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Abstract : The domination game played on a graph G consists of two players,
Dominator and Staller, who alternate taking turns choosing a vertex from G such
that whenever a vertex is chosen, at least one additional vertex is dominated. Play-
ing a vertex will make all vertices in its closed neighborhood dominated. The game
ends when all vertices are dominated i.e. the chosen vertices form a dominating
set. Dominator’s goal is to finish the game as soon as possible, and Staller’s goal
is to prolong it as much as possible. The game domination number is the total
number of chosen vertices after the game ends when Dominator and Staller play
the game by using optimal strategies. In this paper, we obtain the game domina-
tion numbers of powers of cycles and find optimal strategies for Dominator and
Staller.
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1 Introduction

A set S of vertices of a graph G is a dominating set if every vertex not in S is
adjacent to some vertex of S. The domination number of a graph G is the number
of vertices in a minimum dominating set for G, denoted by γ(G).

There are many game variations of domination [1, 2, 3, 4, 5]. In this paper
we study the domination game introduced in 2010 by Brešar, Klavžar and Rall
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[4], where the original idea of the game is attributed to Henning (2003, personal
communication). The domination game played on a graph G consists of two
players, Dominator and Staller, who alternate taking turns choosing a vertex
from G such that whenever a vertex is chosen, at least one additional vertex
is dominated. Playing a vertex will make all vertices in its closed neighborhood
dominated. The game ends when all vertices are dominated i.e. the chosen vertices
form a dominating set. Dominator’s goal is to finish the game as soon as possible,
and Staller’s goal is to prolong it as much as possible. The game domination
number is the size of the final dominating set when both players play optimally,
denoted by γg(G) when Dominator starts the game and by γ′g(G) when Staller
starts the game.

Brešar, Klavžar and Rall [4] gave a bound of game domination number in
terms of domination number: for any graph G, γ(G) ≤ γg(G) ≤ 2γ(G)− 1. They
also studied the difference between the two types of game domination numbers of
a graph. Later, Kinnersley, West and Zamani [6] improved upon this result and
showed that the difference is at most 1 i.e. for any graph G, |γg(G)− γ′g(G)| ≤ 1.

Domination game played on various families of graphs have been studied. In
2013, Zamani [6, 7] determined the game domination numbers of paths and cycles,
and Brešar and Klavžar [8] proved a lower bound of the game domination number
of a tree in terms of its order and maximum degree. In 2015, Bujtás [9] proved
a lower bound of the game domination number of a certain families of forests.
Dorbec, Košmrlj, and Renault [10] showed how the game domination number of
the union of two no-minus graphs corresponds to the game domination numbers
of the initial graphs. This result led to another proof of the game domination
numbers of paths and cycles [11], and the game domination numbers of a graph
constructed from 1-sum of paths [12]. In 2018, Ruksasakchai, Onphaeng, and
Worawannotai [13] determined the game domination numbers of a disjoint union
of paths and cycles.

In this paper, we determine the game domination numbers of powers of cycles
and find optimal strategies for Dominator and Staller.

2 Preliminaries

In this section we recall some additional definitions and a useful observation.

For a graph G, the s-th power of G, denoted by Gs, is the graph with the same
vertex set as G and two vertices are adjacent if their distance in G is at most s.
Thus, the s-power of a cycle on n vertices is denoted by Cs

n. For convenience, we
let the vertex set of Cs

n be {0, 1, 2, . . . , n−1} so that vertices i, j in Cs
n are adjacent

if and only if |i− j| ≤ s or |j − i| ≤ s where the differences are taken modulo n.

A partially dominated graph is a graph G with a declaration that some vertices
have already been dominated initially. We extend the notion of dominating sets to
partially dominated graphs as follows. Let G be a partially dominated graph. A set
S of vertices of graph G is a dominating set if every undominated vertex not in S
is adjacent to some vertex of S. From this, the notion of domination numbers and
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Figure 1: C2
8

the game domination numbers extend naturally. Note that as the game progresses
the graph becomes a partially dominated graph with fewer undominated vertices.

We denote the open neighborhood of a vertex v of a graph G by NG(v) and
its closed neighborhood by NG[v]. We simply write N(v) and N [v] if the graph is
understood.

A vertex u of a partially dominated graph G is saturated if every vertex in
N [u] is dominated. The residual graph of G is the partially dominated graph
obtained from G by removing all saturated vertices and all edges joining dominated
vertices. Since removing such vertices and edges does not affect the game, the game
domination numbers of a partially dominated graph and its residual graph are the
same.

Next, we give an important observation that can be used for establishing
bounds for the game domination numbers. Recall that Dominator’s goal is to
finish the game as soon as possible, and Staller’s goal is to prolong it as much as
possible. If Dominator has a strategy, possibly suboptimal, that can end the game
within a certain number of moves or Staller has a strategy, possibly suboptimal,
that can prolong the game to at least a certain number of moves, then a bound
for game domination numbers can be established as follows.

Observation 2.1. Let G be a graph, the following statements hold.

(i) For Dominator-start game, if Dominator has a strategy that ensures both
players together end the game within k moves, then γg(G) ≤ k.

(ii) For Staller-start game, if Dominator has a strategy that ensures both players
together end the game within k moves, then γ′g(G) ≤ k.
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(iii) For Dominator-start game, if Staller has a strategy that ensures both players
together end the game using at least k moves, then γg(G) ≥ k.

(iv) For Staller-start game, if Staller has a strategy that ensures both players
together end the game using at least k moves, then γ′g(G) ≥ k. �

Observation 2.1 can be used to prove a bound of a game domination number
by presenting an appropriate Dominator’s strategy or a Staller’s strategy.

3 Main results

In this section, we determine the game domination numbers of powers of cycles
Cs

n. To avoid triviality, we assume n > 2s+ 1. For completeness, we also give the
domination numbers of the graphs here.

Theorem 3.1. For positive integers n and s, γ(Cs
n) = dn/(2s+ 1)e.

Proof. Let G = Cs
n and let S be a minimum dominating set of G. For each vertex

v in G, we have |N [v]| = 2s+ 1. So any vertex in S dominates at most 2s+ 1 new
vertices. Hence γ(G) = |S| ≥ dn/(2s+ 1)e.

Let n = (2s + 1)q + r where q is a nonnegative integer and 0 ≤ r ≤ 2s. Let
S′ = {(2s + 1)i + s | 0 ≤ i ≤ q − 1} ⊆ V (G) and S′′ = S′ ∪ {u} ⊆ V (G) where
u = min{n− 1, (2s+ 1)q + s}.

If 2s + 1 | n, then an arbitrary vertex v has the form v = (2s + 1)i + j for
some integers i and j where 0 ≤ i ≤ q − 1 and 0 ≤ j ≤ 2s. So v is adjacent to
(2s + 1)i + s ∈ S′. Hence S′ is a dominating set of G. Therefore γ(G) ≤ |S′| =
q = dn/(2s+ 1)e.

If 2s + 1 - n, then an arbitrary vertex v has the form v = (2s + 1)i + j for
some integers i and j where 0 ≤ i ≤ q and 0 ≤ j ≤ 2s. If i ≤ q − 1, then v is
adjacent to (2s+ 1)i+ s ∈ S′. If i = q, then v is adjacent to u ∈ S′′. Hence S′′ is
a dominating set of G. Therefore γ(G) ≤ |S′′| = q + 1 = dn/(2s+ 1)e.

Therefore γ(G) = dn/(2s+ 1)e.

Now, we determine the game domination numbers of Cs
n. At any point during

the game, we can keep track of the dominated vertices by considering the subgraph
of the original graph induced by the dominated vertices. The components of the
induced subgraph are called dominated components.

Theorem 3.2. Let G = Cs
n. If n = (2s+ 2)q+ r where q is a nonnegative integer

and 0 ≤ r ≤ 2s+ 1, then we have

(i) γg(G) = 2q + [r 6= 0]

(ii) γ′g(G) = 2q + [r = 2s+ 1]
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where [p] = 1 if the statement p is true and [p] = 0 if p is false. Moreover, an
optimal strategy for Staller is to always make a move that dominates exactly one
new vertex (except the move that starts the game) and an optimal strategy for
Dominator is to always make a move that dominates as many new vertices as
possible without creating a new dominated component (except the move that starts
the game).

Proof. First, we prove the lower bounds for (i) and (ii). Consider a Staller’s
strategy where he always makes a move to dominates exactly one new vertex
(except when he plays to start the game).

We show that Staller can always follows this strategy. Suppose the game has
been started but has not finished. Without loss of generality, there are vertices i
and i+ 1 of G where i is dominated but i+ 1 is not. Then, the vertices i, i− 1, i−
2, . . . , i−2s are dominated so Staller can play vertex i− s+ 1 to dominate exactly
one new vertex, that is vertex i+ 1.

This strategy guarantees that in every round, except for the first round of the
game started by Staller, no more than 2s+ 2 new vertices are dominated because
Dominator can dominate at most 2s+ 1 vertices in each move.

The lower bound for (i). In each round, Dominator and Staller together can
dominate at most 2s + 2 new vertices. The first 2q moves dominate at most
(2s+ 2)q vertices. Since n = (2s+ 2)q + r, at least 2q + [r 6= 0] moves are needed
to end the game.

By Observation 2.2(iii), we have γg(G) ≥ 2q + [r 6= 0] which proves the lower
bound for (i).

The lower bound for (ii). In each round (except the first round), Staller and
Dominator together can dominate at most 2s+2 new vertices. For the first round,
they can dominate at most 4s + 2 new vertices. The first 2q − 1 and 2q moves
dominate at most (2s + 2)q − 1 and (2s + 2)q + 2s vertices, respectively. Since
n = (2s+ 2)q + r, at least 2q + [r = 2s+ 1] moves are needed to end the game.

By Observation 2.2(iv), we have γ′g(G) ≥ 2q + [r = 2s + 1] which proves the
lower bound for (ii).

Next, we prove the upper bounds for (i) and (ii). Consider a Dominator’s
strategy where he always makes a move to dominates as many new vertices as
possible without creating a new dominated component (except when he plays to
start the game).

Note that if a non-starting move that creates a new dominated component
exists, then there is a move that dominates the same number of new vertices
(2s+ 1) without creating a new dominated component. Therefore, Dominator can
always follow this strategy.

Let M be the total number of moves when the game has finished and let
k = bM/2c. When k = 1, the upper bounds hold trivially. Therefore, we assume
k ≥ 2.

The upper bound for (i). Let d1, s1, d2, s2, ..., dk, sk(, dk+1) be the sequence of
moves by Dominator and Staller from start to finish. Let f(di) (respectively
f(si)) denote the number of newly dominated vertices when Dominator plays di
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(respectively when Staller plays si).
In rounds 1 to k − 1, if Staller makes α moves that create new dominated

components, then Staller can force Dominator to dominate fewer than 2s+ 1 new
vertices for at most α times. Therefore,

∑k−1
j=1 (f(sj) + f(dj+1)) ≥ (2s+ 2)(k− 1).

Since f(d1) = 2s+ 1 and f(sk) ≥ 1, we have
∑k

j=1(f(dj) + f(sj)) ≥ (2s+ 2)k.
We divide the argument into two cases according to the player who finishes the
game.

Case DS1: the game is finished by Staller (the last move is sk). Then n =∑k
j=1(f(dj) +f(sj)) ≥ (2s+ 2)k. Therefore, k ≤ n/(2s+ 2). Since k is an integer,

we have k ≤ bn/(2s+ 2)c. Now,

M = 2k ≤ 2bn/(2s+ 2)c+ [r 6= 0].

Case DS2: the game is finished by Dominator (the last move is dk+1). Since

f(dk+1) ≥ 1, we have n =
(∑k

j=1(f(dj) + f(sj))
)

+ f(dk+1) ≥ (2s + 2)k + 1.

Therefore, k ≤ (n−1)/(2s+2). Since k is an integer, we have k ≤ b(n−1)/(2s+2)c.
Now,

M = 2k + 1 ≤ 2(b(n− 1)/(2s+ 2)c) + 1

=

{
2bn/(2s+ 2)c − 1 if r = 0

2bn/(2s+ 2)c+ 1 if r 6= 0

≤ 2bn/(2s+ 2)c+ [r 6= 0].

From the above cases and by Observation 2.1(i), we have γg(G) ≤ M ≤
2q + [r 6= 0] which proves the upper bound for (i).

The upper bound for (ii). Let s1, d1, s2, d2, ..., sk, dk(, sk+1) be the sequence of
moves by Staller and Dominator from start to finish. Let f(si) (respectively f(di))
denote the number of newly dominated vertices when Staller plays si (respectively
when Dominator plays di). We divide the argument into two cases according to
the player who finishes the game.

Case SD1: the game is finished by Dominator (the last move is dk). In rounds
2 to k− 1, if Staller makes α moves that create new dominated components, then
Staller can force Dominator to dominate fewer than 2s+1 new vertices for at most
α times. Therefore,

∑k−1
j=2 (f(sj) + f(dj)) ≥ (2s+ 2)(k − 2).

Since k ≥ 2, we have f(d1) = 2s + 1. From f(s1) = 2s + 1, f(sk) ≥ 1 and

f(dk) ≥ 1, we have n =
∑k

j=1(f(sj)+f(dj)) ≥ (2s+2)k. Therefore, k ≤ n/(2s+2).
Since k is an integer, we have k ≤ bn/(2s+ 2)c. Now,

M = 2k ≤ bn/(2s+ 2)c+ [r = 2s+ 1].

Case SD2: the game is finished by Staller (the last move is sk+1).
In rounds 2 to k, if Staller makes α moves that create new dominated compo-

nents, then Staller can force Dominator to dominate fewer than 2s+1 new vertices
for at most α times. Therefore

∑k
j=2(f(sj) + f(dj)) ≥ (2s+ 2)(k − 1).
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Since k ≥ 2, we have f(d1) = 2s + 1. From f(s1) = 2s + 1 and f(sk+1) ≥ 1,

we have n =
(∑k

j=1(f(sj) + f(dj))
)

+ f(sk+1) ≥ (2s + 2)k + 2s + 1. Therefore,

k ≤ (n−2s−1)/(2s+2). Since k is an integer, we have k ≤ b(n−2s−1)/(2s+2)c.
Now,

M = 2k + 1 ≤ 2(b(n− 2s− 1)/(2s+ 2)c) + 1

=

{
2bn/(2s+ 2)c+ 1 if r = 2s+ 1

2bn/(2s+ 2)c − 1 if r 6= 2s+ 1

≤ 2bn/(2s+ 2)c+ [r = 2s+ 1].

From the above cases and by Observation 2.1(ii), we have γ′g(G) ≤ M ≤
2q + [r = 2s+ 1] which proves the upper bound for (ii).
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