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Abstract : Let v be a vertex of a connected graph G, and let W = {wy, wa, ..., wi }

be a set of vertices of G. The multirepresentation of v with respect to W is
the k-multiset mr(v|W) = {d(v,w1),d(v,ws),...,d(v,wk)}. A set W is called a
multiresolving set of G if no two vertices of G have the same multirepresenta-
tions with respect to W. The multidimension of G is the minimum cardinality
of a multiresolving set of G. In this paper, we characterize the caterpillars with
multidimension 3.
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1 Introduction

The distance d(u,v) between two vertices v and v in a connected graph G is
the length of a shortest w—wv path in G. For an ordered set W = {wy, ws, ..., wi} C
V(G) and a vertex v of G. the k-vector

T(U|W) = (d('l), wl)a d(vv w2)7 23] d(vv wk))

is called a representation of v with respect to W. If every two distinct vertices of G
have distinct representations with respect to W, then the ordered set W is called
a resolving set of G. A resolving set of G having a minimum cardinality is called
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a minimum resolving set or a basis of G and this cardinality is the dimension of
G, and is denoted by dim(G). To illustrate these concepts, consider a connected
graph G of Figurewith a vertex set V(G) = {u,v,w, z,y, 2}

Figure 1: A connected graph G

We consider an ordered set W = {u,z}. There are six representations of
vertices with respect to W:

T(U‘W) = (0,4), T(U|W) = (173)7 T(w|W) = (3a3)>
r(@[W) =(2,2), ryW)=(3,1), r@zW)=(4,0).

Since the representations of two distinct vertices with respect to W are distinct,
it follows that W is a resolving set of G. Since there is no 1-resolving set of G, it
implies that W is a basis of G, that is, dim(G) = 2.

The concepts of resolving sets and minimum resolving sets have previously
appeared in [I], [2] and [3]. Hulme, Shiver and Slater described in [4], [5] and [6]
the usefulness of these ideas when working with U.S. sonar and coast guard Loran
(Long range aids to navigation) stations. Independently, Harary and Melter [7]
discovered these concepts as well. Recently, these concepts were rediscovered by
Johnson [§] of the Pharmacia Company while attempting to develop a capability
of large datasets of chemical graphs. A basic problem in chemistry is to provide
mathematical representations for a set of chemical compounds in a way that gives
distinct representations to distinct compounds. The structure of a chemical com-
pound can be represented by a labeled graph whose vertex and edge labels specify
the atom and bond types, respectively. Thus, a graph-theoretic interpretation of
this problem is to provide representations for the vertices of a graph in such a way
that distinct vertices have distinct representations. More applications of these
concepts to navigation of robots in networks and other areas are discussed in [9].

The foregoing discussion then gives rise to representations that is like multisets.
In this case, we consider those sets W of vertices of connected graphs G for which
any two vertices of G having distinct representations with respect to W in term
of multisets.

Let W = {wy, wa, ..., ws} be a set of vertices of a connected graph G. For each
vertex v of G, the multirepresentation of v with respect to W is a k-multiset, which
is denoted by mrg(v|W) or simply mr(v|W) if the graph G under consideration
is clear, and defined by

mr(v|W) = {d(v,w1),d(v,ws),...,d(v,wg)}.
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If mr(x|W) # mr(y|W) for every pair z,y of distinct vertices of G, then W is
called a multiresolving set of G. A multiresolving set of G containing a minimum
number of vertices is called a minimum multiresolving set or a multibasis of G. The
cardinality of multibasis is a multidimension of G, which is denoted by dim/(G).

To illustrate these concepts, consider a connected graph G of Figure[l] As we
know that the set W = {u, 2z} is a resolving set of G. However, since mr(v|W) =
{1,3} = mr(y|W), it follows that W is not a multiresolving set of G. Indeed, the
set W' = {u,v,z} is a multiresolving set of G with multirepresentations of the
vertices of G with respect to W' as

3,3}

mr(u|W’) ={0,1,4}, mr(v|W’') ={0,1,3}, mr(w|W') =2,
={1,2,2}, mr(yW’) ={1,2,3}, mr(z[W’') ={0,3,4}.

mr(z|W')

Since there is no multiresolving sets of cardinality 1 or 2, it follows that W' is a
multibasis of G, that is dimy,(G) = 3.

Not all connected graphs have a multiresolving set and also dimj;(G) is not
defined for all connected graphs G. For example, the star K; 3 has no multiresolv-
ing set. Therefore, dimps (K 3) is not defined. However, for a connected graph G
of order n that dimy, (G) is defined, every multiresolving set of G is also a resolving
set of G, and so

1 <dim(G) < dimpy (G) < n.

For every set W of vertices of a connected graph G, the vertices of G whose
multirepresentations with respect to W contain 0, are vertices in W. On the
other hand, the multirepresentations of vertices of G that do not belong to W
have elements, all of which are positive. Indeed, to determine whether a set W
is a multiresolving set of G, the vertex set V(G) can be partitioned into W and
V(G) — W to examine whether the vertices in each subset have distinct multirep-
resentations with respect to W. The multiresolving set was introduced in [I0] and
further studied in [II] and [12].

2 Preliminaries

Two vertices u and v of a connected graph G are distance-similar if d(u,x) =
d(v,z) for all z € V(G) — {u,v}. Certainly, distance similarity in G is an equiva-
lence relation on V(G). For example, consider a complete bipartite graph K, s with
partite sets U and V. Every pair of vertices in the same partite set are distance-
similar. Then the distance-similar equivalence classes in K, ; are its partite sets U
and V. The following results were obtained in [I0] showing the usefulness of the
distance-similar equivalence class to determine the multidimensions of connected
graphs.

Theorem 2.1 ([10]). Let G be a connected graph such that dimp(G) is defined.
If U is a distance-similar equivalence class in G with |U| = 2, then every multire-
solving set of G contains exactly one vertex of U.
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Theorem 2.2 ([10]). If U is a distance-similar equivalence class in a connected
graph G with |U| > 3, then dimp;(G) is not defined.

It was shown in [I0] and [I2] that a path is only a connected graph with
multidimension 1, and there is no connected graph with multidimension 2. We
state these results in the next theorems.

Theorem 2.3 ([10], [12]). Let G be a connected graph. Then dimp(G) =1 if and
only if G = P, the path of order n.

Theorem 2.4 ([I0], [12]). A connected graph has no multiresolving set of cardi-
nality 2.

As we already mentioned, if W is a multiresolving set of a connected graph G,
then the multirepresentations of two distinct vertices of G are distinct. This lead
us to the fact that W is also a multiresolving set of G — v, where v is an end-vertex
of G.

Theorem 2.5. Let G be a connected graph such that dimp;(G) is defined, and let
W be a multiresolving set of G. If v is an end-vertex of G such that v ¢ W, then
W is a multiresolving set of G — v.

Proof. Assume that v is an end-vertex of G. Let W = {wy,ws,...,wi} be a
multiresolving set of G that does not contain v. Then

mrg(z|W) = {dg(z,w),de(z, ws), ...,dg(z, wg) }

and
er(y|W) = {dG(ya wl)a dG(yan)a seey dG(y,UJk)}

are not the same for all vertices x and y of G. since v does not belong to W it
follows that

er—v(x|W) - {dG—v(wil)vdG—v(xaw2)a ) dG—v(‘T,wk)} = mTG(x|W)
and
mrg—v (y‘W) = {dG—U(yv wl)v dG—U(ya wQ)a ey dG—v(y7 ’LUk)} = er(y|W)7

that is, mrg_,(z|W) # mrg_,(y|W) for all vertices x and y of G — v. Hence, W
is a multiresolving set of G — v. O

The following is an immediate corollary of Theorem

Corollary 2.6. Let G be a connected graph such that dimys(G) is defined, and
let W be a multiresolving set of G. If vi,va,...,vs ¢ W are end-vertices of G, then
W is a multiresolving set of G — {v1,va, ..., v }.

Next, we present a useful necessary condition for a set to be a multiresolving
set.
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Proposition 2.7. Let T be a tree of order at least 3 containing a vertex w. If
W is a multiresolving set of T, then W contains at least one vertex from each of
degp u components of T — u, with one possible exception.

Proof. We see that T'— u has only one component if and only if u is an end-vertex
of T. Then we may assume, to the contrary, that there is a vertex u of degree
at least 2 such that T — u has two components X and Y containing no vertex of
W. Then there are two vertices x of X and y of Y that are adjacent to u in 7.
Thus, d(z,w) = d(u,w) + 1 = d(y,w) for all vertices w of W. This implies that
mr(z|W) = mr(y|W), and so W is not a multiresolving set of 7. O

3 The Characterization of Caterpillars with Mul-
tidimension 3

A caterpillar is a tree of order at least 3, the removal of whose end-vertices
produces a path called the spine of the caterpillar. A vertex of the spine of the
caterpillar is called a spine-vertez. Let T be a caterpillar that dimps(T") is defined.
Since any two end-vertices that are adjacent to the same spine-vertex of T are
distance-similar, it follows by Theorem [2.2] that there are at most two end-vertices
that are adjacent to each spine-vertex of T'. Therefore, we consider multiresolving
sets of such a caterpillar. In order to do this, let us introduce some additional
definitions and notation. For integers s, k1, ko, ..., ks with s > 1, 1 < ky, ks < 2
and 0 < ko, ks, ..., ks—1 < 2, let ca(kq, ko, ..., ks) be a caterpillar which is obtained
from the spine (uj,us,...,us) by joining k; end-vertices to the spine-vertex u;,
where 1 < i < s. Observe that, if k; = 0, then there is no end-vertex joining to
the spine-vertex u;. Also, if k; = 1, then the spine-vertex u; is adjacent to an
end-vertex which is called the first end-vertex v; of u;. Furthermore, if k; = 2,
then there are two end-vertices joining to u; that are called the first and second
end-vertices of u; and denoted by v; and w;, respectively. Moreover, let ¥ be a
set of all integers ¢ with k; = 2, that is, ¥ = {i € Z | k; = 2}. This is illustrated
in Figure for the caterpillar ca(1,2,0,2,1,2,2) with ¥ = {2,4,6,7}.

ca(1,2,0,2,1,2,2) :

Figure 2: The caterpillar ca(1,2,0,2,1,2,2)

For integer s with 1 < s < 2, the caterpillars ca(ky) and ca(kq, k2) are shown
in Figure [3] where the vertices of multibasis of these caterpillars are indicated by
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ca(2): %
ca(1,1): | | ca(1,2) : I—% ca(2,2):

Figure 3: The caterpillars ca(2), ca(1,1), ca(1,2) and ca(2,2)

solid vertices. Notice that ca(2) = Ps, ca(1,1) = P, and ca(1,2) = ca(2,1). This
implies that there is no caterpillar having multidimension 3, where s = 1, and there
are two distinct caterpillars having multidimension 3, where s = 2. For s = 3, it
is routine to verify that ca(1,0,2) = ca(2,0,1), ca(1,1,1), ca(1,1,2) = ca(2,1,1),
ca(2,0,2) and ca(2,1,2) are caterpillars having multidimension 3. For s > 4, we
are prepared to establish a characterization of a caterpillar ca(ky, ks, ..., ks) with
multidimension 3. In order to do this, we first present several preliminary results.

Proposition 3.1. Let s,«, 3 be integers with s > 4 and 1 < a < B < s, and let
W be a set of vertices of a caterpillar ca(ky, ka, ..., ks) containing one of {v1,w }
and one of {vs, ws}. If mr(ua|W) = mr(ug|W) or mr(ve|W) = mr(vg|W), then
I<a<[5]landB=s—a+1.

Proof. (i) Suppose that mr(uq|W) = mr(ug|W). Without loss of generality, as-
sume that W contains v; and v,. For 1 <a < 8 <[], since d(uq,vs) =s—a+1
and d(ug,vs) = s — f+1 are the maximum elements of mr(u,|W) and mr(ug|W),
respectively, it follows that a = 3, which is a contradiction. For [J]+1 <a < g <
s, since d(uq,v1) = @ and d(ug,v1) = 8 are the maximum elements of mr(uq|W)
and mr(ug|W), respectively, it follows that a = 3, a contradiction is produced.
Thus, 1 <a < [5] and [§] +1 < B < 5. Moreover, since d(uq,vs) = s —a+1
and d(ug,v1) = § are the maximum elements of mr(u,|W) and mr(ug|W), re-
spectively, it follows that 8 = s — a + 1, as we claimed. (ii) can be obtained in a
manner similar to that used in the proof of (i). O

Proposition 3.2. Let s,7,d be integers with s > 4 and 1 < 7,5 < s, and let W
be a set of vertices of a caterpillar ca(ky, ka, ..., ks) containing one of {vi1, w1} and
one of {vs,ws}. Then

(i) if 1 < v <6 < s and mr(vy|W) = mr(us|W), then 1 < v < [5] and
d=s—v+2, and

(ii) if 1 <6 < v < s and mr(vy|W) = mr(us|W), then [5]4+1 < v < s and
d=s—17.
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Proof. (i) Suppose that 1 < v < § < s and mr(vy|W) = mr(us|W). Without
loss of generality, let us assume that W contains v; and v,. If 1 <y < 4§ < [§],
then d(vy,vs) = s — v+ 2 and d(us,vs) = s — ¢ + 1 are the maximum elements
of mr(vy|W) and mr(us|W), respectively. Therefore, 6 = v — 1, that is, v > 4,
which gives a contradiction. If [§]4+1 < v < 0 < s, then d(v,,v1) = v+ 1 and
d(us,v1) = 6 are the maximum elements of mr(v.,|W) and mr(us|W), respectively.
Thus, 6 = v+ 1. Since d(vy, vs) = s —y+2 belongs to mr(v,|W), there is a vertex
w for which w = ugs_s_3 Or vo5_s_o Or Wos_s_o such that d(us,w) = s — v+ 2.
Moreover, since d(v., w) = d(us, w) = s —y+2, it follows that mr(v,|W) contains
5 —+2’s more than mr(us|W) does, which is impossible. Therefore, 1 <~ < [5]
and [§]+1 < § < 5. Moreover, since d(vy,vs) = s — v + 2 and d(us,v1) = § are
the maximum elements of mr(v,|W) and mr(us|W), respectively, it follows that
d = s — v+ 2, as we claimed. For (ii), the statement may be proven in the same
way as (i), and therefore such proof is omitted. O

An argument similar to the one used in the proof of Propositions and
establishes the following results.

Proposition 3.3. Let s, a, 8 be integers with s > 4 and 1 < a < B < s, and let
W be a set of vertices of a caterpillar ca(ky, ka, ..., ks) containing u1 and one of
{vs, ws} except v1 and wi. If mr(ug|W) = mr(ug|W) or mr(ve|W) = mr(vg|W),
then1<a<[5] and f=s—a+2.

Proposition 3.4. Let s,7,d be integers with s > 4 and 1 < ~,0 < s, and let W be
a set of vertices of a caterpillar ca(ky, ko, ..., ks) containing uy and one of {vs, ws}
except v1 and wy. Then

(i) if 1 < v <6 < s and mr(vy|W) = mr(us|W), then 1 < v < [5] and
d=s—~v+3, and

(i) if 1 <6 <y < s and mr(vy|W) = mr(us|W), then [5] +1 < v < s and
d=s—~v+1.

For an even integer s > 4, let T} be a caterpillar ca(ky, k2, ..., ks) such that
v = {1,r,s}, where r € {2,3,...,s — 1}. In particular, the caterpillar T} =
ca(2,0,2,1,0,1,0,2) is shown in Figure

Figure 4: The caterpillar 71 = ca(2,0,2,1,0,1,0,2) with ¥ = {1, 3, 8}
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For an odd integer s > 5, let T» be a caterpillar ca(k, ko, ..., ks) such that
U ={1,r,s}, where

2,3,...,s—1}— {3, 52 if s=1 4
re{{ ,3,...,8 P13, } if s (mod 4), (3.1)

{2,3,..,8 — 1} — {3,551 sl 583 s 21 ifs=3 (mod 4).

20 20 20

For example, the caterpillar T = ca(2,0,1,2,0,1,1,0,2) is illustrated in Fig-
ure

Figure 5: The caterpillar T, = ca(2,0,1,2,0,1,1,0,2) with ¥ = {1,4,9}

For an odd integer s > 9, let T3 be a caterpillar ca(ky, ko, ..., ks) such that
U = {1,3,s} and ke =0, or ¥ = {1,s — 2, s} and kegs = 0. For an odd
integer s > 11 and s = 3 (mod 4), let T, be a caterpillar ca(kq, k2, ..., ks) such
that ¥ = {1, 551, s} and k;sTJrs =0,0r ¥ = {1,532 s} and k‘e,%l =0.

Proposition 3.5. A caterpillar T;, where 1 < i < 4 has multidimension 3.

Proof. For each integer ¢ with 1 < i < 4, we show that every caterpillar T; has
multidimension 3. We verify this for T5 only since the proof for T3, T3 and T uses
an argument similar to the one for T. First, we verify that W = {wy, w,, ws}
is a multiresolving set of Tb, where r satisfies the condition (3.1). Without loss
of generality, we may assume that 2 < r < [§]. The multirepresentations of
vertices of W with respect to W are mr(w|W) = {0,r + 1,s + 1}, mr(w,|[W) =
{0,7+ 1,5 —r+ 2} and mr(ws|W) = {0,5s —r + 2,5+ 1}. Since r ¢ {1, =£1 s},
it follows that these 3-multisets are distinct. Next, we claim that mr(z|W) #
mr(y|W) for all vertices z,y € V(T5) — W. Suppose, contrary to our claim, that
mr(z|W) = mr(y|W) for some vertices z,y € V(Tz) — W. We consider three
cases.

Case 1. x and y are spine-vertices.

Let £ = u, and y = ug, where 1 < a < f < s. Then by Proposition
I1<a<[5]land g =s5—a+1. Thus, mr(ug|W)={s—-B+1,8—-r+1,5} =
{a,s —a—r+2,s —a+1}. Since mr(ua|W) = {a,|Ja —r|+1,s —a + 1}, it
follows that |« —r|+1=s—a—r+2. If @ > r, then 2a = s+ 1, and so a« = 8
which is impossible. If a < r, then r = %1, a contradiction.

Case 2. x and y are first end-vertices.

Let + = vo and y = vg, where 1 < a < 8 < s. Then by Proposition
I1<a<[5]and B =s5—a+1. Thus, mr(vg|W)={s-B+2,—r+2,0+1} =
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{a+1,s—a—r+3,s—a+2}. Since mr(ve|W) ={a+1,|la—r|+2,s—a+2},
it follows that |a —r|+2=s—a—r+3. If a > r, then 2a = s+ 1, and so a = 3,
which cannot occur. If o < r, then r = 351, that is also a contradiction.
Case 3. z is a first end-vertex and y is a spine-vertex.
Let = v, and y = us, where 1 < +,§ <s. We consider two subcases.

Subcase 3.1. 1 <y <4 <s.
Then by Proposition (i), 1<y <[§]and § = s — v+ 2. Thus, mr(us|W) =
{s=0+1,06—-r+1,0} ={y—-1,s—~v—r+3,5s—~v+2}. Since mr(v,|W) =
{v+1,|y—r|+2,s—y+2}, it follows that |y—r|+2 =y—1and y+1 = s—y—r+3.
If v > r, then r = 3, which is impossible. If v < r, then s = 4(y — 2) + 3, that
is, s =3 (mod 4). Also, we obtain that 2r = s — 1, and then r = 351, which is a
contradiction.

Subcase 3.2. 1 <§ <~ <s.
Then by Proposition (ii), [§]+1 <y < sand § = s — . Thus, mr(v,|W) =
{s=v+2,v—r+2v+1}={0+2,s— 5 —r+2,s— 5+ 1}. Since mr(us|W) =
{6,[6 —r|+1,s— 6+ 1}, it follows that |6 —r|+1=0+2and d =s—0 —r + 2.
Consequently, |6 — 7| = s—0 —r+3. If § > r, then 20 = s + 3, which cannot
occur. If § < r, then 2r = s + 3, a contradiction.
Therefore, mr(x|W) # mr(y|W) for all vertices x,y € V(Tz) — W, that is, W is a
multiresolving set of Ty and so dimps(7T5) < 3. Since T3 is not a path, it follows
by Theorems and that dimp;(73) > 3. Hence, dimps(T%) = 3. O

The following corollary is an immediate consequence of Proposition [3.5

Corollary 3.6. Let T be a caterpillar ca(ky, ko, ..., ks) such that T = T;, where
1 <i<4with¥ ={l,r,s}. Then W is a multibasis of T if and only if W =
{x1, 2y, x5}, where x; € {v;,w;} fori=1,rs.

For an integer s > 4, let T5 be a caterpillar ca(ky, k2, ..., ks) such that ¥ =
{p,s} or ¥ ={1,q}, where 1 <p < g <s.

Proposition 3.7. A caterpillar Ts has multidimension 3.

Proof. First, suppose that ¥ = {p, s}, where 1 < p < s—1. Since T} is not a path,
it follows by Theorems [2.3| and [2.4] that dimy;(T%) > 3. We consider two cases.
Case 1. p=1.
We show that W = {u1, w1, ws} is a multiresolving set of T5. The multirepresen-
tations of vertices of W with respect to W are mr(ui |[W) = {0, 1, s}, mr(w1|W) =
{0,1,s + 1} and mr(ws|W) = {0,s,s + 1}. Thus, these 3-multisets are distinct.
Next, we claim that mr(z|W) # mr(y|W) for all vertices z,y € V(T5) — W.
Assume, contrary to our claim, that mr(z|W) = mr(y|W) for some vertices
x,y € V(Ts) — W. We consider three subcases.

Subcase 1.1. x and y are spine-vertices.
Let = uo and y = ug, where 1 < a < 8 < s. Then by Proposition 1<a<
[5]and = s—a+1. Thus, mr(ug|W) = {s—B+1,8-1,8} = {a, s—, s—a+1}.
Since mr(uq|W) = {a,a—1,s—a+1}, it follows that « —1 = s —a and so a = 3,
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which is impossible.
Subcase 1.2. = and y are first end-vertices.
Let + = vo and y = vg, where 1 < a < 8 < s. Then by Proposition
Il <a<[5]and 8 =s5—a+ 1. Thus, mr(vg|W) = {s - +2,8,8+1} =
{a+1,s —a+1,s—a+2}. Since mr(v,|W) = {a+1,a,s — a + 2}, it follows
that « = s — a4+ 1 and so a = 3, this is also a contradiction.
Subcase 1.3. z is a first end-vertex and y is a spine-vertex.
Let x = v, and y = us, where 1 < ,6 < s. We consider two subcases.
Subcase 1.3.1. 1 <~y < <s.
Then by Proposition (i), 1<y <[5]and 6 = s —+2. Since mr(us|W) =
{s—0+1,0—1,8} = {v—1,s—y+1,s—y+2} and mr(v,|W) = {y+1,v, s—y+2},
it follows that mr(vy|W) # mr(us|W), which is impossible.
Subcase 1.3.2. 1 <<y <s.
Then by Proposition (i), [3]+1 <y < sand § = s — . Since mr(v,|W) =
{s=v+2,v,7v+1} ={0+2,s—6,s =5+ 1} and mr(us|W) = {5,0 —1,s = + 1},
it follows that mr(v|W) # mr(us|W), this is also a contradiction.
Therefore, mr(z|W) # mr(y|W) for all vertices x,y € V(T5) — W, that is, W is
a multiresolving set of T5. Hence, dimp;(T5) < 3, and so dimy,(75) = 3, where
p=1
Case 2. p > 2.
We consider two subcases.
Subcase 2.1. s is even.
With the aid of Theorem and Corollary since Ty =2 Ty — w; and W =
{v1,wp, ws} is a multiresolving set of T4, it follows that W is a multiresolving set
of Ts. Therefore, dimps(T5) < 3, and so dimy; (T5) = 3, where p > 2 and s is even.
Subcase 2.2. s is odd.
We consider two subcases.
Subcase 2.2.1. p = 2.
By Theorem and Corollary since Ts = Ty — wy and W = {vy, wp, ws} is a
multiresolving set of T, it follows by Theorem that W is a multiresolving set
of Ts. Therefore, dimp;(T5) < 3, and so dimy;(T5) = 3, where p = 2 and s is odd.
Subcase 2.2.2. p > 3.
Let W = {u1,wp, ws}. The multirepresentations of vertices of W with respect to
W are mr(ui|[W) = {0,p, s}, mr(wy|W) = {0,p,s — p + 2} and mr(ws|W) =
{0,s — p + 2,s}. Thus, these 3-multisets are distinct. Next, we claim that
mr(x|W) # mr(y|W) for all vertices z,y € V(T5) — W. Suppose, contrary to
our claim, that mr(z|W) = mr(y|W) for some vertices z,y € V(T5) — W. We
consider three subcases.
Subcase 2.2.2.1. x and y are spine-vertices.
Let £ = u, and y = ug, where 1 < a < f < s. Then by Proposition [3.3]
I <a<[§]and 8 =s5—a+2. Thus, mr(ug|W)={s—p+1,|8—p|+1,5-1} =
{a—=1,|8—p|+1,s — a+1}. Since mr(ua|W) = {a—1,Ja —p|+ 1,5 — a + 1},
it follows that |a —p|+1=|8—p|+ 1. If p <« or 8 < p, then o = 3, which is
impossible. If a < p < B, then s = 2p — 2, contradicting the fact that s is odd.
Subcase 2.2.2.2. x and y are first end-vertices.
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Let = vy and y = vg, where 1 < a < f < s. Then by Proposition
l1<a<[j]land B =5—a+2. Thus, mr(vg|W)={s—-B8+2,|8—-pl+2,6} =
{a,|B—p|+2, s—a+2}. Since mr(ve|W) = {a, |a—p|+2, s—a+2}, it follows that
oo —p| 4+ 2 = |8 — p| + 2. By the same argument as the proof in Subcase 2.2.2.1.,
we obtain a contradiction.

Subcase 2.2.2.3. x is a first end-vertex and y is a spine-vertex.
Let x = v, and y = us, where 1 < ,6 < s. There are two possibilities:

HN1<y<d<s.
Then by Proposition (i), 1<y < [5] and § = s — v+ 3. Thus, mr(us|W) =
{s=0+1,10—p/+1,6 -1} ={v—2,0 —p|+1,s — v+ 2}. Since mr(vy|W) =
{7, |7y = pl + 2,8 — v+ 2}, it follows that |y —p|+2=v—2and v =|§ — p| + 1.
Consequently, |y —p| +3 = | — p|. If p <, then 2y = s, contradicting the fact
that s is odd. If v < p < 4, then 2p = s, a contradiction. If § < p, then 2v—6 = s,
this is also a contradiction.

2)1<d<vy<s.
Then by Proposition (i), [5]+1 <y < sand § = s — v+ 1. Thus,
mr(vy|W) ={s —v+2|y—pl+ 2,9} = {0+ 1|y —pl+2,5—36+1}. Since
mr(us|W) = {6 —1,|6 —p| +1,s — 6 + 1}, it follows that |6 —p| +1 =5+ 1 and
d —1=|y—p|+2. Consequently, |§ —p| =|y—p|+3. If p <, then s =2y +2,
contradicting the fact that s is odd. If § < p <+, then s = 2p —4, a contradiction.
If v < p, then s = 2§ + 2, this is also a contradiction.
Therefore, dimys(75) < 3, and so dimps(75) = 3, where p > 3 and s is odd.
Similarly, for ¥ = {1, ¢}, where 2 < ¢ < s, dimp;(75) = 3 can be proven in the
same manner as well. O

For an integer s > 4, let Ty be a caterpillar ca(ky, ko, ..., ks) such that ¥ = {r},
where r € {1,2, ..., s}. For an integer s > 4, let T7 be a caterpillar ca(ky, k2, ..., ks)
such that ¥ = @ and k, = 1, where r € {2,3,...,s — 1}. Combining Theorem
and Proposition we arrive yet another result.

Proposition 3.8. A caterpillar T;, where 6 < i <7 has multidimension 3.

Caterpillars with multidimension 3 are completely characterized, as we present
next.

Theorem 3.9. For an integer s > 4, let T be a caterpillar ca(ky, ks, ..., ks). Then
T has multidimension 3 if and only if T = T;, where i € {1,2,...,7}.

Proof. The preceding results provide the sufficient condition for a caterpillar T’
having multidimension 3. To show the necessary condition, suppose that T has a
multidimension 3. By Theorem [2.1] it implies that |¥| < 3. For |¥| = 0, there
is an integer r with 2 < r < s — 1 such that k,. = 1, for otherwise T is a path,
contradicting the fact that dimp;(7') = 3. Hence, T' = T7. For |¥| = 1, obviously,
T = Ts. It remains therefore only to consider || = 2 and |¥| = 3.

For |¥| = 2, we claim that ¥ contains at least one of {1, s}. Suppose, contrary
to our claim, that ¥ contains neither 1 nor s. Let ¥ = {ry,r2}, where 2 < r; <
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r9 < s — 1. By Theorem every multibasis of T' contains exactly one vertex of
{vr,, Wy, }, say w,,. Since there are deg; u,, = 4 distinct components of T — w,.,,
it follows by Proposition that there is a vertex of a multibasis W belonging
to the component containing the spine-vertex u,,_;. Similarly, since there are
degy u,, = 4 distinct components of T' — u,.,, there is a vertex of W belonging to
the component containing the spine-vertex u,,+1. Therefore, W contains at least
four vertices, this is a contradiction. Thus, ¥ contains at least one of {1, s}, that
iS, T T5.

For |¥| = 3, we show that ¥ contains both 1 and s. Assume, to the contrary,
that U does not contain 1 or s, say 1. Let U = {ry,rg,7r3}, where 2 <7 < ry <
rg < s. Then W = {w,,, w,,,w,, } is a multibasis of T'. Notice that degp u,, =
4, that is, there are four distinct components of T — w,,. However, both w;,
and w,, must belong to the same component containing the spine-vertex u,, 41,
contradicting Proposition that w,,, w,, and w,, cannot belong to the same
component of T — u,,. Thus, ¥ contains 1 and s. We may assume without loss
of generality that ¥ = {1,r,s} with 2 < < [J]. Then W = {wi,w,,w} is a
multibasis of T. If s is even, then T" = T;. We may assume that s is odd. If
r = [3], then mr(wi|[W) = mr(ws|W), which is impossible. Thus
Next, we consider two cases according to whether s is congruent to 1 or 3 modulo
4.

Case 1. s=1 (mod 4).
If r # 3, then T = Ty. For r = 3, since r < s_ , it follows that s > 9. Next,
we claim that k% = 0. Suppose, contrary to our claim, that k% > 1. Then

mr(vas|[W) = {253, 55 =48} = mr(uzss [W), contradicting the fact that T is

2
a multibasis of T'. Hence, ksTl =0, and so T = Tj.

Case 2. s =3 (mod 4).

Ifr#£3,2 1 , then T"= T,. For r = 3, we claim that k:s 1+ = 0. Suppose, contrary
to our clalm that k=—1 > 1. Then mr(vs W) = {553, 9*2'1, 8} = mr(u Usts (W),
contradicting the fact that W is a mult1bas1s of T as we claimed. Hence, s > 11,
and so T' = T3. For r = *5 L it follows that s > 11. Next,
we claim that k¥ = 0 Suppose contrary to our claim that & o5 > 1. Then

mr(v¥|W) = {stl =49 3sd3) — m""(u35+3 |[W), contradicting the fact that W

is a multibasis of T. Hence, k% =0, and so T = T}. O

4 Final Remarks

For an integer s > 2, let T be a caterpillar ca(ky, ks, ..., ks) of order n such
that ¥ # () and dimp(T) is defined. It then follows by Theorem that

0| < dimp (T) < n — | 9],

Moreover, by Corollary caterpillars Ty, 75, T5 and T} also illustrate the sharp-
ness of this lower bound. It would be interesting to determine whether this upper
bound is sharp or not.



The Characterization of Caterpillars with Multidimension 3 259

References

1]

EORNS)

G. Chartrand, L. Eroh, M.A. Johnson, O.R. Oellermann, Resolvability in
graphs and the metric dimension of a graph, Discrete Applied Mathematics
105 (2000) 99-113.

P.J. Slater, Leaves of trees, Congressus Numerantium 14 (1988) 549-559.

P.J. Slater, Dominating and reference sets in a graph, Journal of Mathemat-
ical and Physical Sciences 22 (4) (1988) 445-455.

B.L. Hulme, A.W. Shiver, P.J. Slater, FIRE: a subroutine for fire protec-
tion network analysis, SAND 81-1261, Sandia National Laboratories, Albu-
querque, 1981.

B.L. Hulme, A.W. Shiver, P.J. Slater, Computing minimum cost fire protec-
tion, SAND 820809, Sandia National Laboratories, Albuquerque, 1982.

B.L. Hulme, A.W. Shiver, P.J. Slater, A boolean algebraic analysis of fire
protection, North-Holland Mathematics Studies 95 (C) (1981) 215-227.

F. Harary, R.A. Melter, On the metric dimension of a graph, Ars Combina-
toria 2 (1976) 191-195.

M. Johnson, Browsable structure-activity datasets, Advances in Molecular
Similarity 2 (1999) 153-170.

S. Khuller, B. Rsghavachari, A. Rosenfeld, Localization in graphs, CS-TR-
3326, University of Maryland, Maryland, 1994.

V. Saenpholphat, On multiset dimension in graphs, Academic SWU. 1 (2009)
193-202.

V. Khemmani, S. Isariyapalakul, The multiresolving sets of graphs with pre-
scribed multisimilar equivalence classes, Int. J. Math. Math. Sci. (2018) Ar-
ticle ID 8978193.

R. Simanjuntak, T. Vetrik, P.B. Mulia, The multiset dimension of graphs,
Discrete Applied Mathematics, 2017.

(Received 13 June 2019)
(Accepted 24 December 2019)

THAI J. MATH. Online @ http://thaijmath.in.cmu.ac.th


http://thaijmath.in.cmu.ac.th

	Introduction
	Preliminaries
	The Characterization of Caterpillars with Multidimension 3
	Final Remarks

