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Abstract : Understanding the airflow characteristics in the human respiratory
tract is an important factor for treating a variety of respiratory diseases. This
paper aims to demonstrate the behaviour of airflow in a human upper respiratory
tract. The behaviour of airflow is described by a three-dimensional mathematical
model under the assumptions that the airflow is axially symmetric flow and driven
by the oscillating pressure gradient within the pulmonary. The proposed model
composes of Navier-Stokes equations and the continuity equation. In this paper,
we propose a method of analytical solution based on the Fourier-Bessel series form
for the airflow field in the proposed model. The obtained solution of the airflow
field is simulated on a three-dimensional geometry of a human respiratory tract.
The results, both magnitude, and direction of the airflow characteristics show a
good agreement to the fact of the airflow behaviour in the human airway and the
previous research works.
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1 Introduction

Although many respiratory diseases can not be cured, there are treatments to
relieve or prevent relapses of their symptoms. The Aerosol drug delivery is the
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most effective treatment of these diseases by using an inhaler; a medical device
used for delivering medication into the respiratory tract [1]. By this treatment, the
drug particles are directly diffused in respiratory position to relieve their symp-
toms. Currently, many researchers have paid attention and tried a lot to learn
about how to control the transmission and the target position of drug particles
inside the human airway, they have implemented various methods [2]. Some of
the researchers in the field of biomedical engineering focus to develop technologies
for the inhalers that lead to more effective treatment. However, understanding of
the airflow characteristics in the human respiratory tract is also a very important
factor for treating respiratory diseases that we should pay more attention as well.

Among many factors in the transportation of drug particles, the airflow is an
important factor that defines particle trajectories and final particle locations [3].
The characteristic of the airflow and particle deposition can be studied by experi-
mental method and mathematical modelling method. However, the experimental
studies take a lot of time and high- performance computers in laboratory experi-
ments, while the mathematical modeling takes less. By the mathematical modeling
method, most of the researchers tend to express the airflow velocity by finding a
solution to the Navier-Stokes equations and then simulate the airflow field. Many
researchers, for instance, [4–7] presented methods of numerical solution and simula-
tion of airflow in various position of a human airway with computational software.
However, for saving computing resources and for the flow in some special condi-
tions, there are some researchers tried to find a solution to those equations in an
analytical method instead. Some works [8–12] presented an analytical solution of
the Navier-Stokes equations in two dimensions by using different techniques and
flow conditions. Besides, some researchers have presented methods for the analyt-
ical solution of the three-dimensional Navier-Stokes equations [13–16]. Moreover,
in the study of the airflow inside the human airway, there are two types of Geo-
metrical model construction; approximate modelling and accurate modelling. For
the approximate modeling, a complexity of airway geometry is approximated by a
simplified geometry so that the methods for the analytical solution can be applied.

Nevertheless, analytical expressions for the solution of airflow in the human
upper respiratory tract have been founded only in [12] and [13]. In the first work
[12], S. Kongnuan and J. Pholuang presented an analytical method for a two-
dimensional model. Moreover, in [13], C. Tasawang and S. Kongnuan proposed
the three-dimensional model of a human upper respiratory tract which covers
oral cavity through the end of trachea but they presented analytical solution and
simulation only for the oral cavity area. In this paper, for a complete simulation,
we present an analytical expression for the solution of the airflow velocity and
simulate the airflow field for the whole part of the respiratory tract in a three-
dimensional geometry model. Our model is derived by applying the 3D-model
structure and the conditions for the airflow presented by [12] and [13].
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2 Construction of the Model

2.1 Computational Domain

Even, in reality, the geometry of the human upper respiratory tract is ex-
tremely complex as shown in Figure 1(A), but here we study the airflow behaviour
while a patient uses an inhaler to deliver medication into the respiratory tract. It
means that at that time the oral is opened wide, the inside of the oral cavity
seems like an ellipsoid tube shape and connects to the trachea tube straight down,
we can simplify the computational domain. Therefore, the approximated 3D-
computational model is started from the beginning of the oral cavity and ceased
at the end of the trachea as shown in Figure 1(B). It is generated from the param-
eters in Table 1 [12] and [13].

(A) (B)

Figure 1: (A) An upper respiratory tract anatomy (Image source: Hole’s
Essentials of Human Anatomy and Physiology) and (B) A 3D-construction
of an upper respiratory tract model

Table 1: Parameters of the upper respiratory tract.
Parameter Lenght(cm)

The widest of the oral cavity, L 4.0

The length of the oral cavity, L1 7.0

The diameter of the inlet, L2 3.125

The diameter of pharynx, L3 2.5

The length of the joint between the oral cavity and trachea, L4 1.5

The length of the upper trachea , L5 7.0

The length of the lower trachea, L6 9.0

The widest of the lower trachea, L7 3.25

The diameter of the outlet, L8 2.5
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2.2 Governing Equations and Boundary Conditions

In this work, we study the airflow in a simplified upper airway tube under the
following assumptions as: 1) the air is homogeneous and incompressible Newtonian
fluid 2) the airflow is driven by the oscillating pressure gradient and there is no
effect from any external force 3) the airflow is an axial symmetric flow. The gov-
erning equations that describe the airflow are the Navier-Stokes equations and the
continuity equation in the cartesian coordinate system (x, y, z). These equations
can be expressed as the following form.
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where ux, uy and uz are the velocity components in the directions x, y and z
respectively, p is the pressure, ρ and µ are the density and dynamic viscosity of
the air, respectively.

For the boundary conditions, we define as follows: The non-slip boundary
condition, u = (ux, uy, uz) = (0, 0, 0) is assigned on the inner walls. At the inlet,
the pressure is zero when compare to the outside. At the outlet, the pressure is
an oscillating function sine of time, p(t) = −P sin(ωt), where P is the amplitude
of the oscillating pressure [12, 13], taken from the graph of the intrapulmonary
pressure as shown in Figure 2(B(a)). Now, we have a boundary value problem
(BVP) which we need to solve in the next step.

(A) (B)

Figure 2: (A) Boundary setting and (B) graphs of (a) intrapulmonary and
(b) intrapleural pressure(modified from [15])
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3 The Method of Analytical Solution

From the BVP as stated in the previous section, we now want to solve for
the airflow velocity and the pressure inside the computational domain. For con-
venience to derive an analytical expression of the airflow velocity, we divide the
3D-respiratory tract model into 4 subregions as shown in Figure 3. These subre-
gions have their shape looked like 3 types of tube. Therefore, we divide the method
of analytical solution into 3 parts as follows. However, the method for solving the
third type of the subregions; area 3 and area 4, is very similar to the first region,
it just alternate between x and z direction, we then omit to give the detail of find-
ing their solution. The process of finding a solution for each subregion, we must
convert the model from the cartesian coordinate system into the other coordinates
that correspond to the characteristics of each area; cylindrical coordinate system
and toroidal coordinate system.

Figure 3: Division of the computational domain

Solution for the first region: area 1

The first region, area 1, we mean the oral cavity, it seems like a horizontal
ellipsoid tube with circular cross section area as shown in Figure 4. We can
transform the original model into the cylindrical coordinate system [12].

Figure 4: Transformation of area 1 into cylindrical coordinates
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The left side of Figure 4 is the original geometry model in the cartesian coordi-
nate system and the right side of Figure 4 is the model in the cylindrical coordinate
system. To find an analytical solution for the airflow velocity in this area, we con-
vert equations (2.1)-(2.4) into the cylindrical coordinate system (r, θ, x) by defin-
ing x = x, y = rcos(θ), z = rsin(θ) and use the chain rule. Then, the equations
(2.1)-(2.4) become the governing equations in then cylindrical coordinates with
the velocity vector u = (ur, uθ, ux) where ur, uθ, ux are the velocity components
in the directions r, θ, and x respectively.

But the airflow is assumed to be an axially symmetric flow, the angular velocity
component uθ is set to zero and u = u(r, x, t). Therefore, these equations for the
case of axially symmetric flow in cylindrical coordinates can be written in the form:
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By assuming fully developed flow for this area, ur = 0 and ux = ux(r, t), the
continuity equation is satisfied and we can omit equation (3.2). We are interested
in the case of the flow due to an oscillating pressure gradient so the following
differential equation should be satisfied:
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where P
a is the amplitude of the pressure gradient, a is the length on x-axis of the

considered area, ω is the cyclic frequency of the oscillating pressure gradient. To
define the oscillatory solution, we assume that ux is periodic function as follow:

ux(r, t) = ussin(ωt) + uccos(ωt). (3.5)

By introducing dimensionless variables r̃, ũx, and α such that

r̃ =
r

b
, ũx =

ux
Pb2

µa, α = b

√
ω

ν
, (3.6)

where b = b(x) is the radius on r-axis for each position x ; and α is the reduced
frequency. Then this region is transformed to be a one-unit of length and radius
tube as shown in Figure 5.

Equation (3.4) together with equation (3.5) are reduced to a system of non-
homogeneous Helmholtz equations in one dimension [17];

α2ũs =
d2ũc
dr̃2

+
1

r̃

dũc
dr̃

, − α2ũc = −1 +
d2ũs
dr̃2

+
1

r̃

dũs
dr̃

(3.7)

The boundary conditions for ũs and ũc are stated as follows :

ũs(0) ∈ R, ũc(0) ∈ R, ũs(1) = 0, ũc(1) = 0. (3.8)
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Figure 5: Dimensionless of a horizontal area

For an analytical solution of equation (3.7) which satisfies the boundary conditions
(3.8), if we let α2 ≡ λ2, we can determine by using a Fourier Bessel series of ũs,
ũc for r̃. Hence, ũs, ũc and 1 are expressed [13,18] as :

ũs =

∞∑
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AmJ0(λmr̃), ũc =

∞∑
m=1

BmJ0(λmr̃)

1 =

∞∑
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CmJ0(λmr̃), (3.9)

where J0 is the Bessel function of order zero which has infinite number of positive
roots λ = λm; m = 1, 2, 3, ... and the term J0 given by
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(−1)n

(n!)2

(λmr̃
2

)2n
. (3.10)

Substituting the series (3.9) in the system of equations (3.7), we get the unknown
coefficients Am and Bm as follows :
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( (2n)λ3m(λm(2n− 1) + 1)

α44n2 + [λ3m(λm(2n− 1) + 1)]2

)
Cm,
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( α24n2

α44n2 + [λ3m(λm(2n− 1) + 1)]2

)
Cm, (3.11)

where m = 1, 2, 3, ..., n = 0, 1, 2, ... and we can calculate Cm by

Cm =

∫ 1

0

J0(λmr̃)r̃dr̃∫ 1

0

[J0(λmr̃)]
2r̃dr̃

;m = 1, 2, 3, ... (3.12)

The resulting periodic velocity can be written as:

ũx = ũasin(ωt), ũa =
√
ũ2s + ũ2c (3.13)

We can obtain the airflow velocity ux by substituting ũx back into equation (3.6),
we get

ux =
Pb2

µa
ũx. (3.14)
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Finally, we can transform this the solution back into the cartesian coordinate form
as follows: ux = ux, uy = urcosθ, and uz = ursinθ which are the components of
the flow velocity in x-axis, y-axis, and z-axis, respectively.

Solution for the second region: area 2

Figure 6: Transformation of area 2 into toroidal coordinates

For the curve tube, area 2, we see that it’s a quarter of a torus or the doughnut
shape which the space contained within the surface to be called toroid. We will
begin transform model of this area as shown in Figure 6 into the toroidal coordinate
system (r, θ, φ).

Similarly to the first region, we convert the equations (2.1)-(2.4) to be the
equations in toroidal coordinates by defining x = (R + rcos φ)cos θ, z = (R +

rcos φ)sin θ, y = rsin φ in which r =
√

(R−
√
x2 + z2)2 + y2, θ = tan−1(z/x),

φ = sin−1(y/r). Here θ ∈ [π2 , π] is the toroidal angle, φ ∈ [0, 2π] is the poloidal
angle in the tube cross section and R is the distance from the center of the tube to
the center of the torus. When we use the chain rule, equations (2.1)-(2.4) become
equations in toroidal coordinates with the velocity vector u = (ur, uθ, uφ) where
ur, uθ, uφ are the velocity components in the directions r, θ, and φ respectively.
By the assuming of the flow is an axially symmetric, the poloidal angular velocity
component uφ is set to zero and u = u(r, x, t). Therefore, these equations in
toroidal coordinates can be written in form:

1
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By assuming fully developed flow on this area, ur = 0 and uθ = uθ(r, t), the
continuity equation as equation (3.15) is satisfied and equations (3.16)-(3.18) can
be written in a new form as follows:
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Since the flow is driven by the oscillating pressure gradient which depend on the
angle θ so ∂p

∂r = 0, ∂p
∂φ = 0. From equation (3.19), when uθ 6= 0, we get cos φ = 0

and ξ = R+ rcos φ = R. Thus, equation (3.21) becomes
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where P
a is the amplitude of the pressure gradient, a is the width on θ of the

considered area, ω is the cyclic frequency of the oscillating pressure gradient. To
define the oscillatory solution, we assume that uθ is periodic function as follow:

uθ(r, t) = ussin(ωt) + uccos(ωt). (3.23)

By introducing dimensionless variables r̃, ũθ, and α such that

r̃ =
r

b
, ũθ =

uθ
Pb2

µa, α = b

√
ω

ν
(3.24)

where b = b(x) is the radius on r-axis at each point x and α is the reduced
frequency. Then this region is transformed to be a one-unit region as shown in
Figure 7.

Figure 7: Dimensionless of the second region

Equation (3.23) together with equation (3.22) are reduced to a system of non-
homogeneous Helmholtz equations in one dimension [17];

α2ũs =
d2ũc
dr̃2

+
1

r̃

dũc
dr̃
− b2

R2
ũc, − α2ũc = − 1

R
+
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dr̃2

+
1
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dũs
dr̃
− b2

R2
ũs (3.25)
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The boundary conditions for ũs and ũc are stated as follows :

ũs(0) ∈ R, ũc(0) ∈ R, ũs(1) = 0, ũc(1) = 0. (3.26)

Now, we let α2− b2

R2 ≡ λ2, the analytical solution of equation (3.25) which satisfies
the boundary conditions (3.26) can be determined by using a Fourier Bessel series
of ũs, ũc for r̃. Hence, ũs, ũc and 1

R are expressed [18] as :

ũs =

∞∑
m=1

AmJ0(λmr̃), ũc =

∞∑
m=1

BmJ0(λmr̃).

1

R
=

∞∑
m=1

CmJ0(λmr̃) (3.27)

Substituting the series (3.27) in the system of equations (3.25), we obtain the
unknown coefficients Am and Bm as follows :

Am =
( −2nR2(R2(λm)3(λm(2n− 1) + 1) + 2nb2)2

(4n2α4R2) + (R2(λm)3(λm(2n− 1) + 1) + 2nb2)2

)
Cm,

Bm =
( α2

(4n2α4R2) + (R2(λm)3(λm(2n− 1) + 1) + 2nb2)2

)
Cm, (3.28)

where m = 1, 2, 3, ..., n = 0, 1, 2, ... and we can calculate Cm by

Cm =

∫ 1

0

J0(λmr̃)r̃dr̃∫ 1

0

[J0(λmr̃)]
2r̃dr̃

;m = 1, 2, 3, · · · . (3.29)

The resulting periodic velocity can be written as :

ũθ = ũasin(ωt), ũa =
√
ũ2s + ũ2c . (3.30)

We can obtain the airflow velocity uθ by substituting ũθ back into equation (3.24).
We get

uθ =
Pb2

µa
ũθ. (3.31)

Finally, we can transform this the solution back into the cartesian coordinate form
as follows: ux = uθsin(θ), uy = 0, uz = −uθcos(θ) which are the components of
the flow velocity in x-axis, y-axis, and z-axis, respectively.

Solution for the vertical areas: area 3 and area 4

Since area 3 and area 4 are vertical ellipsoid tubes. The idea to obtain the solution
for these areas is similar when we do in area 1 but for these areas, we solve for uz
instead of ux. We omit to mention detail.
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The analytical solution form of the airflow velocity of these two areas can be
determined by using a Fourier Bessel series of ũs, ũc for r̃. Hence, ũs, ũc and 1
are expressed as :

ũs =

∞∑
m=1

AmJ0(λmr̃), ũc =

∞∑
m=1

BmJ0(λmr̃) (3.32)

1 =

∞∑
m=1

CmJ0(λmr̃),

where J0 is the Bessel function of order zero which have an infinite number of
positive roots λ = λm ;m = 1, 2, 3, ... and the term J0 given by

J0(λmr̃) =
∞∑
n=0

(−1)n

(n!)2

(λmr̃
2

)2n
. (3.33)

We get the unknown coefficients Am and Bm as follows :

Am =
( (2n)λ3m(λm(2n− 1) + 1)

α44n2 + [λ3m(λm(2n− 1) + 1)]2

)
Cm,

Bm =
( −α24n2

α44n2 + [λ3m(λm(2n− 1) + 1)]2

)
Cm (3.34)

where m = 1, 2, 3, ..., n = 0, 1, 2, ... and we can calculate Cm by

Cm =

∫ 1

0

J0(λmr̃)r̃dr̃∫ 1

0

[J0(λmr̃)]
2r̃dr̃

;m = 1, 2, 3, ... (3.35)

The resulting periodic velocity can be written as :

ũz = ũasin(ωt), ũa =
√
ũ2s + ũ2c (3.36)

We can obtain the airflow velocity uz by substituting ũz back, we get

uz =
Pb2

µa
ũz, (3.37)

where parameter a and function b are correspondence to each area 3 and 4.
Finally, we can transform this the solution back into the cartesian coordinate

form as follows: ux = ursin(θ), uy = urcos(θ), uz = uz which are the components
of the flow velocity in x-axis, y-axis, and z-axis, respectively.

4 Simulation Results and Discussion

In this study, we aim to demonstrate the behaviour of airflow in an upper
respiratory tract by using our proposed mathematical model in Section 2. By the
obtained analytical solution the airflow velocity based on Fourier Bessel series in
Section 3, we can now simulate the vector plot and the contour plots of the airflow
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(A) t=1.4 s (B) t=2.5 s

Figure 8: The 3D-arrow plot of airflow field at time t = 1.4 s (A) and t =
2.5 s (B) in a breathing period

fields in the program of Matlab R2010a. By a study of medical research [5], we
found that the breathing period is assumed to be 4 s and the cyclic frequency
ω = π

2 . The analysis is carried out with ρ = 1.148kg/m3, µ = 1.82 × 10−5Pa.s
and P = 133.32Pa. For the realistic simulation, we present the direction of airflow
field by the 3D arrow plot as shown in Figure 8. The 3D-arrow plots of airflow
field are demonstrated at t = 1.4 s and t = 2.5 s in a breathing period as shown in
Figures 8(A)-8(B), respectively. The reason that we simulate at t = 1.4 s and t =
2.5 s is because of when t = 1.4 ∈ [0, 2) and t = 2.5 ∈ (2, 4] are the times that the
flow should flow in because of the pulmonary relaxation and flow out because of
the pulmonary contraction, respectively. Form Figures 8(A)-8(B), we found that
when t = 1.4 s the air flows into the respiratory tract, while in contrast, the air
flows out the respiratory tract at t = 2.5 s. The results are reasonable and show
a good agreement to the fact of the airflow behaviour in the human airway.

Let’s see the airflow field more closer, we present the arrow plot in the XZ-
plane for the central planar of respiratory tract. The XZ-plane arrow plots of
velocity field at time t = 1.4 s, 2.05 s, 2.5 s of each breathing period are shown in
Figures 9(A)-9(C).
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(A) t=1.4 s (B) t=2.05 s (C) t=2.5 s

Figure 9: The XZ-plane arrow plot of airflow field at the central planar of
respiratory tract at time t = 1.4 s (A), 2.05 s (B), 2.5 s (C) in a breathing
period

(A) t=1.4 s (B) t=2.05 s (C) t=2.5 s

Figure 10: The XZ-plane contour plot of airflow field at the central planar
of respiratory tract (y′ = 0)
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From Figures 9(A)-9(C), we see clearly that for a fixed location, the velocity
profiles have different direction and different size by different time. The maximum
velocity occurs in the central area and reduces to zero for the area which is more
closer to the walls. The results also show agreements to pulmonary system that
when t = 1.4 s the air flows into the respiratory tract and when t = 2.05 s, 2.5 s
the air flows out the respiratory tract.

Additionally, we present magnitude of the airflow velocity by the contour plot
in the XZ-plane for the central planar of respiratory tract at breathing period
t = 1.4 s, 2.05, 2.5 s as shown in Figures 10(A)-10(C), respectively. When we
consider the magnitude of velocity at t = 1.4 s and t = 2.5 s, it is found that a
boundary layer behaviour with a high velocity gradient close to the boundaries.
The magnitude of velocity always shows the maximum value in the central area
and gradually decreases to zero when the area approaching the to the walls. this
results corresponds to the previous arrow plots. The maximum velocity occurs
at the upper and end trachea which value have about 600 cm/s. However, when
t = 2.05 s the direction of the airflow is changing to become the out flow, their
magnitudes of velocity are less than other times and close to zero.

Moreover, we can see that at the same location, both direction and magnitude
of the airflow has changed vary on time in a breathing period. The air is taken
in and passing through oral cavity and enters trachea on the first two seconds of
a period and changes to flow out from the trachea and pass through oral cavity
on the last two seconds of the period. The obtained values of velocities are in the
range of [0, 900] cm/s which agree to other previous works [5, 12] and [13].

5 Conclusions

A three-dimensional mathematical model under the assumptions of axially
symmetric flow and driven by the oscillating pressure gradient within the pul-
monary is proposed. An analytical solution based on the Fourier-Bessel series for
the airflow field in a human respiratory tract is carried out as the objective of
this work. The solution of the airflow field is sophisticated to simulate on a three-
dimensional geometry of a human respiratory tract. The obtained results, both
magnitude and direction of the airflow are reasonable show a good agreement to
the fact of the airflow behaviour in the human airway. The values of velocities are
in the range of [0, 900] cm/s which agree to other previous works [12,13] and [5].
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