On some Algrebraic Structures of AG^{*}-groupoids

Punyapat Kammoo and Chaiwat Namnak ${ }^{11}$
Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand e-mail : punyapatk59@email.nu.ac.th (P. Kammoo) chaiwatn@nu.ac.th (C. Namnak)

Abstract

An AG*-groupoid is an AG-groupoid S satisfying the identity $(a b) c=$ $b(a c)$ for all $a, b, c \in S$. In this paper, we study some properties of AG^{*}-groupoids. Moreover, we construct a congruence relation on a cancellative AG^{*}-groupoid.

Keywords : AG-groupoid; AG*-groupoid; cancellative; regular; congruence. 2010 Mathematics Subject Classification : 20L99.

1 Introduction and preliminaries

By a groupoid (S, \cdot) we mean a nonempty set S on which a binary operation • is defined. We say that S is an $A G$-groupoid (Abel-Grassmann's groupoid) if • is left invertive, that is, $(a b) c=(c b) a$ for all $a, b, c \in S$. The notion of an AG-groupoid was first introduced by Kazim and Naseeruddin in 1977 and they have called it a left almost semigroup (LA-semigroup) 11. Such a groupoid satisfies the medial law: $(a b)(c d)=(a c)(b d)$ for all $a, b, c, d \in S$ [2]. In fact, if S is an AG-groupoid with left identity, then S satisfies the paramedical law: $(a b)(c d)=(d b)(c a)$ for all $a, b, c, d \in$ S [3]. If an AG-groupoid satisfies the identity: $(a b) c=b(a c)$ for all $a, b, c \in$ S, then it is called $A G^{*}$-groupoid. It is well known that every AG^{*}-groupoid satisfies the paramedical law. Both AG-groupoids and AG^{*}-groupoids have been wildly studied. Some properties of AG^{*}-groupoids were investigated in [4]. In

[^0][5], a description of a fully regular AG*-groupoid was presented. Other algebraic properties of AG -groupoids and AG^{*}-groupoids can be found in [1, 3, 6, 7, In this paper, we study some algebraic structures of AG*-groupoids. Futhermore, we define a commutative congruence on a cancellative AG^{*}-groupoid.

An element a of a groupoid S is called left (right) cancellative if for every $x, y \in S, a x=a y(x a=y a)$ implies $x=y$. An element a of a groupoid S is called cancellative if it is both left and right cancellative. An AG-groupoid S is called a left cancellative (right cancellative, cancellative) AG-groupoid if every element of S is left cancellative (right cancellative, cancellative).

We first present some propositions on AG-groupoids most of which will be used later.

Theorem 1.1 (3). Let S be an $A G$-groupoid. If a is right cancellative of S, then a is left cancellative. Hence every right cancellative element of S is cancellative.

Theorem 1.2 (3). Let S be an $A G$-groupoid with left identity. Every left cancellative element of S is also right cancellative.

Theorem 1.3 ([7). Let S be an AG-groupoid with left identity. Then S is commutative if and only if S is associative.

An element a of an AG-groupoid S is called 3-band if $a=(a a) a$.
The following results show that a left cancellative element of an AG-groupoid is right cancellative if it is 3 -band.

Proposition 1.4. Let S be an AG-groupoid. If a is left cancellative and 3-band, then a is right cancellative.

Proof. Suppose that a is a left cancellative element of S and $a=(a a) a$. Let $x, y \in S$ be such that $x a=y a$. Then

$$
a x=((a a) a) x=(x a)(a a)=(y a)(a a)=((a a) a) y=a y .
$$

Since a is left cancellative, we have $x=y$. Therefore a is a right cancellative element of S.

The following is an immediate consequence of Proposition 1.4
Corollary 1.5. Let a be an element of an $A G$-groupoid S such that $a^{2}=a$. If a is left cancellative, then a is also right cancellative.

Proposition 1.6. Let S be an AG-groupoid. If a is a left cancellative element of S and $a=b c$ for some $b, c \in S$, then b and c are left and right cancellative elements of S, respectively.

Proof. Suppose that a is a left cancellative element of S and $a=b c$ for some $b, c \in S$. Let $x, y \in S$ be such that $x c=y c$. Then

$$
a x=(b c) x=(x c) b=(y c) b=(b c) y=a y
$$

Since a is left cancellative, we have $x=y$. This shows that c is right cancellative. Let $x, y \in S$ be such that $b x=b y$. Then

$$
a(x c)=(b c)(x c)=(b x)(c c)=(b y)(c c)=(b c)(y c)=a(y c)
$$

Since a is left cancellative and c is right cancellative, we deduce that $x=y$. Hence b is left cancellative.

An element a of AG-groupoid S is called a regular element of S if $a=(a x) a$ for some $x \in S$.

Proposition 1.7. Let S be an $A G$-groupoid. If a and b are regular elements of S, then $a b$ is a regular element of S. In particular, the set of all regular elements of S becomes an $A G$-subgroupoid of S if it is nonempty.

Proof. Suppose that a and b are regular elements of S. Then $a=(a x) a$ and $b=(b y) b$ for some $x, y \in S$. Since

$$
a b=((a x) a)((b y) b)=((a x)(b y))(a b)=((a b)(x y))(a b)
$$

it follows that $a b$ is a regular element of S.

2 Main Results

We first study some properties of cancellative elements of an $A G^{*}$-groupoid.
Theorem 2.1. Let a be an element of an $A G^{*}$-groupoid S. Then the following statements are equivalent.
(i) a is a left cancellative element of S.
(ii) a is a right cancellative element of S.
(iii) a is a cancellative element of S.

Proof. $(i) \Rightarrow(i i)$ Suppose that a is a left cancellative element of S. Let $x, y \in S$ be such that $x a=y a$. Since

$$
a(a(a y))=a((a a) y)=a((y a) a)=a((x a) a)=a((a a) x)=a(a(a x))
$$

and by assumption, we deduce that $x=y$. Therefore a is right cancellative.
(ii) \Rightarrow (iii) It is clearly by Theorem 1.1 .
(iii) \Rightarrow (i) Obvious.

Theorem 2.2. Let a and b be elements of an $A G^{*}$-groupoid S. Then a and b are cancellative if and only if ab is cancellative. In particular, the set of all cancellative elements of S is an $A G^{*}$-subgroupoid of S if it is nonempty.

Proof. Suppose that a and b are cancellative elements of S. Let $x, y \in S$ be such that $x(a b)=y(a b)$. This implies that $(a x) b=x(a b)=y(a b)=(a y) b$. By cancellativity of b and a, we deduce that $x=y$. Therefore $a b$ is right cancellative. By Theorem 2.1, $a b$ is cancellative of S.

Conversely, it follows directly from Proposition 1.6 and Theorem 2.1.
Immediately we adapt the statement by using Theorem 2.2 to obtain to following corollary.

Corollary 2.3. Let S be an $A G^{*}$-groupoid such that $S^{2}=S$. If a is a cancellative element of S, then a is a product of two cancellative elements of S.

Proposition 2.4. Let S be an $A G^{*}$-groupoid and $a, b \in S$. If a is a left cancellative element of S and $a=a b$, then $a b=b a$ and $b^{2}=b$.

Proof. Suppose that a is left cancellative and $a=a b$. Then $a b=(a b) b=b(a b)=$ $b a$. Since

$$
a b^{2}=a(b b)=(a b)(b b)=(b a)(b b)=(b b)(a b)=(b b) a=(a b) b=a b
$$

we have $b^{2}=b$ by assumption.
Proposition 2.5. Let S be an $A G^{*}$-groupoid. If a is a left cancellative element of S and $a^{2}=a$, then a is a left identity of S.

Proof. Let $b \in S$. Since $a b=(a a) b=a(a b)$ and a is left cancellative, we deduce that $b=a b$. This shows that a is a left identity of S.

In fact, if e is a right identity of an AG-groupoid S, then $a b=(a e) b=(b e) a=$ $b a$ for all $a, b \in S$. Hence S is commutative. If e is a left identity of S, then e is right cancellative. To prove this, let $a, b \in S$ be such that $a e=b e$. Then $a=e a=(e e) a=(a e) e=(b e) e=(e e) b=e b=b$.

Lemma 2.6. Let e be an element of an $A G^{*}$-groupoid S. Then e is a right identity of S if and only if e is a left identity of S. In this case, S is commutative.

Proof. As mentioned, if e is a right identity of S, then S is commutative. Hence e is a left identity of S.

For the converse, assume that e is a left identity of S. From the above observation, e is right cancellative. Let $a \in S$. Since $(a e) e=e(a e)=a e$, we deduce that $a e=a$. This shows that e is a right identity of S.

Note that Lemma 2.6 does not hold for AG-groupoid. The counterexample is given as follows.

Example 2.7. Let $S=\{a, b, c, d, e\}$ with the following Cayley table as shown in Table 1.

\cdot	a	b	c	d	e
a	a	a	a	a	a
b	a	b	c	d	e
c	a	e	b	c	d
d	a	d	e	b	d
e	a	c	d	e	b
Table 1.					

By routine calculation to prove that S is an AG-groupoid but not an AG*-groupoid since $(c d) e \neq d(c e)$. We see that b is a left identity element in S but not right identity.

The next corollary follows directly from Lemma 2.6 and Theorem 1.3
Corollary 2.8. If S is an $A G^{*}$-groupoid with left identity, then S is a commutative semigroup.

The quoted results will be indispensable for our proof.
Theorem 2.9. 4] Let S be an $A G^{*}$-groupoid. Then the following statements hold:
(i) $a^{2}(b c)=\left(a^{2} b\right) c$ for all $a, b, c \in S$.
(ii) $(a b) c^{2}=a\left(b c^{2}\right)$ for all $a, b, c \in S$.
(iii) $\left(a b^{2}\right) c=a\left(b^{2} c\right)$ for all $a, b, c \in S$.

Theorem 2.10. Let a be an element of an $A G^{*}$-groupoid S with $a^{2}=a$ and let

$$
Q_{a}=\{x \in S \mid a x=x\}
$$

Then
(i) Q_{a} is a commutative monoid.
(ii) Q_{a} has the identity element.
(iii) Q_{a} is an ideal of S.

Proof. Since $a \in Q_{a}$, it is a nonempty subset of S. Let $x, y \in Q_{a}$. Then $a x=x$ and $a y=y$, and hence $a(x y)=(a a)(x y)=(a x)(a y)=x y$. So $x y \in Q_{a}$. By virtue of Theorem 2.9 (ii), we have

$$
x y=(a x)(a y)=(y x)(a a)=x(y(a a))=(x y)(a a)=(a y)(a x)=y x .
$$

These prove that Q_{a} is a commutative semigroup having a as its identity. Hence (i) and (ii) hold. Let $s \in S$ and $x \in Q_{a}$. Then

$$
a(s x)=(a a)(s x)=(a s)(a x)=(a s) x=(x s) a=s(x a)=s x
$$

which implies that $s x \in Q_{a}$. Also, we have $a(x s)=(x a) s=x s$. Hence (iii) holds.

An element a of an AG-groupoid S is called:

- a left regular element of S if $a=x a^{2}$ for some $x \in S$.
- a right regular element of S if $a=a^{2} x$ for some $x \in S$.
- a completely regular element of S if a is regular, left regular and right regular.
- a (2,2)-regular element of S if $a=\left(a^{2} x\right) a^{2}$ for some $x \in S$.
- a weakly regular element of S if $a=(a x)(a y)$ for some $x, y \in S$.
- a left quasi regular element of S if $a=(x a)(y a)$ for some $x, y \in S$.
- an intra-regular element of S if $a=\left(x a^{2}\right) y$ for some $x, y \in S$.
- a strongly regular element of S if $a=(a x) a$ and $a x=x a$ for some $x \in S$.

Next, to show that regular, left regular, right regular, completely regular, $(2,2)$-regular, weakly regular, left quasi regular, intra-regular and strongly regular coincide in any AG*-groupoids. The following lemmas are needed.

Lemma 2.11. Let S be an $A G^{*}$-groupoid. Then $(a b)(b a)=(b a)(a b)$ for all $a, b \in$ S.

Proof. Let $a, b \in S$. Then $(a b)(b a)=((b a) b) a=b((b a) a)=b((a a) b)=(b(a a)) b=$ $((a b) a) b=(b a)(a b)$.

Lemma 2.12. Let S be an $A G^{*}$-groupoid and $a \in S$. If $a=(a x)$ a for some $x \in S$, then ax is an idempotent of S.

Proof. Suppose that $a=(a x) a$ for some $x \in S$. Then

$$
a x=((a x) a) x=(x(a a)) x=(a a)(x x)=(a x)(a x) .
$$

This shows that $a x$ is idempotent.
Theorem 2.13. Let a be an element of an $A G^{*}$-groupoid S. Then the following statements are equivalent.
(i) a is regular of S.
(ii) a is left regular of S.
(iii) a is right regular of S.
(iv) a is completely regular of S.
(v) a is (2,2)-regular of S.
(vi) a is weakly regular of S.
(vii) a is left quasi regular of S.
(viii) a is intra-regular of S.
(ix) a is strongly regular of S.

Proof. Only sample proofs are necessary.
$($ ii $) \Rightarrow($ iii $)$ Suppose that a is left regular of S. Then $a=x a^{2}$ for some $x \in S$.
From Lemma 2.11, we have
$a=x(a a)=(a x) a=((x a)(a x)) a=((a x)(x a)) a=(x a)((a x) a)=(((a x) a) a) x=a^{2} x$.
Hence a is right regular.
$(i i i) \Rightarrow(i v)$ Suppose that a is right regular of S. Then there exists $x \in S$ such that $a=a^{2} x$. From Theorem 2.9, we have

$$
\begin{aligned}
a & =(a a) x=(((a a) x) a) x=((a a)(x a)) x=((a x)(a a)) x=(a x)((a a) x) \\
& =(((a a) x) x) a=(a x) a=x a^{2} .
\end{aligned}
$$

This shows that a is regular and left regular. Thus a is completely regular.
$(i v) \Rightarrow(v)$ Suppose that a is completely regular of S. Then a is right regular. Hence $a=a^{2} x$ for some $x \in S$. From Theorem 2.9, we have

$$
\begin{aligned}
a & =(a a) x=(x a) a=\left(x\left(a^{2} x\right)\right) a=\left(\left(x a^{2}\right) x\right) a=\left(a^{2}(x x)\right) a=\left(a^{2}(x x)\right)\left(a^{2} x\right) \\
& =\left(\left(a^{2} x\right)(x x)\right) a^{2}=\left(a^{2}(x(x x))\right) a^{2} .
\end{aligned}
$$

This shows that a is (2,2)-regular.
$(v) \Rightarrow(v i)$ Suppose that a is $(2,2)$-regular of S. Then $a=\left(a^{2} x\right) a^{2}$ for some $x \in S$. Since $a=\left(a^{2} x\right) a^{2}=((a a) x)(a a)=(a(a x))(a a)$, we have that a is weakly regular of S.
$(v i i) \Rightarrow(v i i i)$ Suppose that a is left quasi regular of S. Then $a=(x a)(y a)$ for some $x, y \in S$. Since $a=(x a)(y a)=(a a)(y x)=(y(a a)) x=\left(y a^{2}\right) x$, we have that a is intra-regular.
$($ viii $) \Rightarrow(i)$ Suppose that a is intra-regular. Then $a=\left(x a^{2}\right) y$ for some $x, y \in$ S. Since $a=\left(x a^{2}\right) y=x\left(a^{2} y\right)=\left(a^{2} x\right) y=(y x) a^{2}=(y x)(a a)=(a(y x)) a$, we have that a is regular.
$(i) \Rightarrow(i x)$ Suppose that a is regular of S. Then $a=(a x) a$ for some $x \in S$. It suffices to show that $a x=x a$. By Lemma 2.12, we have that $a x$ is idempotent of S. Then $a x=(a x)(a x)=(x x)(a a)=x(x(a a))=x((a x) a)=x a$.

Hence the theorem is completely proved.
Lemma 2.12 and Theorem 2.13 are not true in an AG-groupoid shown in Table 2.

Example 2.14. Let $S=\{a, b, c, d\}$ and the binary operation \cdot defined on S as follows:

\cdot	a	b	c	d
a	b	b	d	d
b	b	b	b	b
c	a	b	c	d
d	a	b	a	b
Table 2.				

It is a routine matter to verify that S is an AG-groupoid not an AG^{*}-groupoid since $(a c) d \neq c(a d)$ and we see that a is regular since $a=(a d) a$. But a is not right regular of S and $a d$ is not idempotent of S.

To characterize the regular elements of an AG^{*}-groupoid, the following theorems are shown.

Theorem 2.15. Let S be a cancellative $A G^{*}$-groupoid and $a, b \in S$. If $a b$ is regular, then a and b are regular of S.

Proof. Let $a b$ be regular of S. By Theorem 2.13, $a b$ is right regular of S. Then $a b=((a b)(a b)) x$ for some $x \in S$. Since

$$
a b=((a b)(a b)) x=(b(a(a b))) x=(x(a(a b))) b
$$

and by cancellativity of b, we have $a=x(a(a b)))=(a x)(a b)$. This implies that a is weakly regular of S. Hence a is regular. Since

$$
a b=((a x)(a b)) b=((a a)(x b)) b=(a a)((x b) b)=a(a((x b) b))
$$

and by cancellativity of a, we have that $b=a((x b) b)=a((b b) x)=(a(b b)) x$. This shows that b is intra-regular of S. By Theorem 2.13, b is regular.

Corollary 2.16. Let S be a cancellative $A G^{*}$-groupoid and $a \in S$. If $a=(a x) a$ for some $x \in S$, then x is regular of S.

Proof. Suppose that $a=(a x) a$ for some $x \in S$. By Lemma 2.12, $a x$ is idempotent of S which implies that $a x$ is regular. It follows directly from Theorem 2.15 that x is regular.

As consequence of Proposition 1.7 and Theorem [2.15, the following result follows immediately.

Corollary 2.17. Let S be a cancellative $A G^{*}$-groupoid and $a, b \in S$. Then a and b are regular if and only if ab is regular.

Finally, we define a relation ρ on a cancellative AG^{*}-groupoid S by

$$
a \rho b \text { if and only if } a b=b a
$$

for all $a, b \in S$. Then we have
Theorem 2.18. Let S be a cancellative $A G^{*}$-groupoid. Then the following statements hold:
(i) ρ is an equivalence relation.
(ii) ρ is a congruence.
(iii) S / ρ is a cancellative $A G^{*}$ groupoid.
(iv) S / ρ is a commutative $A G^{*}$ groupoid.

Proof. (i) Clearly, ρ is reflexive and symmetry. Let $a, b, c \in S$ be such that $(a, b),(b, c) \in \rho$. Then $a b=b a$ and $b c=c b$. Since

$$
(a c) b=c(a b)=c(b a)=(b c) a=(c b) a=(a b) c=(b a) c=(c a) b
$$

and by cancellativity of b, we have $a c=c a$. This shows that ρ is transitive. Hence ρ is an equivalence relation on S.
(ii) Let $a, b \in S$ be such that $(a, b) \in \rho$. To show that $(a c, b c),(c a, c b) \in \rho$ for all $c \in S$. Let $c \in S$. Then $(a c)(b c)=(a b)(c c)=(b a)(c c)=(b c)(a c)$ and $(c a)(c b)=(c c)(a b)=(c c)(b a)=(c b)(c a)$. These show that $(a c, b c),(c a, c b) \in \rho$. Hence ρ is a congruence.
(iii) Let $a, b, c \in S$ be such that $(a \rho)(b \rho)=(a \rho)(c \rho)$. Then $(a b, a c) \in \rho$. To show that $b \rho=c \rho$, let $x \in b \rho$. Then $x b=b x$ and hence $(x b) a=(b x) a$. Since

$$
(a b) x=(x b) a=(b x) a=(a x) b=x(a b)
$$

we deduce that $x \in a b \rho=a c \rho$. Then $x(a c)=(a c) x$. Since

$$
(c x) a=(a x) c=x(a c)=(a c) x=(x c) a .
$$

and by cancellativity of a, we have $c x=x c$. It shows that $x \in c \rho$. That is, $b \rho \subseteq c \rho$. Similary, we also have $c \rho \subseteq b \rho$. Hence $b \rho=c \rho$. This proves that $a \rho$ is left cancellative of S / ρ. By Theorem 2.1 $a \rho$ is cancellative of S / ρ.
(iv) Let $a \rho, b \rho \in S / \rho$. By Lemma 2.11, we have that $(a b)(b a)=(b a)(a b)$. It follows that $(a b) \rho(b a)$. Therefore $(a \rho)(b \rho)=(b \rho)(a \rho)$.

Acknowledgement : The authors would like to thank the anonymous referees for their thorough review and appreciate the constructive comments and suggestions, which have significantly contributed to improve the quality of the paper.

References

[1] M.A. Kazim, M. Naseeruddin. On almost semigroups, Portugaliae Mathematica (1977) 41-47.
[2] R.C. Jung, J. Ježek, T. Kepka, Paramedial groupoids, Czechoslovak Mathematical Journal (1999) 277-290.
[3] M. Shah, T. Shah, A. Ali, On the cancellative of AG-groupoids, International Mathematical Forum (2011) 2187-2194.
[4] I. Ahmad, M. Rashad, M. Shah, Some properties of AG*-groupoid, Research Journal of Recent Sciences (2013) 91-93.
[5] Faisal, A. Khan, B. Davvaz, On fully regular AG-groupoid, Afrika Matematika (2014) 449-459.
[6] M. Iqbal, I. Iqbal, M. Shah, A.M. Irfan, On cyclic associative Abel- Grassman groupoids, British Journal of Mathematics \& Computer Science (2015) 1-16.
[7] M. Shah, A. Ali, Some structural properties of AG-groups, International Mathematical Forum (2011) 1661-1667.
(Received 9 June 2019)
(Accepted 24 December 2019)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

[^0]: This research was supported by Development and Promotion of Science and Technology Talents Project
 ${ }^{1}$ Corresponding author.
 Copyright (c) 2020 by the Mathematical Association of Thailand. All rights reserved.

