Thai Journal of Mathematics : 247-259 Special Issue : Annual Meeting in Mathematics 2019

http://thaijmath.in.cmu.ac.th Online ISSN 1686-0209

The Characterization of Caterpillars with Multidimension 3

Varanoot Khemmani and Supachoke Isariyapalakul¹

Department of Mathematics, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand e-mail: varanoot@g.swu.ac.th (V. Khemmani) supachoke.isa@g.swu.ac.th (S. Isariyapalakul)

Abstract : Let v be a vertex of a connected graph G, and let $W = \{w_1, w_2, ..., w_k\}$ be a set of vertices of G. The multirepresentation of v with respect to W is the k-multiset $mr(v|W) = \{d(v, w_1), d(v, w_2), ..., d(v, w_k)\}$. A set W is called a multiresolving set of G if no two vertices of G have the same multirepresentations with respect to W. The multidimension of G is the minimum cardinality of a multiresolving set of G. In this paper, we characterize the caterpillars with multidimension 3.

Keywords : caterpillar; multirepresentation; multiresolving set; multidimension. **2010 Mathematics Subject Classification :** 05C12.

1 Introduction

The distance d(u, v) between two vertices u and v in a connected graph G is the length of a shortest u-v path in G. For an ordered set $W = \{w_1, w_2, ..., w_k\} \subseteq V(G)$ and a vertex v of G, the k-vector

$$r(v|W) = (d(v, w_1), d(v, w_2), ..., d(v, w_k))$$

is called a *representation* of v with respect to W. If every two distinct vertices of G have distinct representations with respect to W, then the ordered set W is called a *resolving set* of G. A resolving set of G having a minimum cardinality is called

Copyright 2020 by the Mathematical Association of Thailand. All rights reserved.

This work was funded by the Faculty of Science, Srinakharinwirot University $^1 \tt Corresponding author.$

a minimum resolving set or a basis of G and this cardinality is the dimension of G, and is denoted by dim(G). To illustrate these concepts, consider a connected graph G of Figure 1 with a vertex set $V(G) = \{u, v, w, x, y, z\}$.

Figure 1: A connected graph G

We consider an ordered set $W = \{u, z\}$. There are six representations of vertices with respect to W:

$$\begin{aligned} r(u|W) &= (0,4), \quad r(v|W) = (1,3), \quad r(w|W) = (3,3), \\ r(x|W) &= (2,2), \quad r(y|W) = (3,1), \quad r(z|W) = (4,0). \end{aligned}$$

Since the representations of two distinct vertices with respect to W are distinct, it follows that W is a resolving set of G. Since there is no 1-resolving set of G, it implies that W is a basis of G, that is, dim(G) = 2.

The concepts of resolving sets and minimum resolving sets have previously appeared in [1], [2] and [3]. Hulme, Shiver and Slater described in [4], [5] and [6] the usefulness of these ideas when working with U.S. sonar and coast guard Loran (Long range aids to navigation) stations. Independently, Harary and Melter [7] discovered these concepts as well. Recently, these concepts were rediscovered by Johnson [8] of the Pharmacia Company while attempting to develop a capability of large datasets of chemical graphs. A basic problem in chemistry is to provide mathematical representations for a set of chemical compounds in a way that gives distinct representations to distinct compounds. The structure of a chemical compound can be represented by a labeled graph whose vertex and edge labels specify the atom and bond types, respectively. Thus, a graph-theoretic interpretation of this problem is to provide representations for the vertices of a graph in such a way that distinct vertices have distinct representations. More applications of these concepts to navigation of robots in networks and other areas are discussed in [9].

The foregoing discussion then gives rise to representations that is like multisets. In this case, we consider those sets W of vertices of connected graphs G for which any two vertices of G having distinct representations with respect to W in term of multisets.

Let $W = \{w_1, w_2, \ldots, w_k\}$ be a set of vertices of a connected graph G. For each vertex v of G, the multirepresentation of v with respect to W is a k-multiset, which is denoted by $mr_G(v|W)$ or simply mr(v|W) if the graph G under consideration is clear, and defined by

$$mr(v|W) = \{d(v, w_1), d(v, w_2), \dots, d(v, w_k)\}.$$

If $mr(x|W) \neq mr(y|W)$ for every pair x, y of distinct vertices of G, then W is called a *multiresolving set* of G. A multiresolving set of G containing a minimum number of vertices is called a *minimum multiresolving set* or a *multibasis* of G. The cardinality of multibasis is a *multidimension* of G, which is denoted by dim_M(G).

To illustrate these concepts, consider a connected graph G of Figure 1. As we know that the set $W = \{u, z\}$ is a resolving set of G. However, since $mr(v|W) = \{1, 3\} = mr(y|W)$, it follows that W is not a multiresolving set of G. Indeed, the set $W' = \{u, v, z\}$ is a multiresolving set of G with multirepresentations of the vertices of G with respect to W' as

$$mr(u|W') = \{0, 1, 4\}, \quad mr(v|W') = \{0, 1, 3\}, \quad mr(w|W') = \{2, 3, 3\}, \\ mr(x|W') = \{1, 2, 2\}, \quad mr(y|W') = \{1, 2, 3\}, \quad mr(z|W') = \{0, 3, 4\}.$$

Since there is no multiresolving sets of cardinality 1 or 2, it follows that W' is a multibasis of G, that is $\dim_M(G) = 3$.

Not all connected graphs have a multiresolving set and also $\dim_M(G)$ is not defined for all connected graphs G. For example, the star $K_{1,3}$ has no multiresolving set. Therefore, $\dim_M(K_{1,3})$ is not defined. However, for a connected graph Gof order n that $\dim_M(G)$ is defined, every multiresolving set of G is also a resolving set of G, and so

$$1 \le \dim(G) \le \dim_M(G) \le n.$$

For every set W of vertices of a connected graph G, the vertices of G whose multirepresentations with respect to W contain 0, are vertices in W. On the other hand, the multirepresentations of vertices of G that do not belong to Whave elements, all of which are positive. Indeed, to determine whether a set Wis a multiresolving set of G, the vertex set V(G) can be partitioned into W and V(G) - W to examine whether the vertices in each subset have distinct multirepresentations with respect to W. The multiresolving set was introduced in [10] and further studied in [11] and [12].

2 Preliminaries

Two vertices u and v of a connected graph G are distance-similar if d(u, x) = d(v, x) for all $x \in V(G) - \{u, v\}$. Certainly, distance similarity in G is an equivalence relation on V(G). For example, consider a complete bipartite graph $K_{r,s}$ with partite sets U and V. Every pair of vertices in the same partite set are distance-similar. Then the distance-similar equivalence classes in $K_{r,s}$ are its partite sets U and V. The following results were obtained in [10] showing the usefulness of the distance-similar equivalence class to determine the multidimensions of connected graphs.

Theorem 2.1 ([10]). Let G be a connected graph such that $\dim_M(G)$ is defined. If U is a distance-similar equivalence class in G with |U| = 2, then every multiresolving set of G contains exactly one vertex of U. **Theorem 2.2** ([10]). If U is a distance-similar equivalence class in a connected graph G with $|U| \ge 3$, then $\dim_M(G)$ is not defined.

It was shown in [10] and [12] that a path is only a connected graph with multidimension 1, and there is no connected graph with multidimension 2. We state these results in the next theorems.

Theorem 2.3 ([10], [12]). Let G be a connected graph. Then $\dim_M(G) = 1$ if and only if $G = P_n$, the path of order n.

Theorem 2.4 ([10], [12]). A connected graph has no multiresolving set of cardinality 2.

As we already mentioned, if W is a multiresolving set of a connected graph G, then the multirepresentations of two distinct vertices of G are distinct. This lead us to the fact that W is also a multiresolving set of G - v, where v is an end-vertex of G.

Theorem 2.5. Let G be a connected graph such that $\dim_M(G)$ is defined, and let W be a multiresolving set of G. If v is an end-vertex of G such that $v \notin W$, then W is a multiresolving set of G - v.

Proof. Assume that v is an end-vertex of G. Let $W = \{w_1, w_2, ..., w_k\}$ be a multiresolving set of G that does not contain v. Then

$$mr_G(x|W) = \{ d_G(x, w_1), d_G(x, w_2), ..., d_G(x, w_k) \}$$

and

$$mr_G(y|W) = \{d_G(y, w_1), d_G(y, w_2), \dots, d_G(y, w_k)\}$$

are not the same for all vertices x and y of G. since v does not belong to W, it follows that

$$mr_{G-v}(x|W) = \{d_{G-v}(x,w_1), d_{G-v}(x,w_2), ..., d_{G-v}(x,w_k)\} = mr_G(x|W)$$

and

$$mr_{G-v}(y|W) = \{ d_{G-v}(y, w_1), d_{G-v}(y, w_2), ..., d_{G-v}(y, w_k) \} = mr_G(y|W),$$

that is, $mr_{G-v}(x|W) \neq mr_{G-v}(y|W)$ for all vertices x and y of G-v. Hence, W is a multiresolving set of G-v.

The following is an immediate corollary of Theorem 2.5.

Corollary 2.6. Let G be a connected graph such that $\dim_M(G)$ is defined, and let W be a multiresolving set of G. If $v_1, v_2, ..., v_t \notin W$ are end-vertices of G, then W is a multiresolving set of $G - \{v_1, v_2, ..., v_t\}$.

Next, we present a useful necessary condition for a set to be a multiresolving set.

Proposition 2.7. Let T be a tree of order at least 3 containing a vertex u. If W is a multiresolving set of T, then W contains at least one vertex from each of $\deg_T u$ components of T - u, with one possible exception.

Proof. We see that T - u has only one component if and only if u is an end-vertex of T. Then we may assume, to the contrary, that there is a vertex u of degree at least 2 such that T - u has two components X and Y containing no vertex of W. Then there are two vertices x of X and y of Y that are adjacent to u in T. Thus, d(x, w) = d(u, w) + 1 = d(y, w) for all vertices w of W. This implies that mr(x|W) = mr(y|W), and so W is not a multiresolving set of T.

3 The Characterization of Caterpillars with Multidimension 3

A caterpillar is a tree of order at least 3, the removal of whose end-vertices produces a path called the *spine* of the caterpillar. A vertex of the spine of the caterpillar is called a *spine-vertex*. Let T be a caterpillar that $\dim_M(T)$ is defined. Since any two end-vertices that are adjacent to the same spine-vertex of T are distance-similar, it follows by Theorem 2.2 that there are at most two end-vertices that are adjacent to each spine-vertex of T. Therefore, we consider multiresolving sets of such a caterpillar. In order to do this, let us introduce some additional definitions and notation. For integers $s, k_1, k_2, ..., k_s$ with $s \ge 1, 1 \le k_1, k_s \le 2$ and $0 \le k_2, k_3, ..., k_{s-1} \le 2$, let $ca(k_1, k_2, ..., k_s)$ be a caterpillar which is obtained from the spine $(u_1, u_2, ..., u_s)$ by joining k_i end-vertices to the spine-vertex u_i , where $1 \leq i \leq s$. Observe that, if $k_i = 0$, then there is no end-vertex joining to the spine-vertex u_i . Also, if $k_i = 1$, then the spine-vertex u_i is adjacent to an end-vertex which is called the *first end-vertex* v_i of u_i . Furthermore, if $k_i = 2$, then there are two end-vertices joining to u_i that are called the *first* and *second* end-vertices of u_i and denoted by v_i and w_i , respectively. Moreover, let Ψ be a set of all integers i with $k_i = 2$, that is, $\Psi = \{i \in \mathbb{Z} \mid k_i = 2\}$. This is illustrated in Figure 2 for the caterpillar ca(1, 2, 0, 2, 1, 2, 2) with $\Psi = \{2, 4, 6, 7\}$.

$$\operatorname{ca}(1,2,0,2,1,2,2): \begin{array}{c} v_1 & v_2 & v_4 & v_5 & v_6 & v_7 \\ 0 & 0 & 0 & 0 & 0 \\ u_1 & u_2 & u_3 & u_4 & u_5 & u_6 & u_7 \\ 0 & 0 & 0 & 0 & 0 \\ w_2 & w_4 & w_6 & w_7 \end{array}$$

Figure 2: The caterpillar ca(1, 2, 0, 2, 1, 2, 2)

For integer s with $1 \le s \le 2$, the caterpillars $ca(k_1)$ and $ca(k_1, k_2)$ are shown in Figure 3, where the vertices of multibasis of these caterpillars are indicated by 252

Figure 3: The caterpillars ca(2), ca(1,1), ca(1,2) and ca(2,2)

solid vertices. Notice that $ca(2) \cong P_3$, $ca(1,1) \cong P_4$ and $ca(1,2) \cong ca(2,1)$. This implies that there is no caterpillar having multidimension 3, where s = 1, and there are two distinct caterpillars having multidimension 3, where s = 2. For s = 3, it is routine to verify that $ca(1,0,2) \cong ca(2,0,1)$, ca(1,1,1), $ca(1,1,2) \cong ca(2,1,1)$, ca(2,0,2) and ca(2,1,2) are caterpillars having multidimension 3. For $s \ge 4$, we are prepared to establish a characterization of a caterpillar $ca(k_1, k_2, ..., k_s)$ with multidimension 3. In order to do this, we first present several preliminary results.

Proposition 3.1. Let s, α, β be integers with $s \ge 4$ and $1 \le \alpha < \beta \le s$, and let W be a set of vertices of a caterpillar $ca(k_1, k_2, ..., k_s)$ containing one of $\{v_1, w_1\}$ and one of $\{v_s, w_s\}$. If $mr(u_{\alpha}|W) = mr(u_{\beta}|W)$ or $mr(v_{\alpha}|W) = mr(v_{\beta}|W)$, then $1 \le \alpha \le \lceil \frac{s}{2} \rceil$ and $\beta = s - \alpha + 1$.

Proof. (i) Suppose that $mr(u_{\alpha}|W) = mr(u_{\beta}|W)$. Without loss of generality, assume that W contains v_1 and v_s . For $1 \leq \alpha < \beta \leq \lceil \frac{s}{2} \rceil$, since $d(u_{\alpha}, v_s) = s - \alpha + 1$ and $d(u_{\beta}, v_s) = s - \beta + 1$ are the maximum elements of $mr(u_{\alpha}|W)$ and $mr(u_{\beta}|W)$, respectively, it follows that $\alpha = \beta$, which is a contradiction. For $\lceil \frac{s}{2} \rceil + 1 \leq \alpha < \beta \leq s$, since $d(u_{\alpha}, v_1) = \alpha$ and $d(u_{\beta}, v_1) = \beta$ are the maximum elements of $mr(u_{\alpha}|W)$ and $mr(u_{\beta}|W)$, respectively, it follows that $\alpha = \beta$, a contradiction is produced. Thus, $1 \leq \alpha \leq \lceil \frac{s}{2} \rceil$ and $\lceil \frac{s}{2} \rceil + 1 \leq \beta \leq s$. Moreover, since $d(u_{\alpha}, v_s) = s - \alpha + 1$ and $d(u_{\beta}, v_1) = \beta$ are the maximum elements of $mr(u_{\alpha}|W)$, respectively, it follows that $\beta = s - \alpha + 1$, as we claimed. (ii) can be obtained in a manner similar to that used in the proof of (i).

Proposition 3.2. Let s, γ, δ be integers with $s \ge 4$ and $1 \le \gamma, \delta \le s$, and let W be a set of vertices of a caterpillar $ca(k_1, k_2, ..., k_s)$ containing one of $\{v_1, w_1\}$ and one of $\{v_s, w_s\}$. Then

- (i) if $1 \leq \gamma < \delta \leq s$ and $mr(v_{\gamma}|W) = mr(u_{\delta}|W)$, then $1 \leq \gamma \leq \lceil \frac{s}{2} \rceil$ and $\delta = s \gamma + 2$, and
- (ii) if $1 \leq \delta \leq \gamma \leq s$ and $mr(v_{\gamma}|W) = mr(u_{\delta}|W)$, then $\lceil \frac{s}{2} \rceil + 1 \leq \gamma \leq s$ and $\delta = s \gamma$.

Proof. (i) Suppose that $1 \leq \gamma < \delta \leq s$ and $mr(v_{\gamma}|W) = mr(u_{\delta}|W)$. Without loss of generality, let us assume that W contains v_1 and v_s . If $1 \leq \gamma < \delta \leq \lceil \frac{s}{2} \rceil$, then $d(v_{\gamma}, v_s) = s - \gamma + 2$ and $d(u_{\delta}, v_s) = s - \delta + 1$ are the maximum elements of $mr(v_{\gamma}|W)$ and $mr(u_{\delta}|W)$, respectively. Therefore, $\delta = \gamma - 1$, that is, $\gamma > \delta$, which gives a contradiction. If $\lceil \frac{s}{2} \rceil + 1 \leq \gamma < \delta \leq s$, then $d(v_{\gamma}, v_1) = \gamma + 1$ and $d(u_{\delta}, v_1) = \delta$ are the maximum elements of $mr(v_{\gamma}|W)$ and $mr(u_{\delta}|W)$, respectively. Thus, $\delta = \gamma + 1$. Since $d(v_{\gamma}, v_s) = s - \gamma + 2$ belongs to $mr(v_{\gamma}|W)$, there is a vertex w for which $w = u_{2\delta - s - 3}$ or $v_{2\delta - s - 2}$ or $w_{2\delta - s - 2}$ such that $d(u_{\delta}, w) = s - \gamma + 2$. Moreover, since $d(v_{\gamma}, w) = d(u_{\delta}, w) = s - \gamma + 2$, it follows that $mr(v_{\gamma}|W)$ contains $s - \gamma + 2$'s more than $mr(u_{\delta}|W)$ does, which is impossible. Therefore, $1 \leq \gamma \leq \lceil \frac{s}{2} \rceil$ and $\lceil \frac{s}{2} \rceil + 1 \leq \delta \leq s$. Moreover, since $d(v_{\gamma}, v_s) = s - \gamma + 2$ and $d(u_{\delta}, v_1) = \delta$ are the maximum elements of $mr(v_{\gamma}|W)$ and $mr(u_{\delta}|W)$, respectively, it follows that $\delta = s - \gamma + 2$, as we claimed. For (ii), the statement may be proven in the same way as (i), and therefore such proof is omitted. \square

An argument similar to the one used in the proof of Propositions 3.1 and 3.2 establishes the following results.

Proposition 3.3. Let s, α, β be integers with $s \ge 4$ and $1 \le \alpha < \beta \le s$, and let W be a set of vertices of a caterpillar $ca(k_1, k_2, ..., k_s)$ containing u_1 and one of $\{v_s, w_s\}$ except v_1 and w_1 . If $mr(u_{\alpha}|W) = mr(u_{\beta}|W)$ or $mr(v_{\alpha}|W) = mr(v_{\beta}|W)$, then $1 \le \alpha \le \lceil \frac{s}{2} \rceil$ and $\beta = s - \alpha + 2$.

Proposition 3.4. Let s, γ, δ be integers with $s \ge 4$ and $1 \le \gamma, \delta \le s$, and let W be a set of vertices of a caterpillar $ca(k_1, k_2, ..., k_s)$ containing u_1 and one of $\{v_s, w_s\}$ except v_1 and w_1 . Then

- (i) if $1 \leq \gamma < \delta \leq s$ and $mr(v_{\gamma}|W) = mr(u_{\delta}|W)$, then $1 \leq \gamma \leq \lceil \frac{s}{2} \rceil$ and $\delta = s \gamma + 3$, and
- (ii) if $1 \leq \delta \leq \gamma \leq s$ and $mr(v_{\gamma}|W) = mr(u_{\delta}|W)$, then $\lceil \frac{s}{2} \rceil + 1 \leq \gamma \leq s$ and $\delta = s \gamma + 1$.

For an even integer $s \ge 4$, let T_1 be a caterpillar $ca(k_1, k_2, ..., k_s)$ such that $\Psi = \{1, r, s\}$, where $r \in \{2, 3, ..., s - 1\}$. In particular, the caterpillar $T_1 = ca(2, 0, 2, 1, 0, 1, 0, 2)$ is shown in Figure 4.

Figure 4: The caterpillar $T_1 = ca(2, 0, 2, 1, 0, 1, 0, 2)$ with $\Psi = \{1, 3, 8\}$

For an odd integer $s \ge 5$, let T_2 be a caterpillar $ca(k_1, k_2, ..., k_s)$ such that $\Psi = \{1, r, s\}$, where

$$r \in \begin{cases} \{2, 3, \dots, s-1\} - \{3, \frac{s+1}{2}, s-2\} & \text{if } s \equiv 1 \pmod{4}, \\ \{2, 3, \dots, s-1\} - \{3, \frac{s-1}{2}, \frac{s+1}{2}, \frac{s+3}{2}, s-2\} & \text{if } s \equiv 3 \pmod{4}. \end{cases}$$
(3.1)

For example, the caterpillar $T_2 = ca(2, 0, 1, 2, 0, 1, 1, 0, 2)$ is illustrated in Figure 5.

Figure 5: The caterpillar $T_2 = ca(2, 0, 1, 2, 0, 1, 1, 0, 2)$ with $\Psi = \{1, 4, 9\}$

For an odd integer $s \geq 9$, let T_3 be a caterpillar $\operatorname{ca}(k_1, k_2, ..., k_s)$ such that $\Psi = \{1, 3, s\}$ and $k_{\frac{s-1}{2}} = 0$, or $\Psi = \{1, s-2, s\}$ and $k_{\frac{s+3}{2}} = 0$. For an odd integer $s \geq 11$ and $s \equiv 3 \pmod{4}$, let T_4 be a caterpillar $\operatorname{ca}(k_1, k_2, ..., k_s)$ such that $\Psi = \{1, \frac{s-1}{2}, s\}$ and $k_{\frac{s+5}{2}} = 0$, or $\Psi = \{1, \frac{s+3}{2}, s\}$ and $k_{\frac{3s-1}{2}} = 0$.

Proposition 3.5. A caterpillar T_i , where $1 \le i \le 4$ has multidimension 3.

Proof. For each integer i with $1 \leq i \leq 4$, we show that every caterpillar T_i has multidimension 3. We verify this for T_2 only since the proof for T_1, T_3 and T_4 uses an argument similar to the one for T_2 . First, we verify that $W = \{w_1, w_r, w_s\}$ is a multiresolving set of T_2 , where r satisfies the condition (3.1). Without loss of generality, we may assume that $2 \leq r \leq \lceil \frac{s}{2} \rceil$. The multirepresentations of vertices of W with respect to W are $mr(w_1|W) = \{0, r+1, s+1\}, mr(w_r|W) = \{0, r+1, s-r+2\}$ and $mr(w_s|W) = \{0, s-r+2, s+1\}$. Since $r \notin \{1, \frac{s+1}{2}, s\}$, it follows that these 3-multisets are distinct. Next, we claim that $mr(x|W) \neq mr(y|W)$ for all vertices $x, y \in V(T_2) - W$. Suppose, contrary to our claim, that mr(x|W) = mr(y|W) for some vertices $x, y \in V(T_2) - W$. We consider three cases.

Case 1. x and y are spine-vertices.

Let $x = u_{\alpha}$ and $y = u_{\beta}$, where $1 \leq \alpha < \beta \leq s$. Then by Proposition 3.1, $1 \leq \alpha \leq \lceil \frac{s}{2} \rceil$ and $\beta = s - \alpha + 1$. Thus, $mr(u_{\beta}|W) = \{s - \beta + 1, \beta - r + 1, \beta\} = \{\alpha, s - \alpha - r + 2, s - \alpha + 1\}$. Since $mr(u_{\alpha}|W) = \{\alpha, |\alpha - r| + 1, s - \alpha + 1\}$, it follows that $|\alpha - r| + 1 = s - \alpha - r + 2$. If $\alpha \geq r$, then $2\alpha = s + 1$, and so $\alpha = \beta$ which is impossible. If $\alpha < r$, then $r = \frac{s-1}{2}$, a contradiction. **Case 2.** x and y are first end-vertices.

Let $x = v_{\alpha}$ and $y = v_{\beta}$, where $1 \leq \alpha < \beta \leq s$. Then by Proposition 3.1, $1 \leq \alpha \leq \lceil \frac{s}{2} \rceil$ and $\beta = s - \alpha + 1$. Thus, $mr(v_{\beta}|W) = \{s - \beta + 2, \beta - r + 2, \beta + 1\} =$

 $\{\alpha + 1, s - \alpha - r + 3, s - \alpha + 2\}$. Since $mr(v_{\alpha}|W) = \{\alpha + 1, |\alpha - r| + 2, s - \alpha + 2\}$, it follows that $|\alpha - r| + 2 = s - \alpha - r + 3$. If $\alpha \ge r$, then $2\alpha = s + 1$, and so $\alpha = \beta$, which cannot occur. If $\alpha < r$, then $r = \frac{s-1}{2}$, that is also a contradiction. **Case 3.** x is a first end-vertex and y is a spine-vertex.

Let $x = v_{\gamma}$ and $y = u_{\delta}$, where $1 \leq \gamma, \delta \leq s$. We consider two subcases.

Subcase 3.1. $1 \le \gamma < \delta \le s$.

Then by Proposition 3.2 (i), $1 \leq \gamma \leq \lceil \frac{s}{2} \rceil$ and $\delta = s - \gamma + 2$. Thus, $mr(u_{\delta}|W) = \{s - \delta + 1, \delta - r + 1, \delta\} = \{\gamma - 1, s - \gamma - r + 3, s - \gamma + 2\}$. Since $mr(v_{\gamma}|W) = \{\gamma + 1, |\gamma - r| + 2, s - \gamma + 2\}$, it follows that $|\gamma - r| + 2 = \gamma - 1$ and $\gamma + 1 = s - \gamma - r + 3$. If $\gamma \geq r$, then r = 3, which is impossible. If $\gamma < r$, then $s = 4(\gamma - 2) + 3$, that is, $s \equiv 3 \pmod{4}$. Also, we obtain that 2r = s - 1, and then $r = \frac{s-1}{2}$, which is a contradiction.

Subcase 3.2. $1 \le \delta \le \gamma \le s$.

Then by Proposition 3.2 (ii), $\lceil \frac{s}{2} \rceil + 1 \le \gamma \le s$ and $\delta = s - \gamma$. Thus, $mr(v_{\gamma}|W) = \{s - \gamma + 2, \gamma - r + 2, \gamma + 1\} = \{\delta + 2, s - \delta - r + 2, s - \delta + 1\}$. Since $mr(u_{\delta}|W) = \{\delta, |\delta - r| + 1, s - \delta + 1\}$, it follows that $|\delta - r| + 1 = \delta + 2$ and $\delta = s - \delta - r + 2$. Consequently, $|\delta - r| = s - \delta - r + 3$. If $\delta \ge r$, then $2\delta = s + 3$, which cannot occur. If $\delta < r$, then 2r = s + 3, a contradiction.

Therefore, $mr(x|W) \neq mr(y|W)$ for all vertices $x, y \in V(T_2) - W$, that is, W is a multiresolving set of T_2 and so $\dim_M(T_2) \leq 3$. Since T_2 is not a path, it follows by Theorems 2.3 and 2.4 that $\dim_M(T_2) \geq 3$. Hence, $\dim_M(T_2) = 3$.

The following corollary is an immediate consequence of Proposition 3.5.

Corollary 3.6. Let T be a caterpillar $ca(k_1, k_2, ..., k_s)$ such that $T \cong T_i$, where $1 \le i \le 4$ with $\Psi = \{1, r, s\}$. Then W is a multibasis of T if and only if $W = \{x_1, x_r, x_s\}$, where $x_i \in \{v_i, w_i\}$ for i = 1, r, s.

For an integer $s \ge 4$, let T_5 be a caterpillar $ca(k_1, k_2, ..., k_s)$ such that $\Psi = \{p, s\}$ or $\Psi = \{1, q\}$, where $1 \le p < q \le s$.

Proposition 3.7. A caterpillar T_5 has multidimension 3.

Proof. First, suppose that $\Psi = \{p, s\}$, where $1 \le p \le s - 1$. Since T_5 is not a path, it follows by Theorems 2.3 and 2.4 that $\dim_M(T_5) \ge 3$. We consider two cases. **Case 1.** p = 1.

We show that $W = \{u_1, w_1, w_s\}$ is a multiresolving set of T_5 . The multirepresentations of vertices of W with respect to W are $mr(u_1|W) = \{0, 1, s\}, mr(w_1|W) = \{0, 1, s + 1\}$ and $mr(w_s|W) = \{0, s, s + 1\}$. Thus, these 3-multisets are distinct. Next, we claim that $mr(x|W) \neq mr(y|W)$ for all vertices $x, y \in V(T_5) - W$. Assume, contrary to our claim, that mr(x|W) = mr(y|W) for some vertices $x, y \in V(T_5) - W$. We consider three subcases.

Subcase 1.1. x and y are spine-vertices.

Let $x = u_{\alpha}$ and $y = u_{\beta}$, where $1 \leq \alpha < \beta \leq s$. Then by Proposition 3.1, $1 \leq \alpha \leq \lfloor \frac{s}{2} \rfloor$ and $\beta = s - \alpha + 1$. Thus, $mr(u_{\beta}|W) = \{s - \beta + 1, \beta - 1, \beta\} = \{\alpha, s - \alpha, s - \alpha + 1\}$. Since $mr(u_{\alpha}|W) = \{\alpha, \alpha - 1, s - \alpha + 1\}$, it follows that $\alpha - 1 = s - \alpha$ and so $\alpha = \beta$, which is impossible.

Subcase 1.2. x and y are first end-vertices.

Let $x = v_{\alpha}$ and $y = v_{\beta}$, where $1 \leq \alpha < \beta \leq s$. Then by Proposition 3.1, $1 \leq \alpha \leq \lceil \frac{s}{2} \rceil$ and $\beta = s - \alpha + 1$. Thus, $mr(v_{\beta}|W) = \{s - \beta + 2, \beta, \beta + 1\} = \{\alpha + 1, s - \alpha + 1, s - \alpha + 2\}$. Since $mr(v_{\alpha}|W) = \{\alpha + 1, \alpha, s - \alpha + 2\}$, it follows that $\alpha = s - \alpha + 1$ and so $\alpha = \beta$, this is also a contradiction.

Subcase 1.3. x is a first end-vertex and y is a spine-vertex.

Let $x = v_{\gamma}$ and $y = u_{\delta}$, where $1 \leq \gamma, \delta \leq s$. We consider two subcases.

Subcase 1.3.1. $1 \le \gamma < \delta \le s$.

Then by Proposition 3.2 (i), $1 \leq \gamma \leq \lceil \frac{s}{2} \rceil$ and $\delta = s - \gamma + 2$. Since $mr(u_{\delta}|W) = \{s-\delta+1, \delta-1, \delta\} = \{\gamma-1, s-\gamma+1, s-\gamma+2\}$ and $mr(v_{\gamma}|W) = \{\gamma+1, \gamma, s-\gamma+2\}$, it follows that $mr(v_{\gamma}|W) \neq mr(u_{\delta}|W)$, which is impossible.

Subcase 1.3.2. $1 \le \delta \le \gamma \le s$.

Then by Proposition 3.2 (ii), $\lceil \frac{s}{2} \rceil + 1 \leq \gamma \leq s$ and $\delta = s - \gamma$. Since $mr(v_{\gamma}|W) = \{s - \gamma + 2, \gamma, \gamma + 1\} = \{\delta + 2, s - \delta, s - \delta + 1\}$ and $mr(u_{\delta}|W) = \{\delta, \delta - 1, s - \delta + 1\}$, it follows that $mr(v_{\gamma}|W) \neq mr(u_{\delta}|W)$, this is also a contradiction.

Therefore, $mr(x|W) \neq mr(y|W)$ for all vertices $x, y \in V(T_5) - W$, that is, W is a multiresolving set of T_5 . Hence, $\dim_M(T_5) \leq 3$, and so $\dim_M(T_5) = 3$, where p = 1.

Case 2. $p \ge 2$.

We consider two subcases.

Subcase 2.1. s is even.

With the aid of Theorem 2.5 and Corollary 3.6, since $T_5 \cong T_1 - w_1$ and $W = \{v_1, w_p, w_s\}$ is a multiresolving set of T_1 , it follows that W is a multiresolving set of T_5 . Therefore, $\dim_M(T_5) \leq 3$, and so $\dim_M(T_5) = 3$, where $p \geq 2$ and s is even. **Subcase 2.2.** s is odd.

We consider two subcases.

Subcase 2.2.1. p = 2.

By Theorem 2.5 and Corollary 3.6, since $T_5 \cong T_2 - w_1$ and $W = \{v_1, w_p, w_s\}$ is a multiresolving set of T_2 , it follows by Theorem 2.5 that W is a multiresolving set of T_5 . Therefore, $\dim_M(T_5) \leq 3$, and so $\dim_M(T_5) = 3$, where p = 2 and s is odd. Subcase 2.2.2. $p \geq 3$.

Let $W = \{u_1, w_p, w_s\}$. The multirepresentations of vertices of W with respect to W are $mr(u_1|W) = \{0, p, s\}$, $mr(w_p|W) = \{0, p, s - p + 2\}$ and $mr(w_s|W) = \{0, s - p + 2, s\}$. Thus, these 3-multisets are distinct. Next, we claim that $mr(x|W) \neq mr(y|W)$ for all vertices $x, y \in V(T_5) - W$. Suppose, contrary to our claim, that mr(x|W) = mr(y|W) for some vertices $x, y \in V(T_5) - W$. We consider three subcases.

Subcase 2.2.2.1. x and y are spine-vertices.

Let $x = u_{\alpha}$ and $y = u_{\beta}$, where $1 \leq \alpha < \beta \leq s$. Then by Proposition 3.3, $1 \leq \alpha \leq \lceil \frac{s}{2} \rceil$ and $\beta = s - \alpha + 2$. Thus, $mr(u_{\beta}|W) = \{s - \beta + 1, |\beta - p| + 1, \beta - 1\} = \{\alpha - 1, |\beta - p| + 1, s - \alpha + 1\}$. Since $mr(u_{\alpha}|W) = \{\alpha - 1, |\alpha - p| + 1, s - \alpha + 1\}$, it follows that $|\alpha - p| + 1 = |\beta - p| + 1$. If $p \leq \alpha$ or $\beta \leq p$, then $\alpha = \beta$, which is impossible. If $\alpha , then <math>s = 2p - 2$, contradicting the fact that s is odd.

Subcase 2.2.2.2. x and y are first end-vertices.

Let $x = v_{\alpha}$ and $y = v_{\beta}$, where $1 \leq \alpha < \beta \leq s$. Then by Proposition 3.3, $1 \leq \alpha \leq \lceil \frac{s}{2} \rceil$ and $\beta = s - \alpha + 2$. Thus, $mr(v_{\beta}|W) = \{s - \beta + 2, |\beta - p| + 2, \beta\} = \{\alpha, |\beta - p| + 2, s - \alpha + 2\}$. Since $mr(v_{\alpha}|W) = \{\alpha, |\alpha - p| + 2, s - \alpha + 2\}$, it follows that $|\alpha - p| + 2 = |\beta - p| + 2$. By the same argument as the proof in Subcase 2.2.2.1., we obtain a contradiction.

Subcase 2.2.2.3. x is a first end-vertex and y is a spine-vertex. Let $x = v_{\gamma}$ and $y = u_{\delta}$, where $1 \leq \gamma, \delta \leq s$. There are two possibilities: 1) $1 \leq \gamma < \delta \leq s$.

Then by Proposition 3.4 (i), $1 \leq \gamma \leq \lceil \frac{s}{2} \rceil$ and $\delta = s - \gamma + 3$. Thus, $mr(u_{\delta}|W) = \{s - \delta + 1, |\delta - p| + 1, \delta - 1\} = \{\gamma - 2, |\delta - p| + 1, s - \gamma + 2\}$. Since $mr(v_{\gamma}|W) = \{\gamma, |\gamma - p| + 2, s - \gamma + 2\}$, it follows that $|\gamma - p| + 2 = \gamma - 2$ and $\gamma = |\delta - p| + 1$. Consequently, $|\gamma - p| + 3 = |\delta - p|$. If $p \leq \gamma$, then $2\gamma = s$, contradicting the fact that s is odd. If $\gamma , then <math>2p = s$, a contradiction. If $\delta \leq p$, then $2\gamma - 6 = s$, this is also a contradiction.

2) $1 \leq \delta \leq \gamma \leq s$.

Then by Proposition 3.4 (ii), $\lceil \frac{s}{2} \rceil + 1 \leq \gamma \leq s$ and $\delta = s - \gamma + 1$. Thus, $mr(v_{\gamma}|W) = \{s - \gamma + 2, |\gamma - p| + 2, \gamma\} = \{\delta + 1, |\gamma - p| + 2, s - \delta + 1\}$. Since $mr(u_{\delta}|W) = \{\delta - 1, |\delta - p| + 1, s - \delta + 1\}$, it follows that $|\delta - p| + 1 = \delta + 1$ and $\delta - 1 = |\gamma - p| + 2$. Consequently, $|\delta - p| = |\gamma - p| + 3$. If $p < \delta$, then $s = 2\gamma + 2$, contradicting the fact that s is odd. If $\delta \leq p \leq \gamma$, then s = 2p - 4, a contradiction. If $\gamma < p$, then $s = 2\delta + 2$, this is also a contradiction.

Therefore, $\dim_M(T_5) \leq 3$, and so $\dim_M(T_5) = 3$, where $p \geq 3$ and s is odd. Similarly, for $\Psi = \{1, q\}$, where $2 \leq q \leq s$, $\dim_M(T_5) = 3$ can be proven in the same manner as well.

For an integer $s \ge 4$, let T_6 be a caterpillar $\operatorname{ca}(k_1, k_2, ..., k_s)$ such that $\Psi = \{r\}$, where $r \in \{1, 2, ..., s\}$. For an integer $s \ge 4$, let T_7 be a caterpillar $\operatorname{ca}(k_1, k_2, ..., k_s)$ such that $\Psi = \emptyset$ and $k_r = 1$, where $r \in \{2, 3, ..., s - 1\}$. Combining Theorem 2.5 and Proposition 3.7, we arrive yet another result.

Proposition 3.8. A caterpillar T_i , where $6 \le i \le 7$ has multidimension 3.

Caterpillars with multidimension 3 are completely characterized, as we present next.

Theorem 3.9. For an integer $s \ge 4$, let T be a caterpillar $ca(k_1, k_2, ..., k_s)$. Then T has multidimension 3 if and only if $T \cong T_i$, where $i \in \{1, 2, ..., 7\}$.

Proof. The preceding results provide the sufficient condition for a caterpillar T having multidimension 3. To show the necessary condition, suppose that T has a multidimension 3. By Theorem 2.1, it implies that $|\Psi| \leq 3$. For $|\Psi| = 0$, there is an integer r with $2 \leq r \leq s - 1$ such that $k_r = 1$, for otherwise T is a path, contradicting the fact that $\dim_M(T) = 3$. Hence, $T \cong T_7$. For $|\Psi| = 1$, obviously, $T \cong T_6$. It remains therefore only to consider $|\Psi| = 2$ and $|\Psi| = 3$.

For $|\Psi| = 2$, we claim that Ψ contains at least one of $\{1, s\}$. Suppose, contrary to our claim, that Ψ contains neither 1 nor s. Let $\Psi = \{r_1, r_2\}$, where $2 \le r_1 < 1$

 $r_2 \leq s-1$. By Theorem 2.1, every multibasis of T contains exactly one vertex of $\{v_{r_1}, w_{r_1}\}$, say w_{r_1} . Since there are $\deg_T u_{r_1} = 4$ distinct components of $T - u_{r_1}$, it follows by Proposition 2.7 that there is a vertex of a multibasis W belonging to the component containing the spine-vertex u_{r_1-1} . Similarly, since there are $\deg_T u_{r_2} = 4$ distinct components of $T - u_{r_2}$, there is a vertex of W belonging to the component containing the spine-vertex u_{r_2+1} . Therefore, W contains at least four vertices, this is a contradiction. Thus, Ψ contains at least one of $\{1, s\}$, that is, $T \cong T_5$.

For $|\Psi| = 3$, we show that Ψ contains both 1 and s. Assume, to the contrary, that Ψ does not contain 1 or s, say 1. Let $\Psi = \{r_1, r_2, r_3\}$, where $2 \leq r_1 < r_2 < r_3 \leq s$. Then $W = \{w_{r_1}, w_{r_2}, w_{r_3}\}$ is a multibasis of T. Notice that $\deg_T u_{r_1} = 4$, that is, there are four distinct components of $T - u_{r_1}$. However, both w_{r_2} and w_{r_3} must belong to the same component containing the spine-vertex u_{r_1+1} , contradicting Proposition 2.7 that w_{r_1}, w_{r_2} and w_{r_3} cannot belong to the same component of $T - u_{r_1}$. Thus, Ψ contains 1 and s. We may assume without loss of generality that $\Psi = \{1, r, s\}$ with $2 \leq r \leq \lceil \frac{s}{2} \rceil$. Then $W = \{w_1, w_r, w_s\}$ is a multibasis of T. If s is even, then $T \cong T_1$. We may assume that s is odd. If $r = \lceil \frac{s}{2} \rceil$, then $mr(w_1|W) = mr(w_s|W)$, which is impossible. Thus $2 \leq r \leq \frac{s-1}{2}$. Next, we consider two cases according to whether s is congruent to 1 or 3 modulo 4.

Case 1. $s \equiv 1 \pmod{4}$.

If $r \neq 3$, then $T \cong T_2$. For r = 3, since $r \leq \frac{s-1}{2}$, it follows that $s \geq 9$. Next, we claim that $k_{\frac{s-1}{2}} = 0$. Suppose, contrary to our claim, that $k_{\frac{s-1}{2}} \geq 1$. Then $mr(v_{\frac{s-1}{2}}|W) = \{\frac{s-3}{2}, \frac{s+1}{2}, \frac{s+5}{2}\} = mr(u_{\frac{s+5}{2}}|W)$, contradicting the fact that W is a multibasis of T. Hence, $k_{\frac{s-1}{2}} = 0$, and so $T \cong T_3$.

Case 2.
$$s \equiv 3 \pmod{4}$$
.

If $r \neq 3, \frac{s-1}{2}$, then $T \cong T_2$. For r = 3, we claim that $k_{\frac{s-1}{2}} = 0$. Suppose, contrary to our claim, that $k_{\frac{s-1}{2}} \ge 1$. Then $mr(v_{\frac{s-1}{2}}|W) = \{\frac{s-3}{2}, \frac{s+1}{2}, \frac{s+5}{2}\} = mr(u_{\frac{s+5}{2}}|W)$, contradicting the fact that W is a multibasis of T, as we claimed. Hence, $s \ge 11$, and so $T \cong T_3$. For $r = \frac{s-1}{2} \ge 4$, since $r \le \frac{s-1}{2}$, it follows that $s \ge 11$. Next, we claim that $k_{\frac{s+5}{4}} = 0$. Suppose, contrary to our claim that $k_{\frac{s+5}{4}} \ge 1$. Then $mr(v_{\frac{s+5}{4}}|W) = \{\frac{s+1}{4}, \frac{s+9}{4}, \frac{3s+3}{4}\} = mr(u_{\frac{3s+3}{4}}|W)$, contradicting the fact that W is a multibasis of T. Hence, $k_{\frac{s+5}{4}} = 0$, and so $T \cong T_4$.

4 Final Remarks

For an integer $s \ge 2$, let T be a caterpillar $\operatorname{ca}(k_1, k_2, ..., k_s)$ of order n such that $\Psi \neq \emptyset$ and $\dim_M(T)$ is defined. It then follows by Theorem 2.1 that

$$|\Psi| \le \dim_M(T) \le n - |\Psi|.$$

Moreover, by Corollary 3.6, caterpillars T_1, T_2, T_3 and T_4 also illustrate the sharpness of this lower bound. It would be interesting to determine whether this upper bound is sharp or not.

References

- G. Chartrand, L. Eroh, M.A. Johnson, O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Applied Mathematics 105 (2000) 99–113.
- [2] P.J. Slater, Leaves of trees, Congressus Numerantium 14 (1988) 549–559.
- [3] P.J. Slater, Dominating and reference sets in a graph, Journal of Mathematical and Physical Sciences 22 (4) (1988) 445–455.
- [4] B.L. Hulme, A.W. Shiver, P.J. Slater, FIRE: a subroutine for fire protection network analysis, SAND 81-1261, Sandia National Laboratories, Albuquerque, 1981.
- [5] B.L. Hulme, A.W. Shiver, P.J. Slater, Computing minimum cost fire protection, SAND 820809, Sandia National Laboratories, Albuquerque, 1982.
- [6] B.L. Hulme, A.W. Shiver, P.J. Slater, A boolean algebraic analysis of fire protection, North-Holland Mathematics Studies 95 (C) (1981) 215–227.
- [7] F. Harary, R.A. Melter, On the metric dimension of a graph, Ars Combinatoria 2 (1976) 191–195.
- [8] M. Johnson, Browsable structure-activity datasets, Advances in Molecular Similarity 2 (1999) 153–170.
- [9] S. Khuller, B. Rsghavachari, A. Rosenfeld, Localization in graphs, CS-TR-3326, University of Maryland, Maryland, 1994.
- [10] V. Saenpholphat, On multiset dimension in graphs, Academic SWU. 1 (2009) 193–202.
- [11] V. Khemmani, S. Isariyapalakul, The multiresolving sets of graphs with prescribed multisimilar equivalence classes, Int. J. Math. Math. Sci. (2018) Article ID 8978193.
- [12] R. Simanjuntak, T. Vetrík, P.B. Mulia, The multiset dimension of graphs, Discrete Applied Mathematics, 2017.

(Received 13 June 2019) (Accepted 24 December 2019)

THAI J. MATH. Online @ http://thaijmath.in.cmu.ac.th