then P (X,Y )
admits a ring structure.

Proof. Let Y = {a}. We clearly have that

P (X,Y ) = {0} ∪ {Aa|∅ 6= A ⊆ X}. (2.1)

Let P(X) be the set of all subsets of X. Define an operation + on P(X) by

A + B = (ArB) ∪ (B rA) for all A,B ∈ P(X). (2.2)

Then (P(X), +) is an abelian group having ∅ as its identity. Define φ : P (X, Y ) →
P(X) by

φ(0) = ∅ and φ(Aa) = A for all ∅ 6= A ⊆ X. (2.3)

Then by (2.1), φ is a bijection from P (X, Y ) onto P(X), so (P (X, Y ),⊕) is an
abelian group with identity 0 where

f ⊕ g = φ−1(φ(f) + φ(g)) for all f, g ∈ P (X,Y ). (2.4)
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It follows from (2.2), (2.3) and (2.4) that for nonempty subsets A,B of X,

Aa ⊕Ba = 0 ⇔ A = B, (2.5)
A 6= B ⇒ Aa ⊕Ba = ((ArB) ∪ (B rA))a. (2.6)

Hence (2.1) and (2.5) yield

f ⊕ f = 0 for all f ∈ P (X,Y ). (2.7)

Next, we shall show that ◦ is two-sided distributive over ⊕ in P (X,Y ). If f, g, h ∈
P (X, Y ) are such that f = 0 or g = 0 or h = 0, then we clearly have that
f(g ⊕ h) = fg ⊕ fh and (g ⊕ h)f = gf ⊕ hf . Next, let A,B, C be nonempty
subsets of X.

Case 1: Ba ⊕ Ca = 0. By (2.5), B = C. Thus

Aa(Ba ⊕ Ca) = 0 = (Ba ⊕ Ca)Aa,

AaBa ⊕AaCa =





Ba ⊕ Ca = 0 if a ∈ A,

0⊕ 0 = 0 if a /∈ A,

BaAa ⊕ CaAa = BaAa ⊕BaAa = 0 by (2.7).

Case 2: Ba ⊕ Ca 6= 0. From (2.5) and (2.6), we have B 6= C and Ba ⊕ Ca =
((B r C) ∪ (C rB))a, respectively.

Aa(Ba ⊕ Ca) = Aa((B r C) ∪ (C rB))a

=

{
((B r C) ∪ (C rB))a = Ba ⊕ Ca if a ∈ A,

0 if a /∈ A,

(Ba ⊕ Ca)Aa = ((B r C) ∪ (C rB))aAa

=

{
Aa if a ∈ (B r C) ∪ (C rB),
0 if a /∈ (B r C) ∪ (C rB),

AaBa ⊕AaCa =

{
Ba ⊕ Ca if a ∈ A,

0 if a /∈ A,

BaAa ⊕ CaAa =





Aa ⊕ 0 = Aa if a ∈ B r C,

0⊕Aa = Aa if a ∈ C rB,

Aa ⊕Aa = 0 if a ∈ B ∩ C,

0⊕ 0 = 0 if a /∈ B ∪ C,

=

{
Aa if a ∈ (B r C) ∪ (C rB),
0 if a /∈ (B r C) ∪ (C rB).

This shows that ◦ is two-sided distributive over ⊕. Hence (P (X,Y ),⊕, ◦) is a left
nearring. Hence the lemma is proved.
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Theorem 2.5. Let X be a nonempty set and ∅ 6= Y ⊆ X. Then the following
statemants hold.

(i) The semigroup P (X, Y ) admits a right nearring structure.
(ii) The semigroup P (X,Y ) admits a left nearring structure if and only if |Y | =

1.

Proof. (i) Let θ be a symbol not representing any element of X. For f ∈ P (X),
define f∗ ∈ T (X ∪ {θ}) as in Proposition 1.3, that is,

f∗(x) =

{
f(x) if x ∈ domf,

θ if x ∈ (X ∪ {θ})r domf.
(2.1)

Fron (2.1), we have

ranf∗ = ranf ∪ {θ} for all f ∈ P (X). (2.2)

Define φ : P (X) → T (X ∪ {θ}) by φ(f) = f∗ for all f ∈ P (X). By Proposition
1.3, φ is a monomorphism and

φ(P (X)) = {f∗|f ∈ P (X)} = {g ∈ T (X ∪ {θ})|g(θ) = θ}. (2.3)

Hence (2.2) and (2.3) yield the fact that

φ(P (X, Y )) = {f∗|f ∈ P (X, Y )} = {g ∈ T (X ∪ {θ}, Y ∪ {θ})|g(θ) = θ}. (2.4)

Note that {g ∈ T (X ∪{θ}, Y ∪{θ})|g(θ) = θ} is a subsemigroupof T (X ∪{θ}, Y ∪
{θ}). By Proposition 1.2, there is an operation + on Y ∪{θ} such that (Y ∪{θ}, +)
is an abelian group with identity θ. From the proof of Theorem 2.1, (T (X∪{θ}, Y ∪
{θ}), +, ◦) is a right nearring where

(f + g)(x) = f(x) + g(x) for all f, g ∈ T (X ∪ {θ}, Y ∪ {θ})
and x ∈ X ∪ {θ}.

If h, k ∈ T (X ∪ {θ}, Y ∪ {θ}) are such that h(θ) = θ = k(θ), then

(h + k)(θ) = h(θ) + k(θ) = θ + θ = 0,

(−h)(θ) = −h(θ) = −θ = θ.

It follows that {g ∈ T (X∪{θ}, Y ∪{θ})|g(θ) = θ} is a subnearring of (T (X∪{θ}, Y ∪
{θ}), +, ◦). Since φ is a monomorphism, by (2.4), we have that the semigroups
P (X, Y ) and {g ∈ T (X ∪ {θ}, Y ∪ {θ})|g(θ) = θ} are isomorphic. Consequently
P (X, Y ) admits a right nearring structure.

(ii) Assume that |Y | > 1. Let a, b ∈ Y be distinct. Then
(

a

a

)
,

(
a

b

)
∈ P (X,Y ).

Suppose that there is an operation + on P (X,Y ) such that (P (X, Y ), +, ◦) is a

left nearring. Then
(

a

a

)
+

(
a

b

)
= f for some f ∈ P (X,Y ). This implies that

(
a

a

)
f =

(
a

a

)((
a

a

)
+

(
a

b

))
=

(
a

a

)
+ 0 =

(
a

a

)
,
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and (
b

b

)
f =

(
b

b

)((
a

a

)
+

(
a

b

))
= 0 +

(
a

b

)
=

(
a

b

)
.

It follows that a =
(

a

a

)
(a) =

((
a

a

)
f

)
(a) =

(
a

a

)
f(a) and b =

(
a

b

)
(a) =

((
b

b

)
f

)
(a) =

(
b

b

)
f(a) which imply respectively that f(a) = a and f(a) = b.

This is a contradiction since a 6= b. This proves that if P (X, Y ) admits a left
nearring structure, then |Y | = 1.

The converse follows from Lemma 2.4.

Theorem 1.5 follows directly from Theorem 2.5

Corollary 2.6. Let X be a nonempty set. Then the following statements hold.

(i) P (X) admits a right nearring structure.

(ii) P (X) admits a left nearring structure if and only if |X| = 1.

The following corollary is a direct consequence of Lemma 2.4 and Theorem
2.5.

Corollary 2.7. Let X be a nonempty set and ∅ 6= Y ⊆ X. Then P (X, Y ) admits
a ring structure if and only if |Y | = 1.

In particular, P (X) admits a ring structure if and only if |X| = 1.

The second part of Corollary 2.7 was also proved directly in [11].
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