
Thai Journal of Mathematics : 237-246
Special Issue : Annual Meeting in Mathematics 2019

http://thaijmath.in.cmu.ac.th
Online ISSN 1686-0209

On some Algrebraic Structures

of AG*-groupoids

Punyapat Kammoo and Chaiwat Namnak1

Department of Mathematics, Faculty of Science,
Naresuan University, Phitsanulok, 65000, Thailand

e-mail : punyapatk59@email.nu.ac.th (P. Kammoo)

chaiwatn@nu.ac.th (C. Namnak)

Abstract : An AG*-groupoid is an AG-groupoid S satisfying the identity (ab)c =
b(ac) for all a, b, c ∈ S. In this paper, we study some properties of AG*-groupoids.
Moreover, we construct a congruence relation on a cancellative AG*-groupoid.
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1 Introduction and preliminaries

By a groupoid (S, ·) we mean a nonempty set S on which a binary operation · is
defined. We say that S is an AG-groupoid (Abel-Grassmann’s groupoid) if · is left
invertive, that is, (ab)c = (cb)a for all a, b, c ∈ S. The notion of an AG-groupoid
was first introduced by Kazim and Naseeruddin in 1977 and they have called it a
left almost semigroup (LA-semigroup) [1]. Such a groupoid satisfies the medial law:
(ab)(cd) = (ac)(bd) for all a, b, c, d ∈ S [2]. In fact, if S is an AG-groupoid with left
identity, then S satisfies the paramedical law: (ab)(cd) = (db)(ca) for all a, b, c, d ∈
S [3]. If an AG-groupoid satisfies the identity: (ab)c = b(ac) for all a, b, c ∈
S, then it is called AG*-groupoid. It is well known that every AG*-groupoid
satisfies the paramedical law. Both AG-groupoids and AG*-groupoids have been
wildly studied. Some properties of AG*-groupoids were investigated in [4]. In
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[5], a description of a fully regular AG*-groupoid was presented. Other algebraic
properties of AG-groupoids and AG*-groupoids can be found in [1, 3, 6, 7]. In
this paper, we study some algebraic structures of AG*-groupoids. Futhermore, we
define a commutative congruence on a cancellative AG*-groupoid.

An element a of a groupoid S is called left (right) cancellative if for every
x, y ∈ S, ax = ay (xa = ya) implies x = y. An element a of a groupoid S is called
cancellative if it is both left and right cancellative. An AG-groupoid S is called a
left cancellative (right cancellative, cancellative) AG-groupoid if every element of
S is left cancellative (right cancellative, cancellative).

We first present some propositions on AG-groupoids most of which will be
used later.

Theorem 1.1 ([3]). Let S be an AG-groupoid. If a is right cancellative of S, then
a is left cancellative. Hence every right cancellative element of S is cancellative.

Theorem 1.2 ([3]). Let S be an AG-groupoid with left identity. Every left can-
cellative element of S is also right cancellative.

Theorem 1.3 ([7]). Let S be an AG-groupoid with left identity. Then S is com-
mutative if and only if S is associative.

An element a of an AG-groupoid S is called 3-band if a = (aa)a.

The following results show that a left cancellative element of an AG-groupoid
is right cancellative if it is 3-band.

Proposition 1.4. Let S be an AG-groupoid. If a is left cancellative and 3-band,
then a is right cancellative.

Proof. Suppose that a is a left cancellative element of S and a = (aa)a. Let
x, y ∈ S be such that xa = ya. Then

ax = ((aa)a)x = (xa)(aa) = (ya)(aa) = ((aa)a)y = ay.

Since a is left cancellative, we have x = y. Therefore a is a right cancellative
element of S.

The following is an immediate consequence of Proposition 1.4.

Corollary 1.5. Let a be an element of an AG-groupoid S such that a2 = a. If a
is left cancellative, then a is also right cancellative.

Proposition 1.6. Let S be an AG-groupoid. If a is a left cancellative element
of S and a = bc for some b, c ∈ S, then b and c are left and right cancellative
elements of S, respectively.
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Proof. Suppose that a is a left cancellative element of S and a = bc for some
b, c ∈ S. Let x, y ∈ S be such that xc = yc. Then

ax = (bc)x = (xc)b = (yc)b = (bc)y = ay.

Since a is left cancellative, we have x = y. This shows that c is right cancellative.
Let x, y ∈ S be such that bx = by. Then

a(xc) = (bc)(xc) = (bx)(cc) = (by)(cc) = (bc)(yc) = a(yc).

Since a is left cancellative and c is right cancellative, we deduce that x = y. Hence
b is left cancellative.

An element a of AG-groupoid S is called a regular element of S if a = (ax)a
for some x ∈ S.

Proposition 1.7. Let S be an AG-groupoid. If a and b are regular elements of
S, then ab is a regular element of S. In particular, the set of all regular elements
of S becomes an AG-subgroupoid of S if it is nonempty.

Proof. Suppose that a and b are regular elements of S. Then a = (ax)a and
b = (by)b for some x, y ∈ S. Since

ab = ((ax)a)((by)b) = ((ax)(by))(ab) = ((ab)(xy))(ab),

it follows that ab is a regular element of S.

2 Main Results

We first study some properties of cancellative elements of an AG*-groupoid.

Theorem 2.1. Let a be an element of an AG*-groupoid S. Then the following
statements are equivalent.

(i) a is a left cancellative element of S.

(ii) a is a right cancellative element of S.

(iii) a is a cancellative element of S.

Proof. (i) ⇒ (ii) Suppose that a is a left cancellative element of S. Let x, y ∈ S
be such that xa = ya. Since

a(a(ay)) = a((aa)y) = a((ya)a) = a((xa)a) = a((aa)x) = a(a(ax))

and by assumption, we deduce that x = y. Therefore a is right cancellative.
(ii)⇒ (iii) It is clearly by Theorem 1.1.
(iii)⇒ (i) Obvious.
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Theorem 2.2. Let a and b be elements of an AG*-groupoid S. Then a and b are
cancellative if and only if ab is cancellative. In particular, the set of all cancellative
elements of S is an AG*-subgroupoid of S if it is nonempty.

Proof. Suppose that a and b are cancellative elements of S. Let x, y ∈ S be
such that x(ab) = y(ab). This implies that (ax)b = x(ab) = y(ab) = (ay)b. By
cancellativity of b and a, we deduce that x = y. Therefore ab is right cancellative.
By Theorem 2.1, ab is cancellative of S.

Conversely, it follows directly from Proposition 1.6 and Theorem 2.1.

Immediately we adapt the statement by using Theorem 2.2 to obtain to fol-
lowing corollary.

Corollary 2.3. Let S be an AG*-groupoid such that S2 = S. If a is a cancellative
element of S, then a is a product of two cancellative elements of S.

Proposition 2.4. Let S be an AG*-groupoid and a, b ∈ S. If a is a left cancellative
element of S and a = ab, then ab = ba and b2 = b.

Proof. Suppose that a is left cancellative and a = ab. Then ab = (ab)b = b(ab) =
ba. Since

ab2 = a(bb) = (ab)(bb) = (ba)(bb) = (bb)(ab) = (bb)a = (ab)b = ab,

we have b2 = b by assumption.

Proposition 2.5. Let S be an AG*-groupoid. If a is a left cancellative element
of S and a2 = a, then a is a left identity of S.

Proof. Let b ∈ S. Since ab = (aa)b = a(ab) and a is left cancellative, we deduce
that b = ab. This shows that a is a left identity of S.

In fact, if e is a right identity of an AG-groupoid S, then ab = (ae)b = (be)a =
ba for all a, b ∈ S. Hence S is commutative. If e is a left identity of S, then
e is right cancellative. To prove this, let a, b ∈ S be such that ae = be. Then
a = ea = (ee)a = (ae)e = (be)e = (ee)b = eb = b.

Lemma 2.6. Let e be an element of an AG*-groupoid S. Then e is a right identity
of S if and only if e is a left identity of S. In this case, S is commutative.

Proof. As mentioned, if e is a right identity of S, then S is commutative. Hence
e is a left identity of S.

For the converse, assume that e is a left identity of S. From the above obser-
vation, e is right cancellative. Let a ∈ S. Since (ae)e = e(ae) = ae, we deduce
that ae = a. This shows that e is a right identity of S.

Note that Lemma 2.6 does not hold for AG-groupoid. The counterexample is
given as follows.
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Example 2.7. Let S = {a, b, c, d, e} with the following Cayley table as shown in
Table 1.

· a b c d e
a a a a a a
b a b c d e
c a e b c d
d a d e b d
e a c d e b

Table 1.

By routine calculation to prove that S is an AG-groupoid but not an AG*-groupoid
since (cd)e 6= d(ce). We see that b is a left identity element in S but not right
identity.

The next corollary follows directly from Lemma 2.6 and Theorem 1.3

Corollary 2.8. If S is an AG*-groupoid with left identity, then S is a commutative
semigroup.

The quoted results will be indispensable for our proof.

Theorem 2.9. [4] Let S be an AG*-groupoid. Then the following statements hold:

(i) a2(bc) = (a2b)c for all a, b, c ∈ S.
(ii) (ab)c2 = a(bc2) for all a, b, c ∈ S.

(iii) (ab2)c = a(b2c) for all a, b, c ∈ S.

Theorem 2.10. Let a be an element of an AG*-groupoid S with a2 = a and let

Qa = {x ∈ S | ax = x}.

Then

(i) Qa is a commutative monoid.

(ii) Qa has the identity element.

(iii) Qa is an ideal of S.

Proof. Since a ∈ Qa, it is a nonempty subset of S. Let x, y ∈ Qa. Then ax = x
and ay = y, and hence a(xy) = (aa)(xy) = (ax)(ay) = xy. So xy ∈ Qa. By virtue
of Theorem 2.9 (ii), we have

xy = (ax)(ay) = (yx)(aa) = x(y(aa)) = (xy)(aa) = (ay)(ax) = yx.

These prove that Qa is a commutative semigroup having a as its identity. Hence
(i) and (ii) hold. Let s ∈ S and x ∈ Qa. Then

a(sx) = (aa)(sx) = (as)(ax) = (as)x = (xs)a = s(xa) = sx

which implies that sx ∈ Qa. Also, we have a(xs) = (xa)s = xs. Hence (iii)
holds.
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An element a of an AG-groupoid S is called:

• a left regular element of S if a = xa2 for some x ∈ S.

• a right regular element of S if a = a2x for some x ∈ S.

• a completely regular element of S if a is regular, left regular and right regular.

• a (2,2)-regular element of S if a = (a2x)a2 for some x ∈ S.

• a weakly regular element of S if a = (ax)(ay) for some x, y ∈ S.

• a left quasi regular element of S if a = (xa)(ya) for some x, y ∈ S.

• an intra-regular element of S if a = (xa2)y for some x, y ∈ S.

• a strongly regular element of S if a = (ax)a and ax = xa for some x ∈ S.

Next, to show that regular, left regular, right regular, completely regular,
(2,2)-regular, weakly regular, left quasi regular, intra-regular and strongly regular
coincide in any AG*-groupoids. The following lemmas are needed.

Lemma 2.11. Let S be an AG*-groupoid. Then (ab)(ba) = (ba)(ab) for all a, b ∈
S.

Proof. Let a, b ∈ S. Then (ab)(ba) = ((ba)b)a = b((ba)a) = b((aa)b) = (b(aa))b =
((ab)a)b = (ba)(ab).

Lemma 2.12. Let S be an AG*-groupoid and a ∈ S. If a = (ax)a for some
x ∈ S, then ax is an idempotent of S.

Proof. Suppose that a = (ax)a for some x ∈ S. Then

ax = ((ax)a)x = (x(aa))x = (aa)(xx) = (ax)(ax).

This shows that ax is idempotent.

Theorem 2.13. Let a be an element of an AG*-groupoid S. Then the following
statements are equivalent.

(i) a is regular of S.

(ii) a is left regular of S.

(iii) a is right regular of S.

(iv) a is completely regular of S.

(v) a is (2,2)-regular of S.

(vi) a is weakly regular of S.

(vii) a is left quasi regular of S.

(viii) a is intra-regular of S.
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(ix) a is strongly regular of S.

Proof. Only sample proofs are necessary.
(ii)⇒ (iii) Suppose that a is left regular of S. Then a = xa2 for some x ∈ S.

From Lemma 2.11, we have

a = x(aa) = (ax)a = ((xa)(ax))a = ((ax)(xa))a = (xa)((ax)a) = (((ax)a)a)x = a2x.

Hence a is right regular.
(iii)⇒ (iv) Suppose that a is right regular of S. Then there exists x ∈ S such

that a = a2x. From Theorem 2.9, we have

a = (aa)x = (((aa)x)a)x = ((aa)(xa))x = ((ax)(aa))x = (ax)((aa)x)

= (((aa)x)x)a = (ax)a = xa2.

This shows that a is regular and left regular. Thus a is completely regular.
(iv)⇒ (v) Suppose that a is completely regular of S. Then a is right regular.

Hence a = a2x for some x ∈ S. From Theorem 2.9, we have

a = (aa)x = (xa)a = (x(a2x))a = ((xa2)x)a = (a2(xx))a = (a2(xx))(a2x)

= ((a2x)(xx))a2 = (a2(x(xx)))a2.

This shows that a is (2,2)-regular.
(v) ⇒ (vi) Suppose that a is (2, 2)-regular of S. Then a = (a2x)a2 for some

x ∈ S. Since a = (a2x)a2 = ((aa)x)(aa) = (a(ax))(aa), we have that a is weakly
regular of S.

(vii)⇒ (viii) Suppose that a is left quasi regular of S. Then a = (xa)(ya) for
some x, y ∈ S. Since a = (xa)(ya) = (aa)(yx) = (y(aa))x = (ya2)x, we have that
a is intra-regular.

(viii)⇒ (i) Suppose that a is intra-regular. Then a = (xa2)y for some x, y ∈
S. Since a = (xa2)y = x(a2y) = (a2x)y = (yx)a2 = (yx)(aa) = (a(yx))a, we have
that a is regular.

(i)⇒ (ix) Suppose that a is regular of S. Then a = (ax)a for some x ∈ S. It
suffices to show that ax = xa. By Lemma 2.12, we have that ax is idempotent of
S. Then ax = (ax)(ax) = (xx)(aa) = x(x(aa)) = x((ax)a) = xa.

Hence the theorem is completely proved.

Lemma 2.12 and Theorem 2.13 are not true in an AG-groupoid shown in Table
2.

Example 2.14. Let S = {a, b, c, d} and the binary operation · defined on S as
follows:

· a b c d
a b b d d
b b b b b
c a b c d
d a b a b

Table 2.
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It is a routine matter to verify that S is an AG-groupoid not an AG*-groupoid
since (ac)d 6= c(ad) and we see that a is regular since a = (ad)a. But a is not right
regular of S and ad is not idempotent of S.

To characterize the regular elements of an AG*-groupoid, the following theo-
rems are shown.

Theorem 2.15. Let S be a cancellative AG*-groupoid and a, b ∈ S. If ab is
regular, then a and b are regular of S.

Proof. Let ab be regular of S. By Theorem 2.13, ab is right regular of S. Then
ab = ((ab)(ab))x for some x ∈ S. Since

ab = ((ab)(ab))x = (b(a(ab)))x = (x(a(ab)))b

and by cancellativity of b, we have a = x(a(ab))) = (ax)(ab). This implies that a
is weakly regular of S. Hence a is regular. Since

ab = ((ax)(ab))b = ((aa)(xb))b = (aa)((xb)b) = a(a((xb)b))

and by cancellativity of a, we have that b = a((xb)b) = a((bb)x) = (a(bb))x. This
shows that b is intra-regular of S. By Theorem 2.13, b is regular.

Corollary 2.16. Let S be a cancellative AG*-groupoid and a ∈ S. If a = (ax)a
for some x ∈ S, then x is regular of S.

Proof. Suppose that a = (ax)a for some x ∈ S. By Lemma 2.12, ax is idempotent
of S which implies that ax is regular. It follows directly from Theorem 2.15 that
x is regular.

As consequence of Proposition 1.7 and Theorem 2.15, the following result
follows immediately.

Corollary 2.17. Let S be a cancellative AG*-groupoid and a, b ∈ S. Then a and
b are regular if and only if ab is regular.

Finally, we define a relation ρ on a cancellative AG*-groupoid S by

aρb if and only if ab = ba

for all a, b ∈ S. Then we have

Theorem 2.18. Let S be a cancellative AG*-groupoid. Then the following state-
ments hold:

(i) ρ is an equivalence relation.

(ii) ρ is a congruence.

(iii) S/ρ is a cancellative AG*groupoid.
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(iv) S/ρ is a commutative AG*groupoid.

Proof. (i) Clearly, ρ is reflexive and symmetry. Let a, b, c ∈ S be such that
(a, b), (b, c) ∈ ρ. Then ab = ba and bc = cb. Since

(ac)b = c(ab) = c(ba) = (bc)a = (cb)a = (ab)c = (ba)c = (ca)b

and by cancellativity of b, we have ac = ca. This shows that ρ is transitive. Hence
ρ is an equivalence relation on S.

(ii) Let a, b ∈ S be such that (a, b) ∈ ρ. To show that (ac, bc), (ca, cb) ∈ ρ
for all c ∈ S. Let c ∈ S. Then (ac)(bc) = (ab)(cc) = (ba)(cc) = (bc)(ac) and
(ca)(cb) = (cc)(ab) = (cc)(ba) = (cb)(ca). These show that (ac, bc), (ca, cb) ∈ ρ.
Hence ρ is a congruence.

(iii) Let a, b, c ∈ S be such that (aρ)(bρ) = (aρ)(cρ). Then (ab, ac) ∈ ρ. To
show that bρ = cρ, let x ∈ bρ. Then xb = bx and hence (xb)a = (bx)a. Since

(ab)x = (xb)a = (bx)a = (ax)b = x(ab),

we deduce that x ∈ abρ = acρ. Then x(ac) = (ac)x. Since

(cx)a = (ax)c = x(ac) = (ac)x = (xc)a.

and by cancellativity of a, we have cx = xc. It shows that x ∈ cρ. That is,
bρ ⊆ cρ. Similary, we also have cρ ⊆ bρ. Hence bρ = cρ. This proves that aρ is
left cancellative of S/ρ. By Theorem 2.1, aρ is cancellative of S/ρ.

(iv) Let aρ, bρ ∈ S/ρ. By Lemma 2.11, we have that (ab)(ba) = (ba)(ab). It
follows that (ab)ρ(ba). Therefore (aρ)(bρ) = (bρ)(aρ).
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