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Abstract : Let v be a vertex of a connected graphG, and letW = {w1, w2, ..., wk}
be a set of vertices of G. The multirepresentation of v with respect to W is
the k-multiset mr(v|W ) = {d(v, w1), d(v, w2), ..., d(v, wk)}. A set W is called a
multiresolving set of G if no two vertices of G have the same multirepresenta-
tions with respect to W . The multidimension of G is the minimum cardinality
of a multiresolving set of G. In this paper, we characterize the caterpillars with
multidimension 3.
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1 Introduction

The distance d(u, v) between two vertices u and v in a connected graph G is
the length of a shortest u−v path in G. For an ordered set W = {w1, w2, ..., wk} ⊆
V (G) and a vertex v of G. the k-vector

r(v|W ) = (d(v, w1), d(v, w2), ..., d(v, wk))

is called a representation of v with respect to W . If every two distinct vertices of G
have distinct representations with respect to W , then the ordered set W is called
a resolving set of G. A resolving set of G having a minimum cardinality is called
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a minimum resolving set or a basis of G and this cardinality is the dimension of
G, and is denoted by dim(G). To illustrate these concepts, consider a connected
graph G of Figure 1 with a vertex set V (G) = {u, v, w, x, y, z}.

Figure 1: A connected graph G

We consider an ordered set W = {u, z}. There are six representations of
vertices with respect to W :

r(u|W ) = (0, 4), r(v|W ) = (1, 3), r(w|W ) = (3, 3),
r(x|W ) = (2, 2), r(y|W ) = (3, 1), r(z|W ) = (4, 0).

Since the representations of two distinct vertices with respect to W are distinct,
it follows that W is a resolving set of G. Since there is no 1-resolving set of G, it
implies that W is a basis of G, that is, dim(G) = 2.

The concepts of resolving sets and minimum resolving sets have previously
appeared in [1], [2] and [3]. Hulme, Shiver and Slater described in [4], [5] and [6]
the usefulness of these ideas when working with U.S. sonar and coast guard Loran
(Long range aids to navigation) stations. Independently, Harary and Melter [7]
discovered these concepts as well. Recently, these concepts were rediscovered by
Johnson [8] of the Pharmacia Company while attempting to develop a capability
of large datasets of chemical graphs. A basic problem in chemistry is to provide
mathematical representations for a set of chemical compounds in a way that gives
distinct representations to distinct compounds. The structure of a chemical com-
pound can be represented by a labeled graph whose vertex and edge labels specify
the atom and bond types, respectively. Thus, a graph-theoretic interpretation of
this problem is to provide representations for the vertices of a graph in such a way
that distinct vertices have distinct representations. More applications of these
concepts to navigation of robots in networks and other areas are discussed in [9].

The foregoing discussion then gives rise to representations that is like multisets.
In this case, we consider those sets W of vertices of connected graphs G for which
any two vertices of G having distinct representations with respect to W in term
of multisets.

Let W = {w1, w2, . . . , wk} be a set of vertices of a connected graph G. For each
vertex v of G, the multirepresentation of v with respect to W is a k-multiset, which
is denoted by mrG(v|W ) or simply mr(v|W ) if the graph G under consideration
is clear, and defined by

mr(v|W ) = {d(v, w1), d(v, w2), . . . , d(v, wk)}.
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If mr(x|W ) 6= mr(y|W ) for every pair x, y of distinct vertices of G, then W is
called a multiresolving set of G. A multiresolving set of G containing a minimum
number of vertices is called a minimum multiresolving set or a multibasis of G. The
cardinality of multibasis is a multidimension of G, which is denoted by dimM (G).

To illustrate these concepts, consider a connected graph G of Figure 1. As we
know that the set W = {u, z} is a resolving set of G. However, since mr(v|W ) =
{1, 3} = mr(y|W ), it follows that W is not a multiresolving set of G. Indeed, the
set W ′ = {u, v, z} is a multiresolving set of G with multirepresentations of the
vertices of G with respect to W ′ as

mr(u|W ′) = {0, 1, 4}, mr(v|W ′) = {0, 1, 3}, mr(w|W ′) = {2, 3, 3},
mr(x|W ′) = {1, 2, 2}, mr(y|W ′) = {1, 2, 3}, mr(z|W ′) = {0, 3, 4}.

Since there is no multiresolving sets of cardinality 1 or 2, it follows that W ′ is a
multibasis of G, that is dimM (G) = 3.

Not all connected graphs have a multiresolving set and also dimM (G) is not
defined for all connected graphs G. For example, the star K1,3 has no multiresolv-
ing set. Therefore, dimM (K1,3) is not defined. However, for a connected graph G
of order n that dimM (G) is defined, every multiresolving set of G is also a resolving
set of G, and so

1 ≤ dim(G) ≤ dimM (G) ≤ n.

For every set W of vertices of a connected graph G, the vertices of G whose
multirepresentations with respect to W contain 0, are vertices in W . On the
other hand, the multirepresentations of vertices of G that do not belong to W
have elements, all of which are positive. Indeed, to determine whether a set W
is a multiresolving set of G, the vertex set V (G) can be partitioned into W and
V (G)−W to examine whether the vertices in each subset have distinct multirep-
resentations with respect to W . The multiresolving set was introduced in [10] and
further studied in [11] and [12].

2 Preliminaries

Two vertices u and v of a connected graph G are distance-similar if d(u, x) =
d(v, x) for all x ∈ V (G)− {u, v}. Certainly, distance similarity in G is an equiva-
lence relation on V (G). For example, consider a complete bipartite graph Kr,s with
partite sets U and V . Every pair of vertices in the same partite set are distance-
similar. Then the distance-similar equivalence classes in Kr,s are its partite sets U
and V . The following results were obtained in [10] showing the usefulness of the
distance-similar equivalence class to determine the multidimensions of connected
graphs.

Theorem 2.1 ([10]). Let G be a connected graph such that dimM (G) is defined.
If U is a distance-similar equivalence class in G with |U | = 2, then every multire-
solving set of G contains exactly one vertex of U .
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Theorem 2.2 ([10]). If U is a distance-similar equivalence class in a connected
graph G with |U | ≥ 3, then dimM (G) is not defined.

It was shown in [10] and [12] that a path is only a connected graph with
multidimension 1, and there is no connected graph with multidimension 2. We
state these results in the next theorems.

Theorem 2.3 ([10], [12]). Let G be a connected graph. Then dimM (G) = 1 if and
only if G = Pn, the path of order n.

Theorem 2.4 ([10], [12]). A connected graph has no multiresolving set of cardi-
nality 2.

As we already mentioned, if W is a multiresolving set of a connected graph G,
then the multirepresentations of two distinct vertices of G are distinct. This lead
us to the fact that W is also a multiresolving set of G−v, where v is an end-vertex
of G.

Theorem 2.5. Let G be a connected graph such that dimM (G) is defined, and let
W be a multiresolving set of G. If v is an end-vertex of G such that v /∈W , then
W is a multiresolving set of G− v.

Proof. Assume that v is an end-vertex of G. Let W = {w1, w2, ..., wk} be a
multiresolving set of G that does not contain v. Then

mrG(x|W ) = {dG(x,w1), dG(x,w2), ..., dG(x,wk)}

and
mrG(y|W ) = {dG(y, w1), dG(y, w2), ..., dG(y, wk)}

are not the same for all vertices x and y of G. since v does not belong to W , it
follows that

mrG−v(x|W ) = {dG−v(x,w1), dG−v(x,w2), ..., dG−v(x,wk)} = mrG(x|W )

and

mrG−v(y|W ) = {dG−v(y, w1), dG−v(y, w2), ..., dG−v(y, wk)} = mrG(y|W ),

that is, mrG−v(x|W ) 6= mrG−v(y|W ) for all vertices x and y of G− v. Hence, W
is a multiresolving set of G− v.

The following is an immediate corollary of Theorem 2.5.

Corollary 2.6. Let G be a connected graph such that dimM (G) is defined, and
let W be a multiresolving set of G. If v1, v2, ..., vt /∈W are end-vertices of G, then
W is a multiresolving set of G− {v1, v2, ..., vt}.

Next, we present a useful necessary condition for a set to be a multiresolving
set.
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Proposition 2.7. Let T be a tree of order at least 3 containing a vertex u. If
W is a multiresolving set of T , then W contains at least one vertex from each of
degT u components of T − u, with one possible exception.

Proof. We see that T −u has only one component if and only if u is an end-vertex
of T . Then we may assume, to the contrary, that there is a vertex u of degree
at least 2 such that T − u has two components X and Y containing no vertex of
W . Then there are two vertices x of X and y of Y that are adjacent to u in T .
Thus, d(x,w) = d(u,w) + 1 = d(y, w) for all vertices w of W . This implies that
mr(x|W ) = mr(y|W ), and so W is not a multiresolving set of T .

3 The Characterization of Caterpillars with Mul-
tidimension 3

A caterpillar is a tree of order at least 3, the removal of whose end-vertices
produces a path called the spine of the caterpillar. A vertex of the spine of the
caterpillar is called a spine-vertex. Let T be a caterpillar that dimM (T ) is defined.
Since any two end-vertices that are adjacent to the same spine-vertex of T are
distance-similar, it follows by Theorem 2.2 that there are at most two end-vertices
that are adjacent to each spine-vertex of T . Therefore, we consider multiresolving
sets of such a caterpillar. In order to do this, let us introduce some additional
definitions and notation. For integers s, k1, k2, ..., ks with s ≥ 1, 1 ≤ k1, ks ≤ 2
and 0 ≤ k2, k3, ..., ks−1 ≤ 2, let ca(k1, k2, ..., ks) be a caterpillar which is obtained
from the spine (u1, u2, ..., us) by joining ki end-vertices to the spine-vertex ui,
where 1 ≤ i ≤ s. Observe that, if ki = 0, then there is no end-vertex joining to
the spine-vertex ui. Also, if ki = 1, then the spine-vertex ui is adjacent to an
end-vertex which is called the first end-vertex vi of ui. Furthermore, if ki = 2,
then there are two end-vertices joining to ui that are called the first and second
end-vertices of ui and denoted by vi and wi, respectively. Moreover, let Ψ be a
set of all integers i with ki = 2, that is, Ψ = {i ∈ Z | ki = 2}. This is illustrated
in Figure 2 for the caterpillar ca(1, 2, 0, 2, 1, 2, 2) with Ψ = {2, 4, 6, 7}.

Figure 2: The caterpillar ca(1, 2, 0, 2, 1, 2, 2)

For integer s with 1 ≤ s ≤ 2, the caterpillars ca(k1) and ca(k1, k2) are shown
in Figure 3, where the vertices of multibasis of these caterpillars are indicated by
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Figure 3: The caterpillars ca(2), ca(1, 1), ca(1, 2) and ca(2, 2)

solid vertices. Notice that ca(2) ∼= P3, ca(1, 1) ∼= P4 and ca(1, 2) ∼= ca(2, 1). This
implies that there is no caterpillar having multidimension 3, where s = 1, and there
are two distinct caterpillars having multidimension 3, where s = 2. For s = 3, it
is routine to verify that ca(1, 0, 2) ∼= ca(2, 0, 1), ca(1, 1, 1), ca(1, 1, 2) ∼= ca(2, 1, 1),
ca(2, 0, 2) and ca(2, 1, 2) are caterpillars having multidimension 3. For s ≥ 4, we
are prepared to establish a characterization of a caterpillar ca(k1, k2, ..., ks) with
multidimension 3. In order to do this, we first present several preliminary results.

Proposition 3.1. Let s, α, β be integers with s ≥ 4 and 1 ≤ α < β ≤ s, and let
W be a set of vertices of a caterpillar ca(k1, k2, ..., ks) containing one of {v1, w1}
and one of {vs, ws}. If mr(uα|W ) = mr(uβ |W ) or mr(vα|W ) = mr(vβ |W ), then
1 ≤ α ≤ d s2e and β = s− α+ 1.

Proof. (i) Suppose that mr(uα|W ) = mr(uβ |W ). Without loss of generality, as-
sume that W contains v1 and vs. For 1 ≤ α < β ≤ d s2e, since d(uα, vs) = s−α+ 1
and d(uβ , vs) = s−β+1 are the maximum elements of mr(uα|W ) and mr(uβ |W ),
respectively, it follows that α = β, which is a contradiction. For d s2e+1 ≤ α < β ≤
s, since d(uα, v1) = α and d(uβ , v1) = β are the maximum elements of mr(uα|W )
and mr(uβ |W ), respectively, it follows that α = β, a contradiction is produced.
Thus, 1 ≤ α ≤ d s2e and d s2e + 1 ≤ β ≤ s. Moreover, since d(uα, vs) = s − α + 1
and d(uβ , v1) = β are the maximum elements of mr(uα|W ) and mr(uβ |W ), re-
spectively, it follows that β = s− α + 1, as we claimed. (ii) can be obtained in a
manner similar to that used in the proof of (i).

Proposition 3.2. Let s, γ, δ be integers with s ≥ 4 and 1 ≤ γ, δ ≤ s, and let W
be a set of vertices of a caterpillar ca(k1, k2, ..., ks) containing one of {v1, w1} and
one of {vs, ws}. Then

(i) if 1 ≤ γ < δ ≤ s and mr(vγ |W ) = mr(uδ|W ), then 1 ≤ γ ≤ d s2e and
δ = s− γ + 2, and

(ii) if 1 ≤ δ ≤ γ ≤ s and mr(vγ |W ) = mr(uδ|W ), then d s2e + 1 ≤ γ ≤ s and
δ = s− γ.
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Proof. (i) Suppose that 1 ≤ γ < δ ≤ s and mr(vγ |W ) = mr(uδ|W ). Without
loss of generality, let us assume that W contains v1 and vs. If 1 ≤ γ < δ ≤ d s2e,
then d(vγ , vs) = s − γ + 2 and d(uδ, vs) = s − δ + 1 are the maximum elements
of mr(vγ |W ) and mr(uδ|W ), respectively. Therefore, δ = γ − 1, that is, γ > δ,
which gives a contradiction. If d s2e+1 ≤ γ < δ ≤ s, then d(vγ , v1) = γ + 1 and
d(uδ, v1) = δ are the maximum elements of mr(vγ |W ) and mr(uδ|W ), respectively.
Thus, δ = γ+1. Since d(vγ , vs) = s−γ+2 belongs to mr(vγ |W ), there is a vertex
w for which w = u2δ−s−3 or v2δ−s−2 or w2δ−s−2 such that d(uδ, w) = s − γ + 2.
Moreover, since d(vγ , w) = d(uδ, w) = s−γ+2, it follows that mr(vγ |W ) contains
s−γ+2’s more than mr(uδ|W ) does, which is impossible. Therefore, 1 ≤ γ ≤ d s2e
and d s2e+1 ≤ δ ≤ s. Moreover, since d(vγ , vs) = s − γ + 2 and d(uδ, v1) = δ are
the maximum elements of mr(vγ |W ) and mr(uδ|W ), respectively, it follows that
δ = s − γ + 2, as we claimed. For (ii), the statement may be proven in the same
way as (i), and therefore such proof is omitted.

An argument similar to the one used in the proof of Propositions 3.1 and 3.2
establishes the following results.

Proposition 3.3. Let s, α, β be integers with s ≥ 4 and 1 ≤ α < β ≤ s, and let
W be a set of vertices of a caterpillar ca(k1, k2, ..., ks) containing u1 and one of
{vs, ws} except v1 and w1. If mr(uα|W ) = mr(uβ |W ) or mr(vα|W ) = mr(vβ |W ),
then 1 ≤ α ≤ d s2e and β = s− α+ 2.

Proposition 3.4. Let s, γ, δ be integers with s ≥ 4 and 1 ≤ γ, δ ≤ s, and let W be
a set of vertices of a caterpillar ca(k1, k2, ..., ks) containing u1 and one of {vs, ws}
except v1 and w1. Then

(i) if 1 ≤ γ < δ ≤ s and mr(vγ |W ) = mr(uδ|W ), then 1 ≤ γ ≤ d s2e and
δ = s− γ + 3, and

(ii) if 1 ≤ δ ≤ γ ≤ s and mr(vγ |W ) = mr(uδ|W ), then d s2e + 1 ≤ γ ≤ s and
δ = s− γ + 1.

For an even integer s ≥ 4, let T1 be a caterpillar ca(k1, k2, ..., ks) such that
Ψ = {1, r, s}, where r ∈ {2, 3, ..., s − 1}. In particular, the caterpillar T1 =
ca(2, 0, 2, 1, 0, 1, 0, 2) is shown in Figure 4.

Figure 4: The caterpillar T1 = ca(2, 0, 2, 1, 0, 1, 0, 2) with Ψ = {1, 3, 8}
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For an odd integer s ≥ 5, let T2 be a caterpillar ca(k1, k2, ..., ks) such that
Ψ = {1, r, s}, where

r ∈

{
{2, 3, ..., s− 1} − {3, s+1

2 , s− 2} if s ≡ 1 (mod 4),

{2, 3, ..., s− 1} − {3, s−12 , s+1
2 , s+3

2 , s− 2} if s ≡ 3 (mod 4).
(3.1)

For example, the caterpillar T2 = ca(2, 0, 1, 2, 0, 1, 1, 0, 2) is illustrated in Fig-
ure 5.

Figure 5: The caterpillar T2 = ca(2, 0, 1, 2, 0, 1, 1, 0, 2) with Ψ = {1, 4, 9}

For an odd integer s ≥ 9, let T3 be a caterpillar ca(k1, k2, ..., ks) such that
Ψ = {1, 3, s} and k s−1

2
= 0, or Ψ = {1, s − 2, s} and k s+3

2
= 0. For an odd

integer s ≥ 11 and s ≡ 3 (mod 4), let T4 be a caterpillar ca(k1, k2, ..., ks) such
that Ψ = {1, s−12 , s} and k s+5

4
= 0, or Ψ = {1, s+3

2 , s} and k 3s−1
4

= 0.

Proposition 3.5. A caterpillar Ti, where 1 ≤ i ≤ 4 has multidimension 3.

Proof. For each integer i with 1 ≤ i ≤ 4, we show that every caterpillar Ti has
multidimension 3. We verify this for T2 only since the proof for T1, T3 and T4 uses
an argument similar to the one for T2. First, we verify that W = {w1, wr, ws}
is a multiresolving set of T2, where r satisfies the condition (3.1). Without loss
of generality, we may assume that 2 ≤ r ≤ d s2e. The multirepresentations of
vertices of W with respect to W are mr(w1|W ) = {0, r + 1, s + 1}, mr(wr|W ) =
{0, r + 1, s − r + 2} and mr(ws|W ) = {0, s − r + 2, s + 1}. Since r /∈ {1, s+1

2 , s},
it follows that these 3-multisets are distinct. Next, we claim that mr(x|W ) 6=
mr(y|W ) for all vertices x, y ∈ V (T2)−W . Suppose, contrary to our claim, that
mr(x|W ) = mr(y|W ) for some vertices x, y ∈ V (T2) − W . We consider three
cases.
Case 1. x and y are spine-vertices.
Let x = uα and y = uβ , where 1 ≤ α < β ≤ s. Then by Proposition 3.1,
1 ≤ α ≤ d s2e and β = s − α + 1. Thus, mr(uβ |W ) = {s − β + 1, β − r + 1, β} =
{α, s − α − r + 2, s − α + 1}. Since mr(uα|W ) = {α, |α − r| + 1, s − α + 1}, it
follows that |α− r|+ 1 = s− α− r + 2. If α ≥ r, then 2α = s+ 1, and so α = β
which is impossible. If α < r, then r = s−1

2 , a contradiction.
Case 2. x and y are first end-vertices.
Let x = vα and y = vβ , where 1 ≤ α < β ≤ s. Then by Proposition 3.1,
1 ≤ α ≤ d s2e and β = s−α+ 1. Thus, mr(vβ |W ) = {s− β+ 2, β− r+ 2, β+ 1} =
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{α+ 1, s−α− r+ 3, s−α+ 2}. Since mr(vα|W ) = {α+ 1, |α− r|+ 2, s−α+ 2},
it follows that |α− r|+ 2 = s−α− r+ 3. If α ≥ r, then 2α = s+ 1, and so α = β,
which cannot occur. If α < r, then r = s−1

2 , that is also a contradiction.
Case 3. x is a first end-vertex and y is a spine-vertex.
Let x = vγ and y = uδ, where 1 ≤ γ, δ ≤ s. We consider two subcases.

Subcase 3.1. 1 ≤ γ < δ ≤ s.
Then by Proposition 3.2 (i), 1 ≤ γ ≤ d s2e and δ = s − γ + 2. Thus, mr(uδ|W ) =
{s − δ + 1, δ − r + 1, δ} = {γ − 1, s − γ − r + 3, s − γ + 2}. Since mr(vγ |W ) =
{γ+1, |γ−r|+2, s−γ+2}, it follows that |γ−r|+2 = γ−1 and γ+1 = s−γ−r+3.
If γ ≥ r, then r = 3, which is impossible. If γ < r, then s = 4(γ − 2) + 3, that
is, s ≡ 3 (mod 4). Also, we obtain that 2r = s− 1, and then r = s−1

2 , which is a
contradiction.

Subcase 3.2. 1 ≤ δ ≤ γ ≤ s.
Then by Proposition 3.2 (ii), d s2e+1 ≤ γ ≤ s and δ = s − γ. Thus, mr(vγ |W ) =
{s− γ + 2, γ − r+ 2, γ + 1} = {δ + 2, s− δ − r+ 2, s− δ + 1}. Since mr(uδ|W ) =
{δ, |δ − r|+ 1, s− δ + 1}, it follows that |δ − r|+ 1 = δ + 2 and δ = s− δ − r + 2.
Consequently, |δ − r| = s − δ − r + 3. If δ ≥ r, then 2δ = s + 3, which cannot
occur. If δ < r, then 2r = s+ 3, a contradiction.
Therefore, mr(x|W ) 6= mr(y|W ) for all vertices x, y ∈ V (T2)−W , that is, W is a
multiresolving set of T2 and so dimM (T2) ≤ 3. Since T2 is not a path, it follows
by Theorems 2.3 and 2.4 that dimM (T2) ≥ 3. Hence, dimM (T2) = 3.

The following corollary is an immediate consequence of Proposition 3.5.

Corollary 3.6. Let T be a caterpillar ca(k1, k2, ..., ks) such that T ∼= Ti, where
1 ≤ i ≤ 4 with Ψ = {1, r, s}. Then W is a multibasis of T if and only if W =
{x1, xr, xs}, where xi ∈ {vi, wi} for i = 1, r, s.

For an integer s ≥ 4, let T5 be a caterpillar ca(k1, k2, ..., ks) such that Ψ =
{p, s} or Ψ = {1, q}, where 1 ≤ p < q ≤ s.

Proposition 3.7. A caterpillar T5 has multidimension 3.

Proof. First, suppose that Ψ = {p, s}, where 1 ≤ p ≤ s−1. Since T5 is not a path,
it follows by Theorems 2.3 and 2.4 that dimM (T5) ≥ 3. We consider two cases.
Case 1. p = 1.
We show that W = {u1, w1, ws} is a multiresolving set of T5. The multirepresen-
tations of vertices of W with respect to W are mr(u1|W ) = {0, 1, s}, mr(w1|W ) =
{0, 1, s + 1} and mr(ws|W ) = {0, s, s + 1}. Thus, these 3-multisets are distinct.
Next, we claim that mr(x|W ) 6= mr(y|W ) for all vertices x, y ∈ V (T5) − W .
Assume, contrary to our claim, that mr(x|W ) = mr(y|W ) for some vertices
x, y ∈ V (T5)−W . We consider three subcases.

Subcase 1.1. x and y are spine-vertices.
Let x = uα and y = uβ , where 1 ≤ α < β ≤ s. Then by Proposition 3.1, 1 ≤ α ≤
d s2e and β = s−α+1. Thus, mr(uβ |W ) = {s−β+1, β−1, β} = {α, s−α, s−α+1}.
Since mr(uα|W ) = {α, α−1, s−α+1}, it follows that α−1 = s−α and so α = β,
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which is impossible.
Subcase 1.2. x and y are first end-vertices.

Let x = vα and y = vβ , where 1 ≤ α < β ≤ s. Then by Proposition 3.1,
1 ≤ α ≤ d s2e and β = s − α + 1. Thus, mr(vβ |W ) = {s − β + 2, β, β + 1} =
{α + 1, s − α + 1, s − α + 2}. Since mr(vα|W ) = {α + 1, α, s − α + 2}, it follows
that α = s− α+ 1 and so α = β, this is also a contradiction.

Subcase 1.3. x is a first end-vertex and y is a spine-vertex.
Let x = vγ and y = uδ, where 1 ≤ γ, δ ≤ s. We consider two subcases.

Subcase 1.3.1. 1 ≤ γ < δ ≤ s.
Then by Proposition 3.2 (i), 1 ≤ γ ≤ d s2e and δ = s − γ + 2. Since mr(uδ|W ) =
{s−δ+1, δ−1, δ} = {γ−1, s−γ+1, s−γ+2} and mr(vγ |W ) = {γ+1, γ, s−γ+2},
it follows that mr(vγ |W ) 6= mr(uδ|W ), which is impossible.

Subcase 1.3.2. 1 ≤ δ ≤ γ ≤ s.
Then by Proposition 3.2 (ii), d s2e+1 ≤ γ ≤ s and δ = s − γ. Since mr(vγ |W ) =
{s−γ+ 2, γ, γ+ 1} = {δ+ 2, s− δ, s− δ+ 1} and mr(uδ|W ) = {δ, δ− 1, s− δ+ 1},
it follows that mr(vγ |W ) 6= mr(uδ|W ), this is also a contradiction.
Therefore, mr(x|W ) 6= mr(y|W ) for all vertices x, y ∈ V (T5) −W , that is, W is
a multiresolving set of T5. Hence, dimM (T5) ≤ 3, and so dimM (T5) = 3, where
p = 1.
Case 2. p ≥ 2.
We consider two subcases.

Subcase 2.1. s is even.
With the aid of Theorem 2.5 and Corollary 3.6, since T5 ∼= T1 − w1 and W =
{v1, wp, ws} is a multiresolving set of T1, it follows that W is a multiresolving set
of T5. Therefore, dimM (T5) ≤ 3, and so dimM (T5) = 3, where p ≥ 2 and s is even.

Subcase 2.2. s is odd.
We consider two subcases.

Subcase 2.2.1. p = 2.
By Theorem 2.5 and Corollary 3.6, since T5 ∼= T2 − w1 and W = {v1, wp, ws} is a
multiresolving set of T2, it follows by Theorem 2.5 that W is a multiresolving set
of T5. Therefore, dimM (T5) ≤ 3, and so dimM (T5) = 3, where p = 2 and s is odd.

Subcase 2.2.2. p ≥ 3.
Let W = {u1, wp, ws}. The multirepresentations of vertices of W with respect to
W are mr(u1|W ) = {0, p, s}, mr(wp|W ) = {0, p, s − p + 2} and mr(ws|W ) =
{0, s − p + 2, s}. Thus, these 3-multisets are distinct. Next, we claim that
mr(x|W ) 6= mr(y|W ) for all vertices x, y ∈ V (T5) − W . Suppose, contrary to
our claim, that mr(x|W ) = mr(y|W ) for some vertices x, y ∈ V (T5) −W . We
consider three subcases.

Subcase 2.2.2.1. x and y are spine-vertices.
Let x = uα and y = uβ , where 1 ≤ α < β ≤ s. Then by Proposition 3.3,
1 ≤ α ≤ d s2e and β = s−α+2. Thus, mr(uβ |W ) = {s−β+1, |β−p|+1, β−1} =
{α− 1, |β − p|+ 1, s− α+ 1}. Since mr(uα|W ) = {α− 1, |α− p|+ 1, s− α+ 1},
it follows that |α − p| + 1 = |β − p| + 1. If p ≤ α or β ≤ p, then α = β, which is
impossible. If α < p < β, then s = 2p− 2, contradicting the fact that s is odd.

Subcase 2.2.2.2. x and y are first end-vertices.



The Characterization of Caterpillars with Multidimension 3 257

Let x = vα and y = vβ , where 1 ≤ α < β ≤ s. Then by Proposition 3.3,
1 ≤ α ≤ d s2e and β = s− α + 2. Thus, mr(vβ |W ) = {s− β + 2, |β − p|+ 2, β} =
{α, |β−p|+2, s−α+2}. Since mr(vα|W ) = {α, |α−p|+2, s−α+2}, it follows that
|α− p|+ 2 = |β − p|+ 2. By the same argument as the proof in Subcase 2.2.2.1.,
we obtain a contradiction.

Subcase 2.2.2.3. x is a first end-vertex and y is a spine-vertex.
Let x = vγ and y = uδ, where 1 ≤ γ, δ ≤ s. There are two possibilities:

1) 1 ≤ γ < δ ≤ s.
Then by Proposition 3.4 (i), 1 ≤ γ ≤ d s2e and δ = s − γ + 3. Thus, mr(uδ|W ) =
{s− δ + 1, |δ − p|+ 1, δ − 1} = {γ − 2, |δ − p|+ 1, s− γ + 2}. Since mr(vγ |W ) =
{γ, |γ − p|+ 2, s− γ + 2}, it follows that |γ − p|+ 2 = γ − 2 and γ = |δ − p|+ 1.
Consequently, |γ − p| + 3 = |δ − p|. If p ≤ γ, then 2γ = s, contradicting the fact
that s is odd. If γ < p < δ, then 2p = s, a contradiction. If δ ≤ p, then 2γ−6 = s,
this is also a contradiction.

2) 1 ≤ δ ≤ γ ≤ s.
Then by Proposition 3.4 (ii), d s2e+1 ≤ γ ≤ s and δ = s − γ + 1. Thus,
mr(vγ |W ) = {s − γ + 2, |γ − p| + 2, γ} = {δ + 1, |γ − p| + 2, s − δ + 1}. Since
mr(uδ|W ) = {δ − 1, |δ − p|+ 1, s− δ + 1}, it follows that |δ − p|+ 1 = δ + 1 and
δ − 1 = |γ − p|+ 2. Consequently, |δ − p| = |γ − p|+ 3. If p < δ, then s = 2γ + 2,
contradicting the fact that s is odd. If δ ≤ p ≤ γ, then s = 2p−4, a contradiction.
If γ < p, then s = 2δ + 2, this is also a contradiction.
Therefore, dimM (T5) ≤ 3, and so dimM (T5) = 3, where p ≥ 3 and s is odd.
Similarly, for Ψ = {1, q}, where 2 ≤ q ≤ s, dimM (T5) = 3 can be proven in the
same manner as well.

For an integer s ≥ 4, let T6 be a caterpillar ca(k1, k2, ..., ks) such that Ψ = {r},
where r ∈ {1, 2, ..., s}. For an integer s ≥ 4, let T7 be a caterpillar ca(k1, k2, ..., ks)
such that Ψ = ∅ and kr = 1, where r ∈ {2, 3, ..., s − 1}. Combining Theorem 2.5
and Proposition 3.7, we arrive yet another result.

Proposition 3.8. A caterpillar Ti, where 6 ≤ i ≤ 7 has multidimension 3.

Caterpillars with multidimension 3 are completely characterized, as we present
next.

Theorem 3.9. For an integer s ≥ 4, let T be a caterpillar ca(k1, k2, ..., ks). Then
T has multidimension 3 if and only if T ∼= Ti, where i ∈ {1, 2, ..., 7}.

Proof. The preceding results provide the sufficient condition for a caterpillar T
having multidimension 3. To show the necessary condition, suppose that T has a
multidimension 3. By Theorem 2.1, it implies that |Ψ| ≤ 3. For |Ψ| = 0, there
is an integer r with 2 ≤ r ≤ s − 1 such that kr = 1, for otherwise T is a path,
contradicting the fact that dimM (T ) = 3. Hence, T ∼= T7. For |Ψ| = 1, obviously,
T ∼= T6. It remains therefore only to consider |Ψ| = 2 and |Ψ| = 3.

For |Ψ| = 2, we claim that Ψ contains at least one of {1, s}. Suppose, contrary
to our claim, that Ψ contains neither 1 nor s. Let Ψ = {r1, r2}, where 2 ≤ r1 <
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r2 ≤ s− 1. By Theorem 2.1, every multibasis of T contains exactly one vertex of
{vr1 , wr1}, say wr1 . Since there are degT ur1 = 4 distinct components of T − ur1 ,
it follows by Proposition 2.7 that there is a vertex of a multibasis W belonging
to the component containing the spine-vertex ur1−1. Similarly, since there are
degT ur2 = 4 distinct components of T − ur2 , there is a vertex of W belonging to
the component containing the spine-vertex ur2+1. Therefore, W contains at least
four vertices, this is a contradiction. Thus, Ψ contains at least one of {1, s}, that
is, T ∼= T5.

For |Ψ| = 3, we show that Ψ contains both 1 and s. Assume, to the contrary,
that Ψ does not contain 1 or s, say 1. Let Ψ = {r1, r2, r3}, where 2 ≤ r1 < r2 <
r3 ≤ s. Then W = {wr1 , wr2 , wr3} is a multibasis of T . Notice that degT ur1 =
4, that is, there are four distinct components of T − ur1 . However, both wr2
and wr3 must belong to the same component containing the spine-vertex ur1+1,
contradicting Proposition 2.7 that wr1 , wr2 and wr3 cannot belong to the same
component of T − ur1 . Thus, Ψ contains 1 and s. We may assume without loss
of generality that Ψ = {1, r, s} with 2 ≤ r ≤ d s2e. Then W = {w1, wr, ws} is a
multibasis of T . If s is even, then T ∼= T1. We may assume that s is odd. If
r = d s2e, then mr(w1|W ) = mr(ws|W ), which is impossible. Thus 2 ≤ r ≤ s−1

2 .
Next, we consider two cases according to whether s is congruent to 1 or 3 modulo
4.
Case 1. s ≡ 1 (mod 4).
If r 6= 3, then T ∼= T2. For r = 3, since r ≤ s−1

2 , it follows that s ≥ 9. Next,
we claim that k s−1

2
= 0. Suppose, contrary to our claim, that k s−1

2
≥ 1. Then

mr(v s−1
2
|W ) = { s−32 , s+1

2 , s+5
2 } = mr(u s+5

2
|W ), contradicting the fact that W is

a multibasis of T . Hence, k s−1
2

= 0, and so T ∼= T3.

Case 2. s ≡ 3 (mod 4).
If r 6= 3, s−12 , then T ∼= T2. For r = 3, we claim that k s−1

2
= 0. Suppose, contrary

to our claim, that k s−1
2
≥ 1. Then mr(v s−1

2
|W ) = { s−32 , s+1

2 , s+5
2 } = mr(u s+5

2
|W ),

contradicting the fact that W is a multibasis of T , as we claimed. Hence, s ≥ 11,
and so T ∼= T3. For r = s−1

2 ≥ 4, since r ≤ s−1
2 , it follows that s ≥ 11. Next,

we claim that k s+5
4

= 0. Suppose, contrary to our claim that k s+5
4
≥ 1. Then

mr(v s+5
4
|W ) = { s+1

4 , s+9
4 , 3s+3

4 } = mr(u 3s+3
4
|W ), contradicting the fact that W

is a multibasis of T . Hence, k s+5
4

= 0, and so T ∼= T4.

4 Final Remarks

For an integer s ≥ 2, let T be a caterpillar ca(k1, k2, ..., ks) of order n such
that Ψ 6= ∅ and dimM (T ) is defined. It then follows by Theorem 2.1 that

|Ψ| ≤ dimM (T ) ≤ n− |Ψ|.

Moreover, by Corollary 3.6, caterpillars T1, T2, T3 and T4 also illustrate the sharp-
ness of this lower bound. It would be interesting to determine whether this upper
bound is sharp or not.
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