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Abstract : Let r ∈ [ 1
2 ,∞) and (Xn) be a sequence of independent continuous

random variables such that Im(Xn) ⊆ R −
{
jπ
2 |j ∈ Z

}
. This paper provides the

sufficient conditions guaranteeing the existence of real constants (An), (An(r)) and

(Bn(r)) such that the sequences of the distribution functions of
1

n

n∑
k=1

1

tanXk
−An

and
1

Bn(r)

n∑
k=1

1

| tanXk|r
−An(r) converge.
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1 Introduction

The Central Limit Theorem (CLT) is one of well-known theorem in probability
theory and this equipment is always used for many applications in mathematical
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statistics, applied mathematics, biostatistics and statistical physics. The theorem
may be said simply as follows [1]:

“There is no need to know very much about the actual distribution of the
variables, as long as there are enough instances of them their sum can be treated
as normally distributed.”

Since 1770, it sparked starting during Laplace tried to find the way for solving
the problem about meteor inclination angles. But the deviations between the mean
of the data and the theoretical value, there still are problems. He cannot get an
accurate result without approximation. The process of finding an approximation
induced Laplace to form this theorem and the characteristic functions was key to
prove. The classical version of CLT [2] states that:

Let (Xn), n = 1, 2, 3, ... be a sequence of independent, identically distributed

random variables. Suppose that Sn =
1

n

n∑
k=1

Xk and Zn = Sn−E(Sn)√
V ar(Sn)

. Then the

distribution of Zn tends to the standard normal distribution as n→∞.

In 1988, Shapiro [3] considered the other forms of Sn that is sums of the
reciprocals of random variables as follows:

Sn =
1

n

n∑
k=1

1

Xk
and Sn,r =

1

nr

n∑
k=1

1

|Xk|r
−An(r)

where An(r) are real constants. For r > 1
2 , Shapiro showed that the distribution

functions of Sn and Sn,r converge to a Cauchy distribution function and a stable
law with exponent less than two, respectively. Termwuttipong [4] fulfilled the
other case, 0 < r ≤ 1

2 , and showed that the limit distribution function is a normal
distribution function.

Twelve years later, Neammanee [5] considered the convergence of the distri-
bution functions of

1

Bn

n∑
k=1

1

lnXk
−An and

1

Bn(r)

n∑
k=1

1

| lnXk|r
−An(r)

for r > 0.

In 2002, Neammanee [6] extended his previous work with a continuous function
g from subset A of R into R which satisfied the following conditions:

1. there exists an a ∈ A such that g(a) = 0,

2. g is strictly monotone on A ∩ (−∞, a] and A ∩ [a,∞),

3. g′ exists and continuous on (a− δ∗, a)∪ (a, a+ δ∗) for some δ∗ > 0 and g′(a)
exists and positive.
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He considered the convergence of the distribution functions of

1

n

n∑
k=1

1

g(Xk)
−An and

1

nr

n∑
k=1

1

|g(Xk)|r
−An(r)

for r > 0. The above function g can automatically generalized the results of Shapiro
[3], Termwuttipong [4] and Neammanee [5].

Siricheon [7] and Neammanee [8] changed the characteristic of g to a periodic
function that its graph cuts X-axis at infinitely points that is a sine function:

1

n

n∑
k=1

1

sin(Xk)
−An and

1

nr

n∑
k=1

1

| sin(Xk)|r
−An(r)

for r > 1
2 .

It is suspicious that the infinitely many numbers of x-intercepts does not affect
the weak convergence and we may see that functions in those articles ([4–6]) are
unbounded. Then we consider another periodic function, a tangent function that
merges together with infinitely many numbers of x-intercepts as the same behavior
of the sine function and unbounded property like logarithm function.

2 Main Theorems

Let (Xn) be a sequence of independent continuous random variables such that
Im(Xn) ⊆ R −

{
jπ
2 | j ∈ Z

}
for every n and let fn and Fn be the probability

density function and the distribution function of Xn, respectively. Define Xnk =
1

n tanXk
and Xr

nk = 1
nr| tanXk|r for r > 1

2 , these are our main results.

Theorem 2.1. Assume that
(i) there exists p > 1 such that {(|jp| + 1)fk : k ∈ N, j ∈ Z} is uniformly

equicontinuous, i.e. for any ε > 0 there exists δ > 0 such that for real numbers x
and y if |x− y| < δ, then |(|jp|+ 1)fk(x)− (|jp|+ 1)fk(y)| < ε for every integer j
and positive integer k,

(ii) lim
n→∞

1

n

n∑
k=1

∑
j∈Z

fk(jπ) = L for some L ≥ 0.

Then
1. there exists a sequence of real numbers (An) such that the distribution func-

tion of

n∑
k=1

Xnk − An converges, as n → ∞, to the distribution function F where

F = 1[0,∞) if L = 0 and F ∼ Cau(Lπ) if L > 0,
2. there exists a sequence of real numbers (An(r)) such that the distribution func-

tion of

n∑
k=1

Xr
nk − An(r) converges, as n → ∞, to the distribution function F r

if L = 0 then F r = 1[0,∞), otherwise F r is a stable distribution function with

characteristics exponent 1
r .
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Theorem 2.2. Under the condition (i), (ii) in Theorem 2.1 and suppose that

there exist a real number M and n0 ∈ N such that
∑
j∈Λ

fk(jπ) ≤ M(k ln k) for

k ≥ n0, then there exist sequences of real constants (An) and (Bn) such that the

distribution function of the sums
1

Bn

n∑
k=1

1√
| tan(Xk)|

−An converge weakly to Φ,

where Φ is the standard normal distribution function and the finite set Λ = {j ∈
Z|jπ ∈ (a, b)} and aπ < Im(Xn) < bπ and a, b ∈ R.

3 Proof of Main Theorems

First, we begin this section by introducing Theorem A and Theorem B as the
important tools that using to prove Theorem 2.1 and Theorem 2.2, respectively.
Next, the lemmas that relate through our discussion are provided and the proof
of Theorem 2.1 and Theorem 2.2 will be the last part of each subsections.

Theorem A ([9, p. 116]) In order that for some suitably chosen constants An
the distribution functions of sums Xn1 + Xn2 + · · · + Xnkn − An of independent
infinitesimal random variables, i.e. for any ε > 0, lim

n→∞
sup

1≤k≤kn
P (|Xnk| ≥ ε) = 0,

converge to a limit if there exist non-decreasing functions M and N , defined on
the intervals (−∞, 0) and (0,+∞), respectively with M(−∞) = 0 and N(+∞) = 0
and a constant σ ≥ 0 such that

A1. lim
n→+∞

kn∑
k=1

Fnk(x) = M(x), for a continuity point x of M ,

A2. lim
n→+∞

kn∑
k=1

[Fnk(x)− 1] = N(x), for a continuity point x of N ,

A3. lim
ε→0+

lim inf
n→∞

kn∑
k=1


∫
|x|<ε

x2 dFnk(x)−

(∫
|x|<ε

x dFnk(x)

)2


= lim
ε→0+

lim sup
n→∞

kn∑
k=1


∫
|x|<ε

x2 dFnk(x)−

(∫
|x|<ε

x dFnk(x)

)2


= σ2,
where Fnk denotes the distribution function of Xnk.

A constant An may be chosen according to

An =

kn∑
k=1

∫
|x|<τ

x dFnk(x)− γ(τ)

where −τ and τ are continuity points of M and N , respectively. Note that the
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formula of

γ(τ) = γ +

∫
|u|<τ

udG(u)−
∫
|u|≥τ

1

u
dG(u)

where the details of the constant γ and the function G are in [9, p.76-77].

Theorem B ([10, p. 97]) Let (Xn) be a sequence of independent random variables.
Then there exist sequences of real constants (An) and (Bn) such that Bn > 0, the
distribution functions of the sums 1

Bn
(X1 +X2 + · · ·+Xn)−An converge weakly

to Φ and a sequence (Xnk) ; k = 1, 2, ..., n, n = 1, 2, ... is infinitesimal where
Xnk = Xk

Bn
if and only if there exists a sequence of real constants (cn) such that

lim
n→∞

cn =∞ and

B1. lim
n→∞

n∑
k=1

∫
|x|≥cn

dFk(x) = 0,

B2. lim
n→∞

1

c2n

n∑
k=1


∫
|x|<cn

x2 dFk(x)−

(∫
|x|<cn

x dFk(x)

)2
 =∞

where Fk denotes the distribution function of Xk. The constants An and Bn can
be chosen by

B2
n =

n∑
k=1


∫
|x|>cn

x2 dFk(x)−

(∫
|x|>cn

x dFk(x)

)2


and

An =
1

Bn

n∑
k=1

∫
|x|>cn

x dFk(x).

Next, we give auxiliary results for proving the theorem (Theorem 2.1).

Lemma 3.1. For any x ∈ R and r > 1
2 , the distributions of Xnk and Xr

nk are
represented as follows:
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1. Fnk(x) =



∑
j∈Z

[
Fk(jπ)− Fk

(
jπ − π

2

)]
if x = 0

∑
j∈Z

[
Fk(jπ)− Fk

(
jπ + tan−1 1

nx

)]
if x < 0

∑
j∈Z

[
Fk(jπ)− Fk

(
jπ + tan−1 1

nx

)]
+ 1 if x > 0,

2. F rnk(x) =


0 if x ≤ 0

1 +
∑
j∈Z

[
Fk

(
jπ − tan−1 1

nx
1
r

)
− Fk

(
jπ + tan−1 1

nx
1
r

)]
if x > 0 .

Proof. Note that, Fnk(0) = P (tanXk < 0) =
∑
j∈Z

P
(
jπ − π

2
< Xk < jπ

)
=
∑
j∈Z

[
Fk (jπ)− Fk

(
jπ − π

2

)]
. If x < 0, we have Fnk(x) = P

(
1

nx
≤ tanXk < 0

)
=
∑
j∈Z

P

(
jπ + tan−1 1

nx
≤ Xk < jπ

)
=
∑
j∈Z

[
Fk (jπ)− Fk

(
jπ + tan−1 1

nx

)]
,

and if x > 0, Fnk(x) = Fnk(0) + (Fnk(x)− Fnk(0)) = Fnk(0) +P (0 < Xnk ≤ x) =

Fnk(0) + P

(
tanXk ≥

1

nx

)
= Fnk(0) + 1 − P

(
tanXk <

1

nx

)
= Fnk(0) + 1 −

P

⋃
j∈Z
{jπ − π

2
< Xk < jπ + tan−1(

1

nx
)}

 =
∑
j∈Z

[
Fk(jπ)− Fk

(
jπ − π

2

)]
+(1+

∑
j∈Z

[
Fk

(
jπ − π

2

)
− Fk

(
jπ + tan−1 1

nx

)]
) = 1+

∑
j∈Z

[
Fk(jπ)− Fk

(
jπ + tan−1 1

nx

)]
.

By the same arguments, the closed form of F rnk follows directly.

Lemma 3.2. For any x ∈ R and k ∈ N, the distribution function of Yk =
1√

| tan(Xk)|
is represented as follows:

Gk(x) =


0 if x ≤ 0

1 +
∑
j∈Λ

[Fk(jπ − arctan(
1

x2
))− Fk(jπ + arctan(

1

x2
))] if x > 0

where Λ defined as in Theorem 2.2.

Proof. We can use the same manner as Lemma 3.1 to prove this lemma.
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Lemma 3.3. Under the assumption (i) and (ii) in Theorem 2.1 the double se-
quences (Xnk) and (Xr

nk), k = 1, 2, ..., n;n = 1, 2, ... have the infinitesimal property
for any positive real number r.

Proof. By the assumption (ii), we have lim
n→∞

1

n

∑
j∈Z

fn(jπ) = lim
n→∞

1

n

n∑
k=1

∑
j∈Z

fk(jπ)−

lim
n→∞

(
n− 1

n

)(
1

n− 1

) n−1∑
k=1

∑
j∈Z

fk(jπ) = L− L = 0. So, for any ε > 0, there ex-

ists n1 ∈ N such that
1

k

∑
j∈Z

fk(jπ) < ε for all k > n1 and lim
n→∞

1

n

∑
j∈Z

fn−l(jπ) =

( lim
n→∞

n− l
n

) ( lim
n→∞

1

n− l
∑
j∈Z

fn−l(jπ)) = 0 for all l ∈ N. Since { 1

n

∑
j∈Z

fn−l(jπ) |

l = 1, 2, ..., n − 1} = { 1

n

∑
j∈Z

fk(jπ) | k = 1, 2, ..., n − 1} for any n ∈ N, we have

lim
n→∞

1

n

∑
j∈Z

fk(jπ) = 0 for all k ∈ N. Thus, for each k = 1, 2, ..., n1, there exists a

natural number n2 such that n2 > n1 and
1

n

∑
j∈Z

fk(jπ) < ε for n > n2. This leads

to max
1≤k≤n

1

n

∑
j∈Z

fk(jπ) < ε, for all n > n2, i.e., lim
n→∞

max
1≤k≤n

1

n

∑
j∈Z

fk(jπ) = 0.

Now we are ready to show that the double sequence (Xnk) has the infinitesimal
property. Let ε > 0, n ∈ N and k ∈ {1, 2, ..., n} be given. By Lemma 3.1, we see

that P (|Xnk| ≥ ε) =
∑
j∈Z

[Fk(jπ + tan−1 1

nε
)− Fk(jπ − tan−1 1

nε
)]. We note from

the assumpion (i) that, for k ∈ N and j ∈ Z, there exists δ > 0 such that for any
x ∈ R if |x− jπ| < δ then |(|jp|+ 1)fk(x)− (|jp|+ 1)fk(jπ)| < 1. By the result of

lim
n→∞

tan−1 1

nε
= 0, it implies that there exists n0 ∈ N, tan−1 1

nε
< δ for n > n0.

Apply the Mean Value Theorem with the function Fk|[jπ−tan−1 1
nε , jπ+tan−1 1

nε ]
,

we have Fk

(
jπ + tan−1 1

nε

)
−Fk

(
jπ − tan−1 1

nε

)
= (2 tan−1 1

nε
)fk(cjnk) where

cjnk − jπ ∈
(
− tan−1 1

nε
, tan−1 1

nε

)
. The infinitesimal property of (Xnk) follows

directly from the fact that lim
n→∞

tan−1 1

nε
= 0, the series of

∑
j∈Z

1

|jp|+ 1
converges

and 0 ≤ max
1≤k≤n

P (| Xnk |≥ ε) ≤ (2 tan−1 1

nε
)[
∑
j∈Z

1

|jp|+ 1
+ max

1≤k≤n

∑
j∈Z

fk(jπ)].

Next, for any r > 1
2 , we have max

1≤k≤n
P (| Xr

nk |≥ ε) = max
1≤k≤n

P (| Xnk |≥ ε
1
r ).

Hence a double sequence (Xr
nk), n = 1, 2, ...; k = 1, 2, 3, ..., n is infinitesimal be-

cause (Xnk) is infinitesimal.
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Lemma 3.4. Assume (i) and (ii) in Theorem 2.1 hold. For each r > 1
2 , let

M and Mr : (−∞, 0) → R be defined by M(x) = −Lx and Mr(x) = 0. For any
x < 0,

1. lim
n→∞

n∑
k=1

Fnk(x) = −L
x

and

2. lim
n→∞

n∑
k=1

F rnk(x) = 0.

Proof. 1. Let x < 0 be given. Since lim
n→∞

(n tan−1 1

nx
) =

1

x
and assumption (ii),

we have lim
n→∞

(−n tan−1 1

nx
)

∣∣∣∣∣∣ 1n
n∑
k=1

∑
j∈Z

fk(jπ)− L

∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣(−n tan−1 1

nx
)L+

L

x

∣∣∣∣ =

0. Let ε > 0, j ∈ Z and n ∈ N. By the same argument of Lemma 3.3, we apply
the Mean Value Theorem with the function Fk|[jπ+tan−1 1

nx , jπ], then there exists

n0 ∈ N such that for n ≥ n0, Fk(jπ)− Fk(jπ + tan−1 1

nx
) = (− tan−1 1

nx
)fk(cjnk)

where cjnk − jπ ∈ (tan−1 1
nx , 0) for any k ∈ {1, 2, ..., n}. So under the assump-

tion (i) and the boundedness of a sequence (n tan−1 1
nx ), we can conclude that

lim
n→∞

∣∣∣∣n tan−1 1

nx

∣∣∣∣ 1

n

n∑
k=1

∑
j∈Z
|fk(cjnk)− fk(jπ)| = 0. By Lemma 3.1 and

∣∣∣∣∣
n∑
k=1

Fnk(x) +
L

x

∣∣∣∣∣ =

∣∣∣∣∣∣
n∑
k=1

∑
j∈Z

[Fk(jπ)− Fk(jπ + tan−1 1

nx
)]

+
L

x

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
n∑
k=1

(−n tan−1 1

nx
)

1

n

∑
j∈Z

(fk(cjnk)− fk(jπ))

∣∣∣∣∣∣
+

∣∣∣∣∣∣
n∑
k=1

(−n tan−1 1

nx
)

1

n

∑
j∈Z

fk(jπ)

− (−n tan−1 1

nx
)L

∣∣∣∣∣∣
+

∣∣∣∣(−n tan−1 1

nx
)L+

L

x

∣∣∣∣ ,
we have lim

n→∞

n∑
k=1

Fnk(x) = −L
x

.

2. By Lemma 3.1, it is obvious that lim
n→∞

n∑
k=1

F rnk(x) = 0.
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Lemma 3.5. Assume (i) and (ii) in Theorem 2.1 hold. For each r > 1
2 , let

N and Nr : (0,∞) → R be defined by N(x) = −Lx and Nr(x) = − 2L

x
1
r

. For any

x > 0,

1. lim
n→∞

n∑
k=1

[Fnk(x)− 1] = −L
x

and

2. lim
n→∞

n∑
k=1

[F rnk(x)− 1] = −2L

x
1
r

.

Proof. We can proved 1. and 2. by using the same way as Lemma 3.4 applying the
Mean Value Theorem with Fk|[jπ , jπ+tan−1 1

nx ]and Fk|[
jπ−tan−1 1

nx
1
r

, jπ+tan−1 1

nx
1
r

],

respectively, for any n ∈ N, k ∈ {1, 2, ..., n}, x > 0 and r > 1
2 .

Lemma 3.6. Under the assumption (i), (ii) in Theorem 2.1 and let r > 1
2 . Then

the following limits hold :

1. lim
ε→0+

lim
n→∞

n∑
k=1


∫
|x|<ε

x2 dFnk(x)−

(∫
|x|<ε

x dFnk(x)

)2
 = 0 and

2. lim
ε→0+

lim
n→∞

n∑
k=1


∫
|x|<ε

x2 dF rnk(x)−

(∫
|x|<ε

x dF rnk(x)

)2
 = 0.

Proof. 1. From Lemma 3.1, [8, p.186] and the fundamental theorem of calculus,
we get

0 ≤
n∑
k=1


∫
|x|<ε

x2 dFnk(x)−

(∫
|x|<ε

x dFnk(x)

)2


≤
n∑
k=1

{∫ 0−

−ε
x2dFnk(x) +

∫ ε

0+

x2dFnk(x)

}

=

n∑
k=1

∑
j∈Z

∫ −π2
− tan−1 1

nε

− cot2(y)fk (jπ + y)

n2
dy +

n∑
k=1

∑
j∈Z

∫ tan−1 1
nε

π
2

− cot2(y)fk (jπ + y)

n2
dy.

(3.1)

If we can show that

lim
ε→0+

lim
n→∞

n∑
k=1

∑
j∈Z

∫ −π2
− tan−1 1

nε

− cot2(y)fk (jπ + y)

n2
dy ≤ 0
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and

lim
ε→0+

lim
n→∞

n∑
k=1

∑
j∈Z

∫ tan−1 1
nε

π
2

− cot2(y)fk (jπ + y)

n2
dy ≤ 0,

then lim
ε→0+

lim
n→∞

n∑
k=1


∫
|x|<ε

x2 dFnk(x)−

(∫
|x|<ε

x dFnk(x)

)2
 = 0.

By assumption (i), there exists 0 < δ < π
2 such that fk (jπ + y) < fk (jπ) + 1

|jp|+1

for all |y| < δ, k ∈ N and j ∈ Z. Then

∑
j∈Z

∫ −π2
− tan−1 1

nε

− cot2(y)fk (jπ + y) dy

≤
∑
j∈Z

∫ −δ
−π2

cot2(y)fk (jπ + y) dy +
∑
j∈Z

∫ − tan−1 1
nε

−δ
cot2(y)

(
fk (jπ) +

1

|jp|+ 1

)
dy

≤ cot2(δ) + (nε− cot(δ) + tan−1 1

nε
− δ)

∑
j∈Z

(fk (jπ) +
1

|jp|+ 1
)

 . (3.2)

It implies that lim
ε→0+

lim
n→∞

n∑
k=1

∑
j∈Z

∫ −π2
− tan−1 1

nε

− cot2(y)fk (jπ + y)

n2
dy ≤ 0 by using

assumption (ii).

To show that lim
ε→0+

lim
n→∞

n∑
k=1

∑
j∈Z

∫ tan−1 1
nε

π
2

− cot2(y)fk (jπ + y)

n2
dy ≤ 0, we may

follow the same way of the term

∫ −π2
− tan−1 1

nε

− cot2(y)fk (jπ + y)

n2
dy. Hence we have

the result in 1. as desired.

2. With the same method of the inequality (3.1), we have

n∑
k=1


∫
|x|<ε

x2 dF rnk(x)−

(∫
|x|<ε

x dF rnk(x)

)2


≤
n∑
k=1

∑
j∈Z

∫ π
2

tan−1( 1

nε
1
r

)

fk(jπ − y)

n2r tan2r(y)
dy +

n∑
k=1

∑
j∈Z

∫ π
2

tan−1( 1

nε
1
r

)

fk(jπ + y)

n2r tan2r(y)
dy.
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By assumption (ii), we have

lim
ε→0+

lim
n→∞

n∑
k=1

∑
j∈Z

∫ π
2

tan−1( 1

nε
1
r

)

fk(jπ − y)

n2r tan2r y
dy

≤ lim
ε→0+

lim
n→∞

n∑
k=1

∑
j∈Z

1

n2r

∫ δ

tan−1( 1

nε
1
r

)

(
fk(jπ) +

1

|jp|+ 1

)
1

tan2r y
dy

+ lim
ε→0+

lim
n→∞

n∑
k=1

∑
j∈Z

1

n2r

∫ π
2

δ

fk(jπ − y)

tan2r y
dy

≤ lim
ε→0+

(
tan1−2r δ

1− 2r

)
lim
n→∞

 1

n2r−1

 1

n

n∑
k=1

∑
j∈Z

fk(jπ)

+
1

n2r−1

∑
j∈Z

1

|jp|+ 1


+ lim
ε→0+

(
ε

2r−1
r

2r − 1

)
lim
n→∞

 1

n

n∑
k=1

∑
j∈Z

fk(jπ) +
∑
j∈Z

1

|jp|+ 1

+ lim
ε→0+

lim
n→∞

1

n2r tan2r δ

= 0.

We note that lim
n→∞

1

n2r−1
and lim

ε→0+
ε

2r−1
r have to be zero so this is the reason that

we assume r > 1
2 . Furthermore, it is the same details of the inequlity (3.2) to show

that

lim
ε→0+

lim
n→∞

1

nr

n∑
k=1

∑
j∈Z

∫ π
2

tan−1 1

nε
1
r

fk(jπ + y)
1

nr tan2r y
dy ≤ 0.

Hence we have the lemma as desired.

3.1 Proof of Theorem 2.1

In order to guarantee the existence of (An) such that the sequence of the dis-

tribution function of

n∑
k=1

Xnk − An converges, we have to examine the conditions

of Theorem A. It is clear that the sequence (Xnk) is infinitesimal from Lemma
3.3. The non-decreasing functions M and N in condition A1 and A2 follow from
Lemma 3.4(1) and Lemma 3.5(1), respectively and the value of σ in the condition
A3 of Theorem A is zero. Thus all conditions of Theorem A are satisfied and it
implies that there exists a sequence of real numbers (An) such that the distribu-

tion function of

n∑
k=1

Xnk − An converges. Moreover, we can determine its limit

distribution, say F , by using Levy’s representation, as details in [11, p. 93]. If
L = 0, we know that F = 1[0,∞) and if L > 0, the distribution function F is
Cuachy distribution function with parameter Lπ.
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The proof of Theorem 2.1(2) is the same as the footprints of Theorem 2.1(1)
and we also get that F r = 1[0,∞) if L = 0 and F r is a stable distribution function

with characteristic exponent 1
r if L > 0 where F r is the limit distribution function

of

n∑
k=1

Xr
nk −An(r) for each r > 1

2 , see the table in [11, p. 93].

To prove Theorem 2.2 (case r = 1
2 ), we use the Theorem B as an important

tool.

3.2 Proof of Theorem 2.2.

First, we shall show that the condition B1 of Theorem B is satisfied. Let

cn =
√
n
√

lnn for n = 2, 3, ... and c1 = 1 and Yn = 1√
| tan(Xn)|

. From Lemma 3.2,

the distribution function of Yn is represented as follows:

Gn(x) =


0 if x ≤ 0,

1 +
∑
j∈Λ

[
Fn

(
jπ − arctan(

1

x2
)

)
− Fn

(
jπ + arctan(

1

x2
)

)]
if x > 0.

By condition (i) and the fact that lim
n→∞

cn = ∞, there exist δ > 0 and N ∈ N
such that for every k ∈ N, j ∈ Λ and x ∈ R if |x − jπ| < δ then |fk(x) −

fk(jπ)| < C
|jp|+1 where C = (L2 )

∑
j∈Λ

1

|jp|+ 1

 and | arctan( 1
c2n

)| < δ for any

n ≥ N. Thus we have 0 ≤
n∑
k=1

∫
|x|≥cn

dGk(x) =

n∑
k=1

∑
j∈Λ

∫ arctan( 1
c2n

)

− arctan( 1
c2n

)

fk(jπ+y)dy ≤

(2 arctan
1

c2n
)

n∑
k=1

∑
j∈Λ

(fk(jπ)+
1

|jp|+ 1
) for any n ≥ N. So lim

n→∞

n∑
k=1

∫
|x|≥cn

dGk(x) ≤

0 · L+ 0 = 0 because of the condition (ii) and lim
n→∞

n · arctan(
1

c2n
) = 0. Then the

condition B1 of Theorem B holds. Next, we will show that the condition B2 of
Theorem B is also satisfied. For n ≥ N, and k ∈ {1, 2, ..., n}, we obtain that

0 ≤
∫
|x|<cn

xdGk(x)

≤
∑
j∈Λ

∫ cn

0

xd

([
Fk

(
jπ + arctan

(
− 1

x2

))
− Fk

(
jπ + arctan

(
1

x2

))])
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≤
∑
j∈Λ

[
1√

tan(δ)

∫ jπ−δ

jπ−π2
fk(y)dy +

(
fk(jπ) +

C

|jp|+ 1

)∫ jπ+ 1

n
√

lnn

jπ−δ

1√
tan(jπ − y)

dy

+

(
fk(jπ) +

C

|jp|+ 1

)∫ jπ+δ

jπ+arctan( 1
n lnn )

1√
tan(y − jπ)

dy +
1√

tan(δ)

∫ jπ+π
2

jπ+δ

fk(y)dy

]

=
1√

tan(δ)

∫ ∞
−∞

fk(y)dy +
∑
j∈Λ

(
fk(jπ) +

C

|jp|+ 1

)
2

[√
tan(δ)− 1

cn

]

+
∑
j∈Λ

(
fk(jπ) +

C

|jp|+ 1

)
2

[√
tan δ − 1

cn

]
+

1√
tan(δ)

∫ ∞
−∞

fk(y)dy

≤ (
∑
j∈Λ

fk(jπ))Kn + Ln (3.3)

where Kn = 4(
√

tan(δ) − 1
cn

), Ln =

∑
j∈Λ

1

|jp|+ 1

An + 2√
tan(δ)

and we also

have∫
|x|<cn

x2dGk(x) ≥
∑
j∈Λ

∫ jπ+π
2

jπ+bn

fk(y)

tan(y − jπ)
dy

≥
∑
j∈Λ

∫ jπ+δ

jπ+bn

fk(y)

tan(y − jπ)
dy

≥
∑
j∈Λ

(
fk(jπ)− 1

|jp|+ 1

)∫ tan(δ)

1
c2n

1

x(1 + x2)
dx

≥
∑
j∈Λ

(
fk(jπ)− 1

|jp|+ 1

)
1√

1 + (tan(δ))2
ln(c2n tan(δ)). (3.4)

From (3.3) and (3.4) we conclude that

1

c2n

n∑
k=1

{∫
|x|<cn

x2dGk(x)− (

∫
|x|<cn

xdGk(x))2

}

≥ 1

c2n

n∑
k=1

∑
j∈Λ

(
fk(jπ)− C

|jp|+ 1

)
1√

1 + (tan(δ))2
ln(c2n tan(δ))− [(

∑
j∈Λ

fk(jπ))Kn + Ln]2


≥ (

1√
1 + (tan(δ))2

)

 1

n

n∑
k=1

∑
j∈Λ

fk(jπ)− L

2

(n ln(c2n tan δ)

c2n

)

−K2
n

 1

n

n∑
k=1

∑
j∈Λ

fk(jπ)

− (2KnLn)

(
n

c2n

) 1

n

n∑
k=1

∑
j∈Λ

fk(jπ)

− (nL2
n

c2n

)
.
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Since lim
n→∞

n ln(c2n tan δ)

c2n
= ∞, lim

n→∞

n

c2n
= 0, and both of lim

n→∞
Kn and lim

n→∞
Ln

are constants, the condition B2 of Theorem B holds. Hence we have the Theorem
2.2 as desired.
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