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1 Introduction

Nonlinear evolution equations (NLEEs) play a vital role in nonlinear physical
science and engineering, since they may well describe various natural phenomena,
such as solitons, plasma physics, fluid dynamics, optical fiber, vibrations, plane
wave and propagation with a finite speed. Many NLEEs can be written as non-
linear partial differential equations (NPDEs) for which their solutions assist us to
analyze and understand such phenomena modeled by NLEEs. One kind of the
important solutions of NPDEs is exact traveling wave solutions, which are closed
form solutions. They can provide a complete explanation of the physical behaviors
for the studied problems. Hence, searching such exact or closed form solutions of
NPDEs is of great importance in several fields of nonlinear sciences. Recently,
many efficient methods have been proposed and used to solve NPDEs for exact
traveling wave solutions such as the (G′/G)-expansion method [1–3], the (G′/G2)-
expansion method [4, 5], the extended tanh–coth method [6], the exp-function
method [7,8], the sine-cosine method [9,10], the first integral method [11,12], the
generalized Kudryashov method [13], the generalized Riccati equation mapping
method [14,15], the extended auxiliary equation method [16], the inverse scatter-
ing method [17] and so on.

Study of solitons is one of the most fascinating areas of research in theoretical
physics since solitons appear in many aspects of our daily life. For example, solitons
can be found in solitary waves observed on lake shore and beaches where shallow
water occurs, biological sciences in the context of neurosciences [18], Langmuir
waves and Alfven waves in plasma physics [19], nonlinear fiber optics [20] and non-
perturbative developments in the quantum field theory [21]. The most important
application of solitons is highlighted in quantum Hall effect where the governing
equation is the chiral nonlinear Schrödinger’s equation (NLSE) providing both
bright and dark solitons.

The investigations of finding exact solutions of the chiral nonlinear Schrödinger’s
equation are as follows. In 1998, Nishino et al. [22] obtained the progressive wave
solutions of the (1+1)-dimensional chiral nonlinear Schrödinger’s equation. The
obtained solutions include bright and dark soliton solutions depending upon the
sign of the product of the velocity of envelop and the nonlinear coupling con-
stant. In 2009, Biswas [23] studied the chiral nonlinear Schrödinger’s equation
in (2+1) dimensions to carry out the bright and dark soliton solutions using the
soliton ansatz method. In 2010, Biswas [24] employed the ansatz method to solve
the chiral nonlinear Schrödinger’s equation with time-dependent coefficients. In
2011, Biswas and Milovic [25] used He’s variational principle to solve the (1+1)-
dimensional the chiral nonlinear Schrödinger’s equation with Bohm potential to
obtain the 1-soliton solution. Biswas et al. [26] solved the generalized version of
(1+1)-dimensional chiral nonlinear Schrödinger’s equation via conservation laws
and the aid of He’s semi-inverse variational principle. In the following year, Ebadi
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et al. [27] utilized the (G′/G)-expansion method and the exponential function
method to obtain traveling wave solutions of the (1+1)-dimensional chiral nonlin-
ear Schrödinger’s equation with Bohm potential. In 2014, Biswas [28] used the
first integral method to obtain the 1-soliton solution of the generalized (1+1)-
dimensional chiral nonlinear Schrödinger’s equation with time-dependent coeffi-
cients. In 2016, Younis et al [29] investigated the (1+1)-dimensional chiral non-
linear Schrödinger’s equation with Bohm potential via extended Fan sub-equation
method to obtain soliton-like solutions, triangular type solutions, single and com-
bined non-degenerate Jacobi elliptic wave function like-solutions. Eslami [30] ap-
plied the trial solution technique to solve the (2+1)-dimensional chiral nonlinear
Schrödinger’s equation for its exact solutions. In 2018, Bulut et al. [31] solved
the (1+1) and (2+1)-dimensional chiral nonlinear Schrödinger’s equation using
the sine-Gordon expansion method (SGEM) for their exact solutions including
dark soliton solutions and bright soliton solutions. Raza and Javid [32] obtained
exact solutions of the (2+1)-dimensional chiral nonlinear Schrödinger’s equation
using the extended direct algebraic method and extended trial equation method.
These methods provided many kinds of solutions of the equation including rational
function solutions, hyperbolic function solutions, Jacobi elliptic function solutions.
Here the (1+1)- and (2+1)-dimensional chiral nonlinear Schrödinger’s equations
are shown as follows.

The (1+1)-dimensional chiral nonlinear Schrödinger’s equation given by [22,31]
is written as

iΨt + Ψxx − iσ (Ψ∗Ψx −ΨΨ∗x) Ψ = 0, (1.1)

where Ψ is a complex function of x and t, i =
√
−1, σ is a nonlinear coupling

constant and the notation ∗ indicates the complex conjugate.

The (2+1)-dimensional chiral nonlinear Schrödinger’s equation given by [30–
32] is expressed as

iΨt + a (Ψxx + Ψyy) + i
(
b1 (ΨΨ∗x −Ψ∗Ψx) + b2

(
ΨΨ∗y −Ψ∗Ψy

))
Ψ = 0, (1.2)

where Ψ is the complex function of x and t, a is the coefficient of the dispersion
terms and b1, b2 are nonlinear coupling constants and the notation ∗ represents
the complex conjugate.

In this paper, we are interested in finding exact solutions, by means of the
modified simple equation method, of the space-time chiral nonlinear Schrödinger’s
equations in the sense of the conformable derivative, which are modified from
the original versions in Eqs. (1.1) and (1.2). The remaining paper is classified as
follows. In Section 2, the conformable derivative and its properties are given. In
Section 3, the description of the modified simple equation method is compactly
provided. The applications of the method to the conformable space-time chiral
nonlinear Schrödinger’s equations are demonstrated in Section 4. In Section 5, the
paper is concluded.
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2 Conformable derivative and its properties

In this section, the definition of the conformable derivative and its important
properties are shortly given as follows.

Definition 2.1. Given a function f : [0,∞) → R. Then the conformable deriva-
tive of f of order α is defined by [33,34]

Dα
t f(t) = lim

ε→0

f(t+ εt1−α)− f(t)

ε
, for all t > 0, 0 < α ≤ 1. (2.1)

If the limit in Eq. (2.1) exists, then we say that f is α-conformable differentiable
at a point t > 0.

Remark 2.2. Since the derivative in Eq. (2.1) was initially defined, it was orig-
inally called the conformable fractional derivative and had been used in many ap-
plications of fractional differential equations (FDEs) [35–37]. Until 2018, Tarasov
[38] demonstrated that the conformable fractional derivative in Eq. (2.1) does not
give anything new in the spaces of differentiable functions and is not a fractional
derivative of non-integer order. Throughout this paper, we hence call the derivative
in Eq. (2.1) that the conformable derivative.

Theorem 2.3. Let α ∈ (0, 1], and f(t), g(t) be α-conformable differentiable at a
point t > 0, then [33, 34]

Dα
t (λ) = 0, where λ = constant,

Dα
t (tµ) = µtµ−α, for all µ ∈ R,

Dα
t (af(t) + bg(t)) = aDα

t f(t) + bDα
t g(t), for all a, b ∈ R,

Dα
t (f(t)g(t)) = f(t)Dα

t g(t) + g(t)Dα
t f(t),

Dα
t

(
f(t)

g(t)

)
=

g(t)Dα
t f(t)− f(t)Dα

t g(t)

g(t)2
.

Remark 2.4. Conformable derivative of some interesting functions are as follows
[33].

(1) Dα
t (ect) = ct1−αect, c ∈ R.

(2) Dα
t (sin bt) = bt1−α cos bt, b ∈ R.

(3) Dα
t (cos bt) = −bt1−α sin bt, b ∈ R.

(4) Dα
t ( 1

α t
α) = 1.

(5) Dα
t (f(t)) = t1−α

df(t)

dt
, provided that f(t) is differentiable.

Theorem 2.5. Let f : (0,∞)→ R be a function such that f is differentiable and
α-conformable differentiable. Also, let g be a differentiable function defined in the
range of f . Then

Dα
t (f ◦ g)(t) = t1−αf ′(g(t))g′(t),

where the prime notation (′) denotes the classical derivative.
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3 Algorithm of the modified simple equation
method

The essential procedure of the modified simple equation method is as follows
[39–44].

Step 1: We suppose that the given conformable nonlinear partial differential
equation in u(x, t) is of the following form

F (u,Dγ1
x u,D

γ2
t u,D

γ1
2xu,D

γ2
t D

γ1
x u, ...) = 0, (3.1)

where Dα
τ is the conformable derivatives of a dependent variable u with respect to

independent variables τ . Eq. (3.1) can be converted into an ODE

G(u, u′, u′′, u′′′, ...) = 0, (3.2)

by using the traveling wave transformation ξ = xγ1

γ1
+ tγ2

γ2
.

Step 2: Suppose that the solution of Eq. (3.2) can be expressed by a finite
series of the form

u(ξ) =

m∑
n=0

αn

(
φ′(ξ)

φ(ξ)

)n
, (3.3)

where αn (n = 0, 1, 2, 3, ...,m) are arbitrary constants to be determined later, such
that αn 6= 0, and φ(ξ) is an unidentified function to be determined subsequently.
The positive integer m will be determined by balancing the highest order derivative
term with the highest order nonlinear term of Eq. (3.2).

Step 3: We substitute Eq. (3.3) into Eq. (3.2). As a result of this substitution,
we obtain a polynomial of φ−j(ξ) in terms of the derivatives of φ(ξ). We equate
all of the coefficients of φ−j(ξ) for j ≥ 0 to be zero. This process yields a system of
algebraic equations which can be solved for the coefficients αn (n = 0, 1, 2, 3, ...,m)
and the function φ(ξ) with the aid of a symbolic software package.

Step 4: We substitute the values of αn(n = 0, 1, 2, 3, ...,m), φ(ξ), φ′(ξ) and ξ
into Eq. (3.3) to complete the determination of exact solutions of Eq. (3.1).

4 Applications

In this section, we will apply the modified simple equation method to the con-
formable space-time (1+1)- and (2+1)-dimensional chiral nonlinear Schrödinger’s
equations to obtain their exact solutions.

4.1 The conformable space-time (1+1)-dimensional chiral
nonlinear Schrödinger’s equation

The conformable space-time (1+1)-dimensional chiral nonlinear Schrödinger’s equa-
tion is

iDγ2
t Ψ +D2γ1

x Ψ− iσ(Ψ∗Dγ1
x Ψ−ΨDγ1

x Ψ∗)Ψ = 0, (4.1)
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where 0 < γ1, γ2 ≤ 1, Ψ is a complex function of x and t, σ is a real constant and
the notation ∗ indicates the complex conjugate. Assume that the solution form of
Eq. (4.1) is

Ψ(x, t) = u(ξ) exp (iθ) , (4.2)

where the complex wave transformations ξ and θ are, respectively,

ξ = c

(
xγ1

γ1
+ v

tγ2

γ2

)
, θ = k

xγ1

γ1
+ ω

tγ2

γ2
+ ϕ, (4.3)

where c, v, k, ω and ϕ are real constants. Substituting Ψ in Eq. (4.2) into Eq. (4.1),
and then decomposing the resulting equation into real and imaginary parts, we
obtain

Re : c2u′′ + 2kσu3 − (ω + k2)u = 0, (4.4)

Im : (2k + v)cu′ = 0. (4.5)

From Eq. (4.5), one can get the relation

v = −2k. (4.6)

Using the solution form in Eq. (3.3) and balancing the terms u′′ and u3 in Eq. (4.4)
yields m = 1. Consequently, we have

u(ξ) = α0 + α1

(
φ′

φ

)
, (4.7)

where φ is the function of ξ. Substituting Eq. (4.7) into Eq. (4.4) and then setting
the coefficients of φ−j , j = 0, 1, 2, 3 to be zero, we obtain a set of algebraic equations
as follows:

φ−3 : 2σ kα3
1 (φ′)

3
+ 2 c2α1 (φ′)

3
= 0, (4.8)

φ−2 : 6σ kα0α
2
1 (φ′)

2 − 3 c2α1φ
′′φ′ = 0, (4.9)

φ−1 : 6σ kα2
0α1φ

′ − k2α1φ
′ + c2α1φ

′′′ − ω α1φ
′ = 0, (4.10)

φ0 : 2 kσα3
0 − k2α0 − ωα0 = 0. (4.11)

Solving Eqs. (4.8) and (4.11), we obtain

α0 = ±1

2

√
2 k2 + 2ω

σ k
, α1 = ±

√
− 1

σ k
c. (4.12)

Eqs. (4.9) and (4.10) can be reduced to

φ′ =
c2

2α1σ kα0
φ′′, (4.13)
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and

φ′ =
c2

−6 kσ α2
0 + k2 + ω

φ′′′, (4.14)

respectively. Using Eq. (4.13) and Eq. (4.14), we have the following ODE

φ′′′

φ′′
=
−6 kσ α2

0 + k2 + ω

2α1σ kα0
. (4.15)

Integrating Eq. (4.15) with respect to ξ, it yields

φ′′ = ς1exp

((
−6kσα2

0 + k2 + ω
)
ξ

2α1σkα0

)
, (4.16)

where ς1 is a constant of integration. Replacing φ′′ in Eq. (4.16) into Eq. (4.13),
we have

φ′ =
c2ς1

2α1σkα0
exp

((
−6kσα2

0 + k2 + ω
)
ξ

2α1σkα0

)
. (4.17)

Integrating Eq. (4.17) once, we obtain

φ =
c2ς1

−6kσα2
0 + k2 + ω

exp

((
−6kσα2

0 + k2 + ω
)
ξ

2α1σkα0

)
+ ς2, (4.18)

where ς2 is a constant of integration.
Next, we substitute φ(ξ) in Eq. (4.18) and φ′(ξ) in Eq. (4.17) into Eq. (4.7),

then we obtain

u(ξ) = α0 +

c2ς1 exp

(
(−6 kσα2

0+k
2+ω)ξ

2α1σkα0

)

2kσ

 c2ς1 exp

(
(−6kσα2

0+k2+ω)ξ
2α1σ kα0

)
−6kσα2

0+k
2+ω

+ ς2

 . (4.19)

Substituting the values of α0, α1 from Eq. (4.12) into Eq. (4.19) and then using
Eq. (4.3), we obtain the exact solution of Eq. (4.1) as follows

Ψ1(x, t) =± 1

2

{√
2(k2 + ω)

kσ

+

√
2c2ς1 exp

(
±
√
−2(k2 + ω)

(
xγ1

γ1
− 2k t

γ2

γ2

))
√

(k2 + ω)σk

(
c2ς1 exp

(
±
√
−2(k2+ω)

(
xγ1
γ1
−2k tγ2γ2

))
−2(k2+ω) + ς2

)}

× exp

(
i

(
k
xγ1

γ1
+ ω

tγ2

γ2
+ ϕ

))
.

(4.20)
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In particular, if we first choose ς2 = c2ς1
−6 kσ α2

0+k
2+ω

for Eq. (4.20), then the

solitary wave solution (4.20) can be reduced in terms of the hyperbolic function
solution as follows

Ψ2(x, t) =± 1

2

√
2 (k2 + ω)

kσ
tanh

(√
−2(k2 + ω)

2

(
xγ1

γ1
− 2k

tγ2

γ2

))

× exp

(
i

(
k
xγ1

γ1
+ ω

tγ2

γ2
+ ϕ

))
,

(4.21)

in which the dark soliton solution exists when k2 + ω < 0 and kσ < 0. From
Eq. (4.21), we alternatively obtain the trigonometric function solution of Eq. (4.21)
as

Ψ3(x, t) =± 1

2

√
−2 (k2 + ω)

kσ
tan

(√
2(k2 + ω)

2

(
xγ1

γ1
− 2k

tγ2

γ2

))

× exp

(
i

(
k
xγ1

γ1
+ ω

tγ2

γ2
+ ϕ

))
,

(4.22)

in which the singular-periodic solution occurs when k2 + ω > 0 and kσ < 0.

In addition, if we set ς2 = ς1c
2

6α2
0kσ−k2−ω

, then the solitary wave solution (4.20)

can be expressed in terms of the hyperbolic function solution as follows

Ψ4(x, t) =± 1

2

√
2 (k2 + ω)

kσ
coth

(√
−2(k2 + ω)

2

(
xγ1

γ1
− 2k

tγ2

γ2

))

× exp

(
i

(
k
xγ1

γ1
+ ω

tγ2

γ2
+ ϕ

))
,

(4.23)

in which the singular soliton solution exists and is valid for k2 + ω < 0 and
kσ < 0. From Eq. (4.23), we alternatively get the trigonometric function solution
of Eq. (4.23) as

Ψ5(x, t) =± 1

2

√
−2 (k2 + ω)

kσ
cot

(√
2(k2 + ω)

2

(
xγ1

γ1
− 2k

tγ2

γ2

))

× exp

(
i

(
k
xγ1

γ1
+ ω

tγ2

γ2
+ ϕ

))
,

(4.24)

in which the singular-periodic solution occurs and is valid when k2 + ω > 0 and
kσ < 0.

Next, we will give some graphical representations of the exact solutions of the
conformable space-time (1+1)-dimensional chiral nonlinear Schrödinger’s equation
(4.1). We use the Maple package program to depict our results on the chosen
domain is −5 ≤ x ≤ 5 and −5 ≤ t ≤ 5. The variations of the selected fractional
orders γ1 and γ2 are as the following sets: {γ1 = 1, γ2 = 1}, {γ1 = 0.8, γ2 =
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0.6}, {γ1 = 0.1, γ2 = 0.8} and {γ1 = 0.5, γ2 = 0.5}. The absolute values of the
exact solution (4.20) are plotted in Figure 1 using the mentioned variation sets
of the fractional orders and the following parameter values k = 1, ω = −2, σ =
−1, c = 1, ς1 = 1, ς2 = 1. Figure 2 shows the absolute values of the exact solution

(a) γ1 = γ2 = 1 (b) γ1 = 0.8, γ2 = 0.6

(c) γ1 = 0.1, γ2 = 0.8 (d) γ1 = 0.5, γ2 = 0.5

Figure 1: Graphs of the absolute value of the solution Ψ1(x, t) in Eq. (4.20)
using k = 1, ω = −2, σ = −1, c = 1, ς1 = 1, ς2 = 1 on −5 ≤ x ≤ 5 and
−5 ≤ t ≤ 5.

(4.24) using the mentioned variation sets of the fractional orders and the following
parameter values k = 1, ω = 2, σ = −1, c = 1, ς1 = 1, ς2 = 1.
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(a) γ1 = γ2 = 1 (b) γ1 = 0.8, γ2 = 0.6

(c) γ1 = 0.1, γ2 = 0.8 (d) γ1 = 0.5, γ2 = 0.5

Figure 2: Graphs of the absolute value of the solution Ψ5(x, t) in Eq. (4.24)
using k = 1, ω = 2, σ = −1, c = 1, ς1 = 1, ς2 = 1 on −5 ≤ x ≤ 5 and
−5 ≤ t ≤ 5.
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4.2 The conformable space-time (2+1)-dimensional chiral
nonlinear Schrödinger’s equation

The conformable space-time (2+1)-dimensional chiral nonlinear Schrödinger’s equa-
tion is expressed as

iDγ2
t Ψ + a

(
D2γ1
x Ψ +D2γ3

y Ψ
)

+ i
(
b1 (ΨDγ1

x Ψ∗ −Ψ∗Dγ1
x Ψ) + b2

(
ΨDγ3

y Ψ∗ −Ψ∗Dγ3
y Ψ

))
Ψ = 0,

(4.25)

where 0 < γ1, γ2, γ3 ≤ 1, Ψ is a complex function of x, y and t, the parameter
a, b1 and b2 are real constants and the notation ∗ indicates the complex conjugate.

Assume that the solution form of Eq. (4.25) is

Ψ = u(ξ) exp (iΩ) , (4.26)

where the complex wave transformations ξ and Ω are, respectively,

ξ = c
xγ1

γ1
− v t

γ2

γ2
+ k

yγ3

γ3
, Ω = p

xγ1

γ1
+ ω

tγ2

γ2
+ q

yγ3

γ3
+ ϕ, (4.27)

where c, v, k, p, ω, q and ϕ are real constants. Substituting Ψ in Eq. (4.26) into
Eq. (4.25) and then decomposing the resulting equation into real and imaginary
parts, we get

Re : a
(
c2 + k2

)
u′′ + 2 (pb1 + qb2)u3 −

(
a
(
p2 + q2

)
+ ω

)
u = 0, (4.28)

Im : (2 a(cp+ kq)− v)u′ = 0. (4.29)

From Eq. (4.29), one can obtain the relation

v = 2 a (cp+ kq) . (4.30)

Using the solution in Eq. (3.3) and balancing the terms u′′ and u3 in Eq. (4.28)
yields m = 1. In consequence, we have

u(ξ) = α0 + α1

(
φ′

φ

)
, (4.31)

where φ is the function of ξ. Substituting Eq. (4.31) into Eq. (4.28) and then
equating the coefficients of φ−j , j = 0, 1, 2, 3 to be zero, we obtain a set of algebraic
equations as follows:

φ−3 : 2α1

(
(pb1 + qb2)α2

1 + a
(
c2 + k2

))
(φ′)

3
= 0, (4.32)

φ−2 : 62α0α
2
1 (pb1 + qb2) (φ′)

2 − 3aα1

(
c2 + k2

)
φ′′φ′ = 0, (4.33)

φ−1 : aα1

(
c2 + k2

)
φ′′′

−
(
−6 (pb1 + qb2)α2

0 + a
(
p2 + q2

)
+ ω

)
α1 (φ′) = 0, (4.34)

φ0 : −
(
−2 (pb1 + qb2)α2

0 + a
(
p2 + q2

)
+ ω

)
α0 = 0. (4.35)
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Solving Eqs. (4.32) and (4.35), we get

α0 = ±

√
a (p2 + q2) + ω

2(pb1 + qb2)
, α1 = ±

√
−a (c2 + k2)

pb1 + qb2
. (4.36)

Eqs. (4.33) and (4.34) can be rewritten as

φ′ =
a
(
c2 + k2

)
2α1α0 (pb1 + qb2)

φ′′, (4.37)

and

φ′ =
a
(
c2 + k2

)
a (p2 + q2)− 6 (pb1 + qb2)α2

0 + ω
φ′′′, (4.38)

respectively. Using Eqs. (4.37) and (4.38), we have the following ODE

φ′′′

φ′′
=
a
(
p2 + q2

)
− 6 (pb1 + qb2)α2

0 + ω

2α1α0 (pb1 + qb2)
. (4.39)

Integrating Eq. (4.39) with respect to ξ, it yields

φ′′ = ς3exp

((
a
(
p2 + q2

)
− 6 (pb1 + qb2)α2

0 + ω
)
ξ

2α1α0 (pb1 + qb2)

)
, (4.40)

where ς3 is a constant of integration. Replacing φ′′ in Eq. (4.40) into Eq. (4.37),
we obtain

φ′ =
a
(
c2 + k2

)
ς3

2α1α0 (pb1 + qb2)
exp

((
a
(
p2 + q2

)
− 6 (pb1 + qb2)α2

0 + ω
)
ξ

2α1α0 (pb1 + qb2)

)
. (4.41)

Integration Eq. (4.41) once, we have that

φ =
a
(
c2 + k2

)
ς3

a (p2 + q2)− 6 (pb1 + qb2)α0
2 + ω

× exp

((
a
(
p2 + q2

)
− 6 (pb1 + qb2)α2

0 + ω
)
ξ

2α1α0 (pb1 + qb2)

)
+ ς4,

(4.42)

where ς4 is a constant of integration.
Next, we substitute φ(ξ) in Eq. (4.42) and φ′(ξ) in Eq. (4.41) into Eq. (4.31).

Then, we obtain

u(ξ) = α0 +

a
(
c2 + k2

)
ς3 exp

(
(a(p2+q2)−6(pb1+qb2)α2

0+ω)ξ
2α1α0(pb1+qb2)

)

2α0 (pb1 + qb2)

a(c2+k2)ς3 exp

(
(a(p2+q2)−6(pb1+qb2)α2

0+ω)ξ
2α1α0(pb1+qb2)

)
a(p2+q2)−6α2

0(b1p+qb2)+ω
+ ς4

 .
(4.43)
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Substituting the values of α0, α1 from Eq. (4.36) into Eq. (4.43) and then using
Eq. (4.27), we obtain the exact solution of Eq. (4.25) as follows

Ψ1(x, y, t) = ±

√
a (p2 + q2) + ω

2 (pb1 + qb2)

×


1 +

a
(
c2 + k2

)
ς3 exp

(
± ξ
√
−2 a(p2+q2)−2ω√

a(c2+k2)

)

(a (p2 + q2) + ω)

−a(c2+k2)ς3 exp

(
±
ξ
√

−2 a(p2+q2)−2ω√
a(c2+k2)

)
2 a(p2+q2)+2ω + ς4




× exp

(
i

(
p
xγ1

γ1
+ ω

tγ2

γ2
+ q

yγ3

γ3
+ ϕ

))
,

(4.44)

where ξ = cx
γ1

γ1
+ k y

γ3

γ3
− 2a (cp+ kq) t

γ2

γ2
.

In particular, if we first choose ς4 =
a(c2+k2)ς3

(p2+q2)a−6(pb1+qb2)α2
0+ω

for Eq. (4.44),

then the solitary wave solution (4.44) can be written in terms of the hyperbolic

function solution with ξ = cx
γ1

γ1
+ k y

γ3

γ3
− 2a (cp+ kq) t

γ2

γ2
as follows

Ψ2(x, y, t) =±

√
a (p2 + q2) + ω

2 (pb1 + qb2)
tanh

(√
− (a (p2 + q2) + ω)

2a (c2 + k2)
ξ

)

× exp

(
i

(
p
xγ1

γ1
+ ω

tγ2

γ2
+ q

yγ3

γ3
+ ϕ

))
,

(4.45)

in which the dark soliton solution exists when
a(p2+q2)+ω
pb1+qb2

> 0 and
a(p2+q2)+ω

a < 0.

From Eq. (4.45), we can equivalently obtain the trigonometric function solution of
(4.45) as

Ψ3(x, y, t) =±

√
−a (p2 + q2) + ω

2 (pb1 + qb2)
tan

(√
a (p2 + q2) + ω

2a (c2 + k2)
ξ

)

× exp

(
i

(
p
xγ1

γ1
+ ω

tγ2

γ2
+ q

yγ3

γ3
+ ϕ

))
,

(4.46)

where ξ = cx
γ1

γ1
+ k y

γ3

γ3
− 2a (cp+ kq) t

γ2

γ2
in which the singular-periodic solution

occurs when
a(p2+q2)+ω
pb1+qb2

< 0 and
a(p2+q2)+ω

a > 0.

Furthermore, if we set ς4 =
−a(c2+k2)ς3

(p2+q2)a−6(pb1+qb2)α0
2+ω , then the solitary wave

solution (4.44) can be written in terms of the hyperbolic function solution as
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follows

Ψ4(x, y, t) =±

√
a (p2 + q2) + ω

2 (pb1 + qb2)
coth

(√
− (a (p2 + q2) + ω)

2a (c2 + k2)
ξ

)

× exp

(
i

(
p
xγ1

γ1
+ ω

tγ2

γ2
+ q

yγ3

γ3
+ ϕ

))
,

(4.47)

where ξ = cx
γ1

γ1
+ k y

γ3

γ3
− 2a (cp+ kq) t

γ2

γ2
in which the singular soliton solution

exists and is valid if
a(p2+q2)+ω
pb1+qb2

> 0 and
a(p2+q2)+ω

a < 0. Alternatively, we can

obtain the trigonometric function solution of Eq. (4.25) using Eq. (4.47). The
converted solution is

Ψ5(x, y, t) =±

√
−a (p2 + q2) + ω

2 (pb1 + qb2)
cot

(√
a (p2 + q2) + ω

2a (c2 + k2)
ξ

)

× exp

(
p
xγ1

γ1
+ ω

tγ2

γ2
+ q

yγ3

γ3
+ ϕ

)
,

(4.48)

where ξ = cx
γ1

γ1
+ k y

γ3

γ3
− 2a (cp+ kq) t

γ2

γ2
in which the singular-periodic solution

occurs and is valid for
a(p2+q2)+ω
pb1+qb2

< 0 and
a(p2+q2)+ω

a > 0.
In the following part, we will give some graphical representations of the selected

exact solutions of the conformable space-time (2+1)-dimensional chiral nonlinear
Schrödinger’s equation (4.25). For plotting, the target domain is defined as −5 ≤
x ≤ 5, −5 ≤ y ≤ 5 and −5 ≤ t ≤ 5 and the parameter values are k = 1, ω = 3, c =
1, p = 1, q = 1, a = −1, b1 = 1, b2 = 1, ς3 = 1 and ς4 = 1. Setting x = 0 and
using the following variations of the fractional orders γ2 and γ3: {γ2 = γ3 = 1},
{γ2 = γ3 = 0.5}, {γ2 = 0.1, γ3 = 0.8} and {γ2 = 0.8, γ3 = 0.6}, the absolute
values of the exact solution (4.44) are plotted in Figure 3. In Figure 4, we depict
the absolute values of the exact solution (4.45) with y = 0 using the following sets of
fractional orders γ1 and γ2: {γ1 = γ2 = 1}, {γ1 = γ2 = 0.1}, {γ1 = 0.8, γ2 = 0.9}
and {γ1 = 0.8, γ2 = 0.5}. All of the graphs in Figure 4 are generated using
k = 1, ω = 3, c = 1, p = 1, q = 1, a = −1, b1 = 1, b2 = 1.

5 Conclusions

In this work, we have employed the modified simple equation method to obtain
exact traveling wave solutions for the conformable space-time (1+1) and (2+1)-
dimensional chiral nonlinear Schrödinger’s equations using the conformable deriva-
tive. For each of the problem, the method has generally constructed the exponen-
tial function solutions which can be reduced to the hyperbolic function solutions
and trigonometric function solutions depending upon choices of the constants of
integration. The obtained solutions have been physically characterized as the
soliton solutions and singular-periodic solutions. The constraint conditions for
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(a) γ2 = γ3 = 1 (b) γ2 = γ3 = 0.5

(c) γ2 = 0.1, γ3 = 0.8 (d) γ2 = 0.8, γ3 = 0.6

Figure 3: Graphs of the absolute value of the solution Ψ1(x, y, t) in
Eq. (4.44) by setting x = 0 and using k = 1, ω = 3, c = 1, p = 1, q =
1, b1 = 1, b2 = 1, ς3 = 1, ς4 = 1 on −5 ≤ y ≤ 5 and −5 ≤ t ≤ 5.
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(a) γ1 = γ2 = 1 (b) γ1 = γ2 = 0.1

(c) γ1 = 0.8, γ2 = 0.9 (d) γ1 = 0.8, γ2 = 0.5

Figure 4: Graphs of the absolute value of the solution Ψ2(x, y, t) in
Eq. (4.45) by setting y = 0 and using k = 1, ω = 3, c = 1, p = 1, q =
1, a = −1, b1 = 1, b2 = 1 on −5 ≤ x ≤ 5 and −5 ≤ t ≤ 5.
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occurring dark soliton, singular soliton and singular-periodic solutions have been
established. In addition, we have demonstrated some graphical representations of
the chosen exact solutions of the problems by means of varying their fractional-
order values. All of the obtained solutions have been verified by substituting them
back into the associated problems with the help of the Maple 17 package program.
Even though, the method cannot give bright soliton solutions to the problems,
but it is still simple, powerful and reliable for obtaining the exact solutions for a
considerable number of real-world problems which are written in terms of NPDEs
including conformable NPDEs.
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