
Thai Journal of Mathematics : 191-205
Special Issue : Annual Meeting in Mathematics 2019

http://thaijmath.in.cmu.ac.th
Online ISSN 1686-0209

Strong Convergence of the

Shrinking Projection Method for

the Split Equilibrium Problem and

an Infinite Family of Relatively

Nonexpansive Mappings in Banach spaces

Nutchari Niyamosot† and Warunun Inthakon‡,1

†PhD Degree Program in Mathematics, Faculty of Science
Chiang Mai University, Chiang Mai 50200 Thailand

e-mail : nudchareen@hotmail.com
‡Research Center in Mathematics and Applied Mathematic,

Department of Mathematics, Faculty of Science,
Chiang Mai University, Chiang Mai 50200 Thailand

e-mail : w inthakon@hotmail.com

Abstract : In this paper, we use the shrinking projection method to prove a
strong convergence theorem for finding a common solution of the split equilibrium
problem and fixed point problem of a relatively quasi−nonexpansive mapping.
Consequently, our main theorem can apply to find a common solution of the split
equilibrium problem and common fixed point problem for an infinite family of
relatively nonexpansive mappings in Banach spaces.

Keywords : split equilibrium problem; equilibrium problem; relatively quasi-
nonexpansive; relatively nonexpansive; common fixed point; shrinking projection
method; Banach space.

2010 Mathematics Subject Classification : 47H05; 47H09; 47H10; 47J25.

1Corresponding author.

Copyright c© 2020 by the Mathematical Association of Thailand.
All rights reserved.



192 Thai J. Math. (Special Issue, 2020)/ N. Niyamosot and W. Inthakon

1 Introduction

In 1994, Censor and Elfving [1] studied the split feasibility problem in two
Hilbert spaces H1 and H2 which is to find z ∈ H1 such that z ∈ C ∩ A−1Q,
where C and Q are nonempty closed and convex subsets of Hilbert spaces H1 and
H2, respectively and A : H1 → H2 is a bounded linear operator. Furthermore, if
C ∩A−1Q is nonempty, then z ∈ C ∩A−1Q is equivalent to

z = PC(I − λA∗(I − PQ)A)z, (1.1)

where λ > 0 and PC is the metric projection of H1 onto C. Thus, many authors
used such results to studied the split feasibility problem in Hilbert spaces; see,
for instance [2, 3, 4, 5]. The result of (1.1) was extended to Banach spaces by
Takahashi [6, 7]. Since then, many author have been investigating the split feasi-
bility problem in Banach spaces (see [8, 9, 10, 11] and the reference therein). Let
S : H1 → H1 and T : H2 → H2 be any mappings, the split common fixed point
problem [12, 13] is to find z ∈ H1 such that z ∈ F (S) ∩ A−1F (T ), where F (S)
and F (T ) are the fixed point sets of S and T, respectively. In 2016, Takahashi
[14] studied the split common fixed point problem in two Banach spaces, see also
[15, 16].

Let F : C × C → R be a bifunction. The equilibrium problem for F is to find
z ∈ C such that

F (z, y) ≥ 0, (1.2)

for all y ∈ C. The set of all solutions of the problem (1.2) is denoted by EP (F ).
In 1955, Nikaido and Isoda [17] first used the inequality in convex game mod-

els. In 1972, Fan [18] proved existence theorems for EP (F ). Moreover, many
problems in physics, economics and others can be reduced to find a solution of
the problem (1.2). After the works of [19, 20, 21, 22], the equilibrium problem
has been investigated by many authors (see [23, 24, 25, 26, 27, 28, 29, 30] and the
references therein).

In 2012, He [31] considered the split equilibrium problem in Hilbert spaces.
Let F1 : C × C → R, F2 : Q × Q → R be two bifunctions and A : H1 → H2 be
a bounded linear operator. The split equilibrium problem is to find x∗ ∈ C such
that

F1(x∗, x) ≥ 0,∀x ∈ C and y∗ = Ax∗ ∈ Q such that F2(y∗, y) ≥ 0,∀y ∈ Q. (1.3)

The authors also introduced an iterative algorithm to find a solution of the split
equilibrium problem. Also, they introduced the following an iterative algorithm
to find a solution of (1.3) involing A∗ is the adjoint of A. The split equilibrium
problem and fixed point problems has been studied in Hilbert spaces by many
authors; see [32, 33, 34] and the references therein.

In 2017, Guo et al. [35] considered the split equilibrium problem in Banach
spaces defined as : let E1, E2 be two Banach spaces and C,Q be nonempty closed
and convex subsets of E1 and E2, respectively. Let A : E1 → E2 be a bounded
linear operator. Let F : C × C → R and H : Q×Q→ R be two bifunctions. Let
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Ω denote the set of solutions of the split equilibrium problem on F and H, that
is,

Ω = {z ∈ C : z ∈ EP (F ), Az ∈ EP (H)}.
The authors proved a strong convergence theorem as follows:

Let E1 be a uniformly smooth and uniformly convex Banach space and E2 be
a uniformly smooth, strictly convex and reflexive Banach space. Let A : E1 → E2

be a linear and continuous operator. Let C and Q be nonempty closed and convex
subsets of E1 and E2, respectively. Let S : C → C be a relatively nonexpansive
mapping and F : C × C → R, H : Q × Q → R be two bifunctions satisfying the
conditions (A1)-(A4) with Ω∩F (S) 6= ∅. Define a sequence {xn} by the following
manner: 

take x1 = x ∈ E, find v ∈ E1 such thatAv ∈ Q,
Vn = {x ∈ E1 : ‖x− v‖ ≤ n},
Un = {x ∈ Vn : Ax ∈ Q},
F (un, y) + 1

rn
〈y − un, Jun − Jxn〉 ≥ 0,∀y ∈ C,

H(Azn, Ay) + 1
sn
〈y − zn, Jzn − Jun〉 ≥ 0,∀y ∈ Un,

yn = J−1(αnJun + (1− αn)JSΠCzn),

Cn = {z ∈ C : φ(z, yn) ≤ φ(z, xn)},
Dn = ∩ni=1Ci

xn+1 = ΠDn
x,

(1.4)

for each n ≥ 1, where {rn} ⊂ [r,∞) with r > 0, {sn} ⊂ [s,∞) with s > 0 and
αn ⊂ (0, 1). Then the sequence {xn} defined by (1.4) converges strongly to a point
ΠΩ∩F (S)x, where ΠΩ∩F (S) is the generalized projection of E1 onto Ω ∩ F (S).

The algorithm (1.4) does not involve with the adjoint A∗ of the operator A and
the norm ‖A‖, which are quite difficult to compute, but involve only the operator
A. Furthermore, they also prove a weak convergence theorem for the set of solution
of the split equilibrium problem and fixed point problem for a relatively nonex-
pansive mapping in Banach spaces. Using this idea, Inthakon and Niyamosot [36]
also proved strong and weak convergence theorems for the split equilibrium prob-
lem and common fixed point problem for two relatively nonexpansive mappings in
Banach spaces.

In 2008, Takahashi et al. [37] proved a strong convergence theorem for nonex-
pansive mapping by using the shrinking projection method as follows: Let H be
a Hilbert space and let C be a nonempty closed convex subset of C. Let T be a
nonexpansive mapping of C into itself such that F (T ) 6= ∅ and let x0 ∈ H. For
C1 = C and u1 = PC1x0, define a sequence {un} of C as follows:

yn = αnun + (1− αn)Tun,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖un − z‖},
un+1 = PCn+1

x0, n ∈ N,
(1.5)

where 0 ≤ αn ≤ a < 1 for all n ∈ N. Then, {un} converges strongly to z0 =
PF (T )x0.
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Furthermore, studying strong convergence by the shrinking projection method
has been used widely in Banach spaces; see for instance [38, 39] and the references
therein.

In this paper, we focus on using the shrinking projection method to prove a
strong convergence theorem for finding a common solution of the split equilibrium
problem and fixed point problem of a relatively quasi−nonexpansive mapping.
Consequently, our main theorem can apply to find a common solution of the split
equilibrium problem and common fixed point problem for an infinite family of
relatively nonexpansive mappings in Banach spaces.

2 Preliminaries

Let E be a Banach space and let E∗ denote the dual of E. We denote the value
of x∗ at x by 〈x, x∗〉. Then the duality mapping J on E defined by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}

for every x ∈ E. By the Hahn-Banach theorem, J(x) is nonempty.
Let S(E) be the unit sphere centered at the origin of E. A Banach space E is

said to be strictly convex if ‖(x+ y)/2‖ < 1 wherever x, y ∈ S(E) and x 6= y. The
modulus δ of convexity of E is defined by

δ(ε) = inf{1− ‖x+ y‖
2

: ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε}

for every ε with 0 ≤ ε ≤ 2. A Banach space is said to be uniformly convex if
δ(ε) > 0 for every ε > 0. For x ∈ E and f ∈ E∗ define i (x) (f) = f (x) . We know
that i (x) ∈ E∗∗ and that the mapping i : X → E∗∗ is an isometric isomorphism,
called the canonical embedding of E into E∗∗. If i (E) = E∗∗, then E is said to be
reflexive. A uniformly convex Banach space is strictly convex and reflexive. Then
the space E is said to be smooth if the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

(2.1)

exists for all x, y ∈ S(E). The norm of E is also said to be uniformly Gâteaux
differentiable if for all y ∈ S(E), the limit (2.1) attains uniformly for x ∈ S(E).
The norm of E is said to be Fréchet differentiable if for each x ∈ S(E), the limit
(2.1) is attained uniformly for y ∈ S(E). The norm of E is said to be uniformly
Fréchet differentiable (and E is said to be uniformly smooth) if the limit (2.1) is
attained uniformly for (x, y) in S(E) × S(E). We know that E is smooth if and
only if J is a single-valued mapping of E into E∗. We also know that E is reflexive
if and only if J is surjective, and E is strictly convex if and only if J is one-to-one.

Let E be a smooth, strictly convex and reflexive Banach space and C be a
nonempty closed and convex subset of E. Let φ be the function on E ×E defined
by

φ(x, y) = ‖y‖2 − 2〈x, Jy〉+ ‖x‖2,
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for all x, y ∈ E. From the definition of φ, we have that

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖+ ‖y‖)2,

for x, y ∈ E. In 1996, Alber [40] defined the generalized projection ΠC from E
onto C as ΠC(x) = arg min

y∈C
φ(x, y), for all x ∈ E. If E is a Hilbert space, then

φ(x, y) = ‖x− y‖2 and ΠC is the metric projection P of XE onto C.
Let C be a closed and convex subset of E and let T be a mapping from C into

itself. A point p in C is said to be an asymptotic fixed point of T [41] if C contains
a sequence {xn} which converges weakly to p such that lim

n→∞
‖xn−Txn‖ = 0. The

set of asymptotic fixed points of T is denoted by F̂ (T ). We say that the mapping
T is called relatively nonexpansive [42, 43] if the following conditions are satisfied:

(R1) F (T ) 6= ∅,
(R2) φ(p, Tx) ≤ φ(p, x), for each x ∈ C, p ∈ F (T ),
(R3) F (T ) = F̂ (T ).
If T satisfies (R1) and (R2), then T is called relatively quasi-nonexpansive or

quasi-φ- nonexpansive. It is obvious that the class of relatively quasi-nonexpansive
mappings is more general than the class of relatively nonexpansive mappings.

It is known from [43] that if E be a strictly convex and smooth Banach space,
let C be a closed convex subset of E, and let T be a relatively nonexpansive
mapping from C into itself. Then F (T ) is closed and convex. Furthermore, since
the condition (R3) is not required in the proof of [43], we can concluded that the
fixed point set of relatively quasi-nonexpansive mapping is closed and convex.

In 2008, Kohsaka and Takahashi [44] proved the following result for a countable
family of relatively nonexpansive mappings.

Lemma 2.1 ([44]). Let C be a nonempty closed and convex subset of a uniformly
convex and uniformly smooth Banach space E. Let {Ti : C → E}∞i=1 be a se-
quence of relatively nonexpansive mappings such that

⋂∞
i=1 F (Ti) 6= ∅. Suppose

that {αi}∞i=1 ⊂ (0, 1) and {βi}∞i=1 ⊂ (0, 1) are sequences such that

∞∑
i=1

αi = 1 and

U : C → E is defined by

Ux = J−1

( ∞∑
i=1

αi (βiJx+ (1− βi)JTix)

)
for each x ∈ C.

Then U is relatively nonexpansive and F (U) =
⋂∞

i=1 F (Ti).
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In 2010, Nilsrakoo and Saejung [45] also proved the following result.

Lemma 2.2 ([45]). Let C be a nonempty closed and convex subset of a uniformly
convex and uniformly smooth Banach space E. Let {Ti : C → E}∞i=1 be a se-
quence of relatively nonexpansive mappings such that

⋂∞
i=1 F (Ti) 6= ∅. Suppose

that {αi}∞i=1 ⊂ (0, 1) and {βi}∞i=1 ⊂ (0, 1) are sequences such that

∞∑
i=1

αi = 1 and

S : C → E is defined by

Sx = J−1

( ∞∑
i=1

αiJTix

)
for each x ∈ C.

Then S is relatively nonexpansive and F (S) =
⋂∞

i=1 F (Ti).

By the way, for solving the equilibrium problem, let us assume that a bifunction
F satisfies the following conditions:

(A1) F (x, x) = 0 for all x ∈ C;
(A2) F is monotone, i.e. F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;
(A3) for all x, y, z ∈ C, lim sup

t↓0
F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for all x ∈ C, y 7→ F (x, y) is convex and lower semicontinuous.
The following lemma is due to Takahashi and Zembayashi [30].

Lemma 2.3 ([30]). Let C be a closed and convex subset of a uniformly smooth,
strictly convex and reflexive Banach space E, and let F be a bifunction from C ×
C → R satisfying (A1) - (A4). For r > 0 and x ∈ E, define a mapping TF

r : E →
C by

TF
r (x) = {z ∈ C : F (z, y) +

1

r
〈y − z, Jz − Jy〉 ≥ 0,∀y ∈ C},

for all x ∈ E Then TF
r is well-defined and the followings hold:

(1) TF
r is single-valued;

(2) TF
r is firmly nonexpansive-type mapping, i.e., for all x, y ∈ E,

〈TF
r x− TF

r y, JT
F
r x− JTF

r y〉 ≤ 〈TF
r x− TF

r y, Jx− Jy〉;

(3) F (TF
r ) = EP (F );

(4) EP (F ) is closed and convex.

The following results let us know more about the generalized projections.

Lemma 2.4 ([40, 44]). Let C be a nonempty closed and convex subset of a smooth,
strictly convex and reflexive Banach space E. Then

φ(x,ΠCy) + φ(ΠCy, y) ≤ φ(x, y),

for all x ∈ C and y ∈ E.
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Lemma 2.5 ([40, 44]). Let C be a nonempty closed and convex subset of a smooth,
strictly convex and reflexive Banach space E. Then, for any x ∈ E and z ∈ C we
have

z = ΠCx⇔ 〈y − z, Jx− Jz〉 ≤ 0,

for all y ∈ C.

The following results also play the important role in our main theorems.

Lemma 2.6 ([44]). Let E be a smooth and uniformly convex Banach space. Sup-
pose that {xn} and {yn} are the sequences in E such that either {xn} or {yn} is
bounded. If lim

n→∞
φ(xn, yn) = 0, then lim

n→∞
‖xn − yn‖ = 0.

Lemma 2.7 ([30]). Let C be a closed convex subset of a smooth, strictly convex
and reflexive Banach space E, F be a bifunction from C × C → R satisfying the
conditions (A1)-(A4) and let r > 0. Then, for any x ∈ E and q ∈ F (TF

r ),

φ(q, TF
r x) + φ(TF

r x, x) ≤ φ(q, x).

3 Main Results

We use the shrinking projection method to prove strong convergence theorem
as follows.

Theorem 3.1. Let E1 be a uniformly smooth and uniformly convex Banach space
and E2 be a uniformly smooth, strictly convex and reflexive Banach space. Let
A : E1 → E2 be a linear and continuous operator. Let C and Q be nonempty
closed and convex subsets of E1 and E2, respectively. Assume that S : C → C be a
relatively quasi-nonexpansive mapping and F : C ×C → R, H : Q×Q→ R be two
bifunctions satisfying the conditions (A1)-(A4) with Ω ∩ F (S) 6= ∅. Let C1 = C
and define a sequence {xn} by the following manner:

take x1 = x ∈ E, find v ∈ E1 such thatAv ∈ Q,
Vn = {x ∈ E1 : ‖x− v‖ ≤ n},
Un = {x ∈ Vn : Ax ∈ Q},
F (un, y) + 1

rn
〈y − un, Jun − Jxn〉 ≥ 0,∀y ∈ C,

H(Azn, Ay) + 1
sn
〈y − zn, Jzn − Jun〉 ≥ 0,∀y ∈ Un,

yn = J−1(αnJun + (1− αn)JSΠCzn),

Cn+1 = {z ∈ Cn : φ(z, yn) ≤ φ(z, xn)},
xn+1 = ΠCn+1x,

(3.1)

for each n ≥ 1, where {rn} ⊂ [r,∞) with r > 0, {sn} ⊂ [s,∞) with s > 0 and
αn ⊂ (0, 1). Then the sequence {xn} defined by (3.1) converges strongly to a point
ΠΩ∩F (S)x, where ΠΩ∩F (S) is the generalized projection of E1 onto Ω ∩ F (S).
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Proof. For each n ≥ 1, we can see that v is contained in Vn and Un. Therefore
Vn and Un are nonempty. By the definiton of Vn, we have Vn is closed. Since A
is linear and continuous, Vn is convex and Un is closed and convex. It is obvious
that C1 = C is closed and convex. Suppose that Ck is closed and convex for some
k ∈ N. For z ∈ Ck, we see that

φ(z, yk) ≤ φ(z, xk)⇔ ‖yk‖2 − ‖xk‖2 − 2〈z, Jyk − Jxk〉 ≤ 0.

This implies that Ck+1 is closed and convex, and hence Cn is closed and convex
for each n ≥ 1. Next, we show that xn is well defined. Let G(x, y) = H(Ax,Ay)
for all x, y ∈ Un. Since A is linear and continuous, then G is a bifunction from
Un × Un into R satisfying (A1)-(A4). Moreover, for each n ≥ 1, we can rewrite

H(Azn, Ay) + 1
sn
〈y − zn, Jzn − Jun〉 ≥ 0,

as

G(x, y) +
1

sn
〈y − zn, Jzn − Jun〉 ≥ 0, for all y ∈ Un.

Let p ∈ Ω ∩ F (S) so we have p ∈ EP (F ) and Ap ∈ EP (H). By Lemma 2.3, we
have p ∈ F (TF

rn) and hence p = TF
rnp. Since Ap ∈ EP (H), H(Ap, z) ≥ 0 for all

z ∈ Q. Since Az ∈ Q for all z ∈ Un, H(Ap,Az) ≥ 0 for all z ∈ Un. It follows that
G(p, z) ≥ 0 for all z ∈ Un which implies that p ∈ EP (G). By Lemma 2.3, we have
p = TG

snp and hence p ∈ C. Let un = TF
rnxn and zn = TG

snun. By Lemma 2.7 and
p ∈ F (TF

rn), we have

φ(p, TF
rnxn) + φ(TF

rnxn, xn) ≤ φ(p, xn)
φ(p, un) + φ(un, xn) ≤ φ(p, xn).

Thus,
φ(p, un) ≤ φ(p, xn)− φ(un, xn),

and hence

φ(p, un) ≤ φ(p, xn). (3.2)

Since p ∈ F (S) and S is relatively quasi-nonexpansive mapping, we have

φ(p, SΠCzn) ≤ φ(p,ΠCzn).

Furthermore, we have from Lemma 2.4 that

φ(p,ΠCzn) ≤ φ(p, un).

On the other hand, since p ∈ EP (F ), we can apply Lemma 2.3 and Lemma 2.7 to
get that

φ(p, zn) ≤ φ(p, un).

It follows from (3.2) that

φ(p, SΠCzn) ≤ φ(p, xn). (3.3)
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Thus,

φ(p, yn) = φ(p, J−1(αnJun + (1− αn)JSΠCzn))
= ‖p‖2 − 2〈p, αnJun + (1− αn)JSΠCzn)〉

+‖αnun + (1− αn)JSΠCzn)‖2
≤ ‖p‖2 − 2〈p, αnJun〉 − 2〈p, (1− αn)JSΠCzn)〉+ αn‖un‖2

+(1− αn)‖JSΠCzn)‖2
= αnφ(p, un) + (1− αn)φ(p, SΠCzn))
≤ αnφ(p, xn) + (1− αn)φ(p, xn)
= φ(p, xn).

Therefore, p ∈ Cn for each n ≥ 1 and hence Cn is nonempty. It follows that
Ω ∩ F (S) ⊂ Cn for each n ≥ 1 which implies that {xn} is well-defined. For each
n ≥ 1, we have from Lemma 2.4 that

φ(xn+1, x) = φ(ΠCn+1x, x)
≤ φ(z, x)− φ(z,ΠCn+1

x)
≤ φ(z, x), ∀z ∈ Cn+1.

Since Ω and F (S) are nonempty closed and convex, Ω∩F (S) is closed and convex.
Let x∗ = ΠΩ∩F (S)x, one has x∗ ∈ Ω ∩ F (S) ⊂ Cn+1 and

φ(xn+1, x) ≤ φ(x∗, x).

Therefore {φ(xn, x)} is bounded which implies that {xn} is bounded. It follows
that {un} and {zn} are also bounded. Since xn+2 = ΠCn+2

x ∈ Cn+2 ⊂ Cn+1, we
have

φ(xn+1, x) ≤ φ(xn+2, x).

Thus, we can conclude that the limit of {φ(xn, x)} exists.
For each m ≥ 1, since xn+m ∈ Cn+m ⊂ Cn+m−1 and Lemma 2.4, we have

φ(xn+m, xn) = φ(xn+m,ΠCn
x)

≤ φ(xn+m, x)− φ(ΠCn
x, x)

= φ(xn+m, x)− φ(xn, x).

From the existence of lim
n→∞

φ(xn, x), we have

lim
n→∞

φ(xn+m, xn) = 0, for each m ≥ 1. (3.4)

It follows from Lemma 2.6 that

lim
n→∞

‖xn − xn+m‖ = 0, for each m ≥ 1. (3.5)

Thus, the sequence {xn} is Cauchy. Therefore, there exists q ∈ C such that
xn → q as n → ∞. Finally, we show that q = ΠΩ∩F (S)x. Indeed, we have from
xn+1 = ΠCn+1

x, Ω ∩ F (S) ⊂ Cn+1 and Lemma 2.5 that

〈y − xn+1, Jx− Jxn+1〉 ≤ 0, for all y ∈ Ω ∩ F (S). (3.6)
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By letting n→∞ in (3.6) and noting that xn → q, we have

〈y − q, Jx− Jq〉 ≤ 0, for all y ∈ Ω ∩ F (S).

Therefore, we can conclude from Lemma 2.5 that

q = ΠΩ∩F (S)x

and the proof is complete.

Since every relatively nonexpansive mapping is relatively quasi− nonexpansive
mapping, Theorem 3.1 is also true when S is a relavetively nonexpansive mapping
and hence we can apply Lemma 2.1 and Theorem 3.1 to get a strong conver-

gence theorem for finding an element in Ω ∩
∞⋂
i=1

F (Ti) , where Ti are relatively

nonexpansive mappings in Banach spaces as follows.

Theorem 3.2. Let E1 be a uniformly smooth and uniformly convex Banach space
and E2 be a uniformly smooth, strictly convex and reflexive Banach space. Let
A : E1 → E2 be a linear and continuous operator. Let C and Q be nonempty closed
and convex subsets of E1 and E2, respectively. Assume that {Ti : C → C}∞i=1 be a
sequence of relatively nonexpansive mappings and F : C ×C → R, H : Q×Q→ R

be two bifunctions satisfying the conditions (A1)-(A4) with Ω ∩
∞⋂
i=1

F (Ti) 6= ∅.

Define S : C → C by Sx = J−1

( ∞∑
i=1

αi (βiJx+ (1− βi)JTix)

)
for each x ∈ C,

where {αi}∞i=1 ⊂ (0, 1) and {βi}∞i=1 ⊂ (0, 1) are sequences such that

∞∑
i=1

αi = 1.

Let C1 = C and define a sequence {xn} by the following manner:

take x1 = x ∈ E, find v ∈ E1 such thatAv ∈ Q,
Vn = {x ∈ E1 : ‖x− v‖ ≤ n},
Un = {x ∈ Vn : Ax ∈ Q},
F (un, y) + 1

rn
〈y − un, Jun − Jxn〉 ≥ 0,∀y ∈ C,

H(Azn, Ay) + 1
sn
〈y − zn, Jzn − Jun〉 ≥ 0,∀y ∈ Un,

yn = J−1(αnJun + (1− αn)JSΠCzn)

Cn+1 = {z ∈ Cn : φ(z, yn) ≤ φ(z, xn)},
xn+1 = ΠCn+1x,

(3.7)

for each n ≥ 1, where {rn} ⊂ [r,∞) with r > 0, {sn} ⊂ [s,∞) with s > 0. Then
the sequence {xn} defined by (3.7) converges strongly to a point ΠΩ∩F (S)x, where

ΠΩ∩F (S) is the generalized projection of E1 onto Ω ∩ F (S) and F (S) =

∞⋂
i=1

F (Ti).
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Furthermore, Lemma 2.2 and Theorem 3.1 also allow us to get the following
result.

Theorem 3.3. Let E1 be a uniformly smooth and uniformly convex Banach space
and E2 be a uniformly smooth, strictly convex and reflexive Banach space. Let
A : E1 → E2 be a linear and continuous operator. Let C and Q be nonempty closed
and convex subsets of E1 and E2, respectively. Assume that {Ti : C → C}∞i=1 be a
sequence of relatively nonexpansive mappings and F : C×C → R, H : Q×Q→ R be

two bifunctions satisfying the conditions (A1)-(A4) with Ω∩
∞⋂
i=1

F (Ti) 6= ∅. Define

S : C → C by Sx = J−1

( ∞∑
i=1

αiJTix

)
for each x ∈ C, where {αi}∞i=1 ⊂ (0, 1) is

a sequence such that

∞∑
i=1

αi = 1. Let C1 = C and define a sequence {xn} by the

following manner:

take x1 = x ∈ E, find v ∈ E1 such thatAv ∈ Q,
Vn = {x ∈ E1 : ‖x− v‖ ≤ n},
Un = {x ∈ Vn : Ax ∈ Q},
F (un, y) + 1

rn
〈y − un, Jun − Jxn〉 ≥ 0,∀y ∈ C,

H(Azn, Ay) + 1
sn
〈y − zn, Jzn − Jun〉 ≥ 0,∀y ∈ Un,

yn = J−1(αnJun + (1− αn)JSΠCzn)

Cn+1 = {z ∈ Cn : φ(z, yn) ≤ φ(z, xn)},
xn+1 = ΠCn+1

x,

(3.8)

for each n ≥ 1, where {rn} ⊂ [r,∞) with r > 0, {sn} ⊂ [s,∞) with s > 0. Then
the sequence {xn} defined by (3.8) converges strongly to a point ΠΩ∩F (S)x, where

ΠΩ∩F (S) is the generalized projection of E1 onto Ω ∩ F (S) and F (S) =

∞⋂
i=1

F (Ti).
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