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1 Introduction

In recent research, fixed point theory is one of the most popular area that has
interested a large group of researchers. The common goal is to develop known
results to the better results. To be more specific, there are research that study the
concept of fixed points of mappings on spaces with different methods of measure-
ment. On top of that, mappings that have been used to discover their fixed points
have a contraction property in some sense. Furthermore, a common fixed point
and coincidence point of two mappings have also been brought into consideration
to generalize the concept of a fixed point of a mapping.

In our work, we are interested in exploring a coincidence point of some contrac-
tion mappings defined on a generalized metric space. We give sufficient conditions
to the theorem of the existence of a coincidence point of such mappings. In ad-
dition, a common fixed point of mappings also exists with some extra condition
on coincidence points. Furthermore, we provide an example to support our result.
Finally, we apply our theorem to some integral equation problem. The outcome is
obtained as the existence theorem of a solution when the equation is homogeneous.

2 Preliminaries

2.1 Generalized Metric Spaces

Jleli and Samet [1] defined a JS-metric space. There are several spaces that
are covered by the JS-metric space (see [2, 3, 4]). As a consequence, any results
on JS-metric spaces are also valid for those spaces.

Definition 2.1 ([1]). Let (X,D) be a JS-metric space, and let {xn} be a sequence
in X.

(i) {xn} is said to D-converge to x ∈ X if lim
n→∞

D(xn, x) = 0.

(ii) {xn} is said to be D-Cauchy if lim
m,n→∞

D(xn, xm) = 0.

(iii) (X,D) is said to be D-complete if any D-Cauchy sequence in X D-
converges to some element in X.

Proposition 2.1 ([1]). Let (X,D) be a JS-metric space. If a sequence {xn} in
X D-converges to x and y for some x, y ∈ X, then x and y must be the same
element.

Definition 2.2 ([1]). Let (X,D) be a JS-metric space. A function f : X → X is
said to be continuous at x0 ∈ X if

lim
n→∞

D(xn, x0) = 0 implies lim
n→∞

D(fxn, fx0) = 0.

Then f is said to be continuous if it is continuous at each x in X.
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From this idea, there were many research articles related to JS-metric spaces
(see [5, 6, 7]). Inspired by all of the above, we define generalized metric spaces as
follows.

Definition 2.3. Let X be a nonempty set. A function D : X ×X → [0,+∞] is
said to be a generalized metric on X if the following conditions hold.

(D1) For any x, y ∈ X, if D(x, y) = 0, then x = y;

(D2) For any x, y ∈ X, D(x, y) = D(y, x);

(D3) There is a real number C > 0 such that for any x, y ∈ X,

D(x, y) ≤ C lim sup
n→∞

D(xn, yn),

where {xn} and {yn} are sequences in X that D-converge to x and y, re-
spectively.

Then we say that (X,D) is a generalized metric space.

The essential observation is that a generalized metric space is also a JS-metric
space. Analogously, definitions and statements related to JS-metric spaces are also
true for generalized metric spaces.

2.2 Contraction Mappings

Not only types of spaces, but also types of contraction mappings are con-
cerned in the study of fixed point theory. In 2012, Samet et al. [8] considered
mappings called α-admissible and showed the existing results of a fixed point for
α-ψ-contractions. After that, Karapinar [9] generalized these mappings to be tri-
angular α-admissible. Later, in the setting of common fixed points and coincidence
points, these concepts were extended to be used for two mappings as follows.

Definition 2.4. Let (X,D) be a generalized metric space, and let f, g be self-
mapping on X. Given that α : X × X → [0,∞) is a function, f is said to
be triangular-(α,D)-admissible w.r.t. g if, for all x, y, z ∈ X, the following
conditions hold.

(i) If α(gx, gy) ≥ 1, then α(fx, fy) ≥ 1 and D(gx, gy) <∞;

(ii) If α(x, z) ≥ 1 and α(z, y) ≥ 1, then α(x, y) ≥ 1.

To obtain contractive property of mappings, Geraghty [10] suggested the class
of all functions θ : [0,∞) → [0, 1) such that for any {tn} in [0,∞], if θ(tn) → 1,
then tn → 0. Then define contractive mappings according to such θ.

Motivated by Geraghty, we consider the class Θ whose elements are all func-
tions θ defined above but extended the domain to the extended interval [0,∞].
We now introduce a new class of contractions as follows.
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Definition 2.5. Let (X,D) be a generalized metric space, and let f, g be self-
mappings on X. Given that α : X ×X → [0,∞) is a function, the pair (f, g) is
said to be an admissible Geraghty M-contraction if the following conditions
hold.

(i) f is triangular-(α,D)-admissible w.r.t. g;

(ii) There exists a function θ ∈ Θ such that for all x, y ∈ X,

α(gx, gy)D(fx, fy) ≤ θ(M(gx, gy))M(gx, gy), (2.1)

where M(gx, gy) = max{D(gx, gy), D(gx, fx), D(gy, fy)}.

We are almost ready to present the next section. Nevertheless, there is a
property of the two contraction mappings needed to obtain our main result.

Definition 2.6. Let (X,D) be a generalized metric space. The self-mappings f
and g on X are said to be D-compatible if lim

n→∞
D(gfxn, fgxn) = 0, where {xn}

is a sequence in X such that {fxn} and {gxn} D-converge to the same limit.

3 Existence of a Coincidence Point

To begin this section, let us provide some notations for convenience. Let
(X,D) be a generalized metric space, and let f, g be self-mappings on X. Given
that α : X ×X → [0,∞), denote the set of all coincidence points of mappings f
and g of X by

C(f, g) ={u ∈ X : fu = gu},

and the set of all common fixed points of mappings f and g by

Cm(f, g) ={u ∈ X : fu = gu = u}.

Finally, for any sequence {xn} in X and n ∈ N, denote

β(D, f, xn) = sup{D(fxn+i, fxn+j) : i, j ∈ N}.

Lemma 3.1. Let (X,D) be a generalized metric space, and let α : X×X → [0,∞)
be a function. Assume that f and g are self-mappings on X such that (f, g) is an
admissible Geraghty M -contraction. Then for any x, y ∈ C(f, g), we obtain the
following.

(i) If α(gx, gx) ≥ 1, then D(gx, gx) = 0.

(ii) If α(gx, gy) ≥ 1, then gx = gy.
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Proof. (i) Let x ∈ C(f, g) such that α(gx, gx) ≥ 1. Since f is triangular-(α,D)-
admissible w.r.t. g, D(gx, gx) <∞. Note that

M(gx, gx) = max{D(gx, gx), D(gx, fx), D(gx, fx)} = D(gx, gx) <∞.

Since (f, g) is an admissible Geraghty M -contraction,

D(gx, gx) ≤ α(gx, gx)D(gx, gx)

= α(gx, gx)D(fx, fx)

≤ θ(D(gx, gx))D(gx, gx)

for some θ ∈ Θ. From the fact that 0 ≤ θ(t) < 1 for any t ∈ [0,∞], it can
be concluded that D(gx, gx) = 0.

(ii) Let x, y ∈ C(f, g) such that α(gx, gy) ≥ 1. Since f is triangular-(α,D)-
admissible w.r.t. g, α(gx, gx) ≥ 1, α(gy, gy) ≥ 1 and D(gx, gy) <∞. Since
fx = gx and fy = gy, by (i), we have that D(gx, fx) = D(gy, fy) = 0.
Then

M(gx, gy) = max{D(gx, gy), D(gx, fx), D(gy, fy)} = D(gx, gy) <∞.

Next, since (f, g) is an admissible Geraghty M -contraction,

D(gx, gy) ≤ α(gx, gy)D(gx, gy)

= α(gx, gy)D(fx, fy)

≤ θ(M(gx, gy))M(gx, gy)

= θ(D(gx, gy))D(gx, gy)

for some θ ∈ Θ. Thus, D(gx, gy) = 0. Hence, gx = gy.

Theorem 3.2. Let (X,D) be a D-complete generalized metric space. Given that
α : X × X → [0,∞) is a function, let f and g be self-mappings on X such that
(f, g) is an admissible Geraghty M -contraction. Suppose that all of the following
hold.

(i) f(X) ⊆ g(X);

(ii) There exists x0 ∈ X such that α(gx0, fx0) ≥ 1 and β(D, f, x0) <∞;

(iii) f and g are continuous;

(iv) f and g are D-compatible.

Then we have that C(f, g) 6= ∅.

Proof. Since f(X) ⊆ g(X) and f(x0) ∈ g(X), there is a sequence {xn} ∈ X
such that gxn+1 = fxn for all n ∈ N. If gxn0 = gxn0+1 for some n0 ∈ N, then
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xn0 ∈ C(f, g) and so we are done. Assume that gxn 6= gxn+1 for all n ∈ N. Then
D(gxn, gxn+1) > 0 for all n ∈ N.

From the assumption (ii), we get that α(gx0, gx1) = α(gx0, fx0) ≥ 1. Since
f is triangular-(α,D)-admissible w.r.t. g, α(gx1, gx2) = α(fx0, fx1) ≥ 1 and
D(gx0, gx1) <∞. By continuing in this manner, we obtain that

α(gxn, gxn+1) ≥ 1 and D(gxn, gxn+1) <∞ for all n ∈ N ∪ {0}.

Next, we will show that lim
n→∞

D(gxn, gxn+1) = 0. Let n ∈ N. Consider

D(gxn+1, gxn+2) ≤ α(gxn, gxn+1)D(gxn+1, gxn+2)

= α(gxn, gxn+1)D(fxn, fxn+1)

≤ θ(M(gxn, gxn+1))M(gxn, gxn+1)

< M(gxn, gxn+1), (3.1)

where

M(gxn, gxn+1) = max{D(gxn, gxn+1), D(gxn, fxn), D(gxn+1, fxn+1)}
= max{D(gxn, gxn+1), D(gxn+1, gxn+2)}.

If M(gxn, gxn+1) = D(gxn+1, gxn+2), then, by (3.1),

D(gxn+1, gxn+2) < D(gxn+1, gxn+2).

This is a contradiction. Thus,

M(gxn, gxn+1) = D(gxn, gxn+1). (3.2)

This implies that

D(gxn+1, gxn+2) < D(gxn, gxn+1).

Since n is arbitrary, above statements hold for any n ∈ N. Then the sequence
{D(gxn, gxn+1)} is nonnegative and decreasing. Therefore, {D(gxn, gxn+1)} is
convergent. Suppose on the contrary that lim

n→∞
D(gxn, gxn+1) 6= 0. From (3.1)

and (3.2), we have that

D(gxn+1, gxn+2)

D(gxn, gxn+1)
=
D(gxn+1, gxn+2)

M(gxn, gxn+1)
≤ θ(M(gxn, gxn+1)) < 1.

It follows that lim
n→∞

θ(M(gxn, gxn+1)) = 1. Since θ ∈ Θ,

lim
n→∞

D(gxn, gxn+1) = lim
n→∞

M(gxn, gxn+1) = 0,

a contradiction. Thus,

lim
n→∞

D(gxn, gxn+1) = 0. (3.3)
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Now, we claim that {gxn} is a D-Cauchy sequence. Suppose that this is not
the case. That is, there exists ε > 0 such that for any k ∈ N, there are subsequences
{xnk

} and {xmk
} of {xn} satisfying D(gxnk

, gxmk
) ≥ ε for mk ≥ nk ≥ k. It is

easy to show that α(gxn, gxm) ≥ 1 and so D(gxn, gxm) < ∞ for any n,m ∈ N.
Let k ∈ N. Consider

α(gxnk−1, gxmk−1)D(gxnk
, gxmk

) =α(gxnk−1, gxmk−1)D(fxnk−1, fxmk−1)

≤θ(M(gxnk−1, gxmk−1))M(gxnk−1, gxmk−1),

where

M(gxnk−1, gxmk−1) = max{D(gxnk−1, gxmk−1), D(gxnk−1, fxnk−1),

D(gxmk−1, fxmk−1)}.

IfM(gxnk−1, gxmk−1) is equal to eitherD(gxnk−1, fxnk−1) orD(gxmk−1, fxmk−1),
then, by (3.3), lim

k→∞
D(gxnk

, gxmk
) = 0. This contradicts to the fact that {gxn} is

not a D-Cauchy sequence. Thus, M(gxnk−1, gxmk−1) = D(gxnk−1, gxmk−1). As
a consequence, we can conclude that

D(gxnk
, gxmk

) ≤ θ(D(gxnk−1, gxmk−1))D(gxnk−1, gxmk−1).

By repeating the same steps, it follows that

D(gxnk−i, gxmk−i) ≤ θ(D(gxnk−i−1, gxmk−i−1))D(gxnk−i−1, gxmk−i−1),

where i = 0, 1, 2, . . . , nk − 1. Therefore,

D(gxnk
, gxmk

) ≤
nk∏
i=1

θ(D(gxnk−i, gxmk−i))D(gx0, gxmk−nk
).

Let ik ∈ {1, 2, . . . , nk} such that

θ(D(gxnk−ik , gxmk−ik)) = max{θ(D(gxnk−i, gxmk−i)) : 1 ≤ i ≤ nk}.

Define η = lim sup
k→∞

{θ(D(gxnk−ik , gxmk−ik))}. Since β(D, f, x0) < ∞, if η < 1,

lim
k→∞

D(gxnk
, gxmk

) = 0 which is a contradiction. Thus, η = 1. Without loss of

generality, we assume that lim
k→∞

θ(D(gxnk−ik , gxnk+mk−ik)) = 1. By the definition

of the function θ, we simply get lim
k→∞

D(gxnk−ik , gxnk+mk−ik) = 0. Then there

exists k0 ∈ N such that

D(gxnk0
−ik0

, gxnk0
+mk0

−ik0
) <

ε

2
.

Consider

ε ≤ D(gxnk0
, gxmk0

)

≤
ik0∏
j=1

θ(D(gxnk0
−j , gxmk0

−j))D(gxnk0
−ik0

, gxmk0
−ik0

)

<
ε

2
.
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This is a contradiction. As a result, {gxn} is a D-Cauchy sequence.

Since (X,D) is D-complete, there is u ∈ X such that

lim
n→∞

D(fxn, u) = lim
n→∞

D(gxn, u) = 0.

It remains to show that u is a coincidence point of f and g. Since f and g are D-
compatible, lim

n→∞
D(gfxn, fgxn) = 0. Then, by the continuity of f and g, {gfxn}

D-converges to gu and {fgxn} D-converges to fu. Moreover, from the definition
of D, there exists C > 0 such that

D(gu, fu) ≤ C lim sup
n→∞

D(gfxn, fgxn).

Therefore, D(gu, fu) = 0 and so fu = gu. Hence, u ∈ C(f, g).

Theorem 3.3. Let (X,D) be a D-complete generalized metric space. Given that
α : X × X → [0,∞) is a function, let f and g be self-mappings on X such that
(f, g) is an admissible Geraghty M -contraction. Suppose that all of the following
hold.

(i) f(X) ⊆ g(X);

(ii) There exists x0 ∈ X such that α(gx0, fx0) ≥ 1 and β(D, f, x0) <∞;

(iii) f and g are continuous;

(iv) f and g commute.

Then we have that C(f, g) 6= ∅.

Proof. From the proof of Theorem 3.2, by using the assumptions (i)-(iii), we
obtain the sequences {fxn} and {gxn} such that {gfxn} D-converges to gu and
{fgxn} D-converges to fu for some u ∈ X. Since f and g commute,

{gfxn} = {fgxn}.

Therefore, gu = fu. This means that u is a coincidence point of f and g.

Corollary 3.4. In either Theorems 3.2 or 3.3, if α(gx, gy) ≥ 1 for any x, y ∈
C(f, g), then Cm(f, g) 6= ∅.

Proof. Assume that α(gx, gy) ≥ 1 for any x, y ∈ C(f, g). Let u ∈ C(f, g), and
let c = gu = fu ∈ X. Consider that gc = gfu = fgu = fc. Thus, c is another
coincidence point of f and g. By the assumption, we have that α(gu, gc) ≥ 1.
Then, by Lemma 3.1, we can conclude that fc = gc = gu = c. Hence, c is in fact
a common fixed point of f and g.
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Example 3.1. Let X = [0, 1], and let D be a generalized metric defined by

D(x, y) =



3(x+ y), x 6= 0 and y 6= 0,

x

3
, y = 0,

y

3
, x = 0.

Then (X,D) is a D-complete generalized metric space. Next, suppose that

α(x, y) =


1 if x 6= 0 or y = 0,

0 otherwise.

Moreover, define the self-mappings f and g on X by

f(x) =
x

2x+ 30
and g(x) =

x

10
.

We will show that f and g have a coincidence point using Theorem 3.2. First,
it is straightforward to prove that f and g are continuous and f(X) ⊆ g(X).
In addition, there is x0 = 0 ∈ X such that α(g(0), f(0)) = α(0, 0) ≥ 1 and

β(D, f, 0) <∞. Note that D(f0, fu) = 1
3

(
u

2u+30

)
<∞ for any u ∈ X.

Now, consider the following claims.
Claim 1: f is triangular-(α,D)-admissible w.r.t. g.
Let x, y, z ∈ X. Assume that α(gx, gy) ≥ 1. Then, gx 6= 0 or gy = 0. That is,

x 6= 0 or y = 0. Thus, fx 6= 0 or fy = 0. Therefore, α(fx, fy) ≥ 1, and it is easy
to see that D(gx, gy) = D( x

10 ,
y
10 ) <∞.

Next, assume that α(x, z) ≥ 1 and α(z, y) ≥ 1. It can be observed that if
z = 0, then y = 0, and if z 6= 0, then x 6= 0. That is, x 6= 0 or y = 0. Therefore,
α(x, y) ≥ 1. Thus, f is triangular-(α,D)-admissible w.r.t. g.

Claim 2: (f, g) is an admissible Geraghty M -contraction.
Let x, y ∈ X. If α(gx, gy) < 1, we are done. Assume that α(gx, gy) ≥ 1. Let

θ(t) =
1

2
for any t ∈ [0,∞]. Consider the following cases.

Case 1: gy = 0. Since α(gx, gy) = 1, fy = 0. Then

α(gx, gy)D(fx, fy) = D(fx, fy)

= D(
x

2x+ 30
, 0)

=
1

3

(
x

2x+ 30

)
≤ 1

2

(
1

3

( x
10

))
= θ(M(gx, gy))D(gx, gy)

≤ θ(M(gx, gy))M(gx, gy).
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Case 2: gy 6= 0. Since α(gx, gy) = 1, gx 6= 0. Then

α(gx, gy)D(fx, fy) = D(fx, fy)

= D(
x

2x+ 30
,

y

2y + 30
)

= 3

(
x

2x+ 30
+

y

2y + 30

)
≤ 1

2

(
3
( x

10
+

y

10

))
= θ(M(gx, gy))D(gx, gy)

≤ θ(M(gx, gy))M(gx, gy).

Therefore, Claim 2 is obtained.
Our task is now to show that f and g are D-compatible, let {xn} be a se-

quence in X such that lim
n→∞

gxn = lim
n→∞

fxn. That is, lim
n→∞

xn
10

= lim
n→∞

xn
2xn + 30

.

Therefore, this limit must be 0. As a result, we get that

lim
n→∞

D(gfxn, fgxn) = 0.

Finally, we can conclude that f and g are D-compatible. Hence, by Theorem 3.2,
C(f, g) 6= ∅. In fact, 0 is a coincidence point of f and g.

4 Application

In this section, we provide an application to the integral equation problem.
Let T > 0. Consider the following integral equation.

x(t) =

∫ T

0

p(t, s, x(s))ds+ b(t) (4.1)

for t ∈ [0, T ]. To apply our result to the equation (4.1), let X = C([0, T ],R).
Define D : X ×X → [0,∞] by

D(x, y) = max
t∈[0,T ]

|x(t)|+ max
t∈[0,T ]

|y(t)|

for any x, y ∈ C([0, T ],R). It can be shown that (X,D) is a D-complete generalized
metric space. Then we have the following theorem.

Theorem 4.1. According to (4.1), assume that all of the following hold.

(i) p : [0, T ]× [0, T ]× R→ R is a continuous function;

(ii) there is a real number k ∈ (0, 1) such that for any x, y ∈ R, if x ≤ y, then
p(t, s, x) ≤ p(t, s, y) and

|p(t, s, x)|+ |p(t, s, y)| ≤ k

T
(|x|+ |y|) ,

where s, t ∈ [0, T ];
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(iii) there is x0 ∈ X such that

x0(t) ≥
∫ T

0

p(t, s, x0(s))ds

and β(D,
∫ T

0
p(t, s, x(s))ds, x0) < ∞, where (x0, x1, x2, . . . ) is a sequence

defined by xn(t) =
∫ T

0
p(t, s, xn−1(s))ds for each n ∈ N and t ∈ [0, T ].

Then a solution to the integral equation (4.1) exists when it is homogeneous.

Proof. Let f and g be mappings defined on X by

fx(t) =

∫ T

0

p(t, s, x(s))ds, and gx(t) = x(t)

for any x ∈ X and t ∈ [0, T ]. Then we have that f and g are continuous functions
such that f(X) ⊆ g(X). Moreover, f and g commute.

Next, define a function α : X ×X → [0,∞) by

α(x, y) =


1 if x(t) ≥ y(t) for any t ∈ [0, T ],

0 otherwise.

We will show that (f, g) is an admissible Geraghty M -contraction. It is easy to
see that for any x, y, z ∈ X, if α(x, z) ≥ 1 and α(z, y) ≥ 1, then α(x, y) ≥ 1. Then
we have to only show that f is triangular-(α,D)-admissible w.r.t. g. Let x, y ∈ X
such that α(gx, gy) ≥ 1 and t ∈ [0, T ]. Then gx(t) ≥ gy(t). Therefore, x(t) ≥ y(t).
Thus, by the assumption (ii), we have that p(t, s, x) ≥ p(t, s, y). Then

fx(t) =

∫ T

0

p(t, s, x(s))ds

≥
∫ T

0

p(t, s, y(s))ds

= fy(t).

It follows that α(fx, fy) ≥ 1. Consider that D(gx, gy) = D(x, y) < ∞ since
x, y ∈ C([0, T ],R). Then we can conclude that f is triangular-(α,D)-admissible
w.r.t. g.

Note that if α(gx, gy) < 1, then the inequality (2.1) is true. Assume that
α(gx, gy) ≥ 1. That is, x(t) ≥ y(t) for all t ∈ [0, T ]. By assumption (ii), for any
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t ∈ [0, T ], consider

|fx(t)|+ |fy(t)|

≤
∫ T

0

(|p(t, s, x(s))|+ |p(t, s, y(s))|)ds

≤ k

T

∫ T

0

(|x(s)|+ |y(s)|)ds

≤ k
(

max
t∈[0,T ]

|gx(t)|+ max
t∈[0,T ]

|gy(t)|
)
.

Thus, the inequality (2.1) is satisfied for θ(t) = k for t ∈ [0,∞]. Therefore, (f, g)
is an admissible Geraghty M -contraction.

From Theorem 3.3, we obtain a coincidence point of f and g. Hence, this point
is a solution to the integral equation (4.1) if it is homogeneous.
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