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1 Introduction and Preliminaries

The chessboard is an array arranged in eight rows and eight columns. The
interested chess piece on the chessboard is the knight because of its move. The
knight can move one square vertically or one square horizontally and then two
squares move at 90 degrees angle. In 1959, Euler [1] found that on the chessboard
the knight can move from a square to another square such that it lands on every
square once and returns to its starting square. This knight’s move is called a
closed knight’s tour. The extension of the chessboard is the m × n chessboard.
It is an array arranged in m rows and n columns. In 1991, Schwenk [2] obtained
the sufficient and necessary conditions for the m×n chessboard to admit a closed
knight’s tour.

Theorem 1.1 ([2]). The m × n chessboard with m ≤ n admits a closed knight’s
tour unless one or more of the following conditions hold:

(i) m and n are both odd; or
(ii) m = 1 or 2 or 4; or
(iii) m = 3 and n = 4 or 6 or 8.

An (a, b)-knight’s move or a generalized knight’s move is an extension of a
knight’s move. It is defined by Chia et al. [3]. They generalized in such a way
that the knight can move a squares vertically or a squares horizontally and then
b squares move at 90 degrees angle. Then, (1, 2)-knight’s move is the ordinary
knight’s move. For the m × n chessboard, we label each square by (i, j) in the
matrix fashion. If a knight stands at square (i, j), then it can move to at most eight
squares: (i±a, j± b) and (i± b, j±a). A closed knight’s tour using (a, b)-knight’s
move is also extended on the m×n chessboard. If the knight moves to all squares
of the m × n chessboard with an (a, b)-knight’s move and returns to the starting
square, then this move is called a closed (a, b)-knight’s tour or a generalized closed
knight’s tour.

We see that an (a, b)-knight’s move and (b, a)-knight’s move are the same. In
the case that a = b, the knight can move from a square to another square with the
same colour, black to black or white to white. Then, the m×n chessboard admits
no closed (a, a)-knight’s tours. Thus, we shall assume that a < b. The authors in
[3] obtained some chessboard admit a closed (2, 3)-knight’s tour as follows.

Proposition 1.2 ([3]). Suppose k ≥ 3 is an integer. Then, the 5k× n chessboard
admits a closed (2, 3)-knight’s tour if and only if

(i) n ≥ 10 is even and n 6= 12 when k is odd, or
(ii) n = 5, 9, 10, 11 or n ≥ 13 when k is even.

Moreover, Chia et al. [3] obtained the necessary conditions for the m × n
chessboard admitted no closed (a, b)-knight’s tours as follows.

Theorem 1.3 ([3]). Suppose that the m × n chessboard admits a closed (a, b)-
knight’s tour, where a < b and m ≤ n. Then,

(i) a + b is odd; and
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(ii) m or n is even; and
(iii) m ≥ a + b; and
(iv) n ≥ 2b.

By Theorems 1.1 and 1.3, we see that which m×n chessboard admits no closed
(a, b)-knight’s tours. Then, Chia et al. [3] also obtained some chessboards which
admit no closed (a, b)-knight’s tours.

Theorem 1.4 ([3]). Suppose that m = a+ b+ 2t+ 1, where 0 ≤ t ≤ a− 1. Then,
the m× n chessboard admits no closed (a, b)-knight’s tour.

Theorem 1.5 ([3]). Suppose that m = a(k + 2l), where 1 ≤ l ≤ k
2 . Then, the

m × n chessboard admits no closed (a, ak)-knight’s tour, where a is odd and k is
even.

Theorem 1.6 ([3]). Suppose that m = 2(ak + l), where 1 ≤ k ≤ l ≤ a. Then, the
m× n chessboard admits no closed (a, a + 1)-knight’s tour.

Theorem 1.7 ([3]). Suppose that m = 2a + 2t + 1, where 1 ≤ t ≤ a − 1. Then,
the m× n chessboard admits no closed (a, a + 1)-knight’s tour.

By Theorems 1.4-1.7, certain chessboards that admit no closed (a, b)-knight’s
tours for any a < b depend on a and b. In 2017, the authors in [4] obtained the
result for any m× n chessboard as follows.

Theorem 1.8 ([4]). Let gcd(a, b) 6= 1. Then, there is no closed (a, b)-knight’s
tour for any m× n chessboard.

By Theorem 1.3, we see that the smallest m of the m × n chessboard which
may contain a closed (a, b)-knight’s tour is a + b. This motivates us to focus the
m× n chessboard with m = a + b. In this paper, we show that (i) the (a + b)× n
chessboard admits no closed (a, b)-knight’s tours if n ∈ [2b + 1, 4b − 1] where
1 ≤ a < b (in Theorem 2.5) or if n ∈ [4b+1, 5b] where 1 ≤ a < b < 2a (in Theorem
2.6), and (ii) the (2a+ 1)×n chessboard admits no closed (a, a+ 1)-knight’s tours
if n = 4a + 4 where a ≥ 1 (in Theorem 3.1), or if n = 6a + 6 where a > 3 (in
Theorem 3.2), or if n = 6a + 8 where a > 3 (in Theorem 3.3).

2 The (a+b)×n Chessboards where n ∈ [2b, 4b− 1]∪
[4b+ 1, 5b]

We start this section with the well-known graphs. The first one is a Hamilto-
nian graph. It is a graph containing a cycle that passes through each vertex exactly
once. This cycle is called a Hamiltonian cycle. The second one is a bipartite graph.
It is a graph that the vertex set can be partition into two sets and two vertices are
joined by an edge if they are in the different partition set.

The knight’s tour problem on the m × n chessboard is converted to question
about a certain graph. An m × n knight’s graph is a graph G that represents all
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(a, b)-knight’s moves on the m × n chessboard. That is, G contains mn vertices
where each square of the m×n chessboard is replaced by a vertex and two vertices
of G are joined by an edge if the knight can move by (a, b)-knight’s move between
these squares or vertices. In other words, if v is a square of the m×n chessboard,
then v is a vertex of the m×n knight’s graph. If v is a vertex of G, then the degree
of v, denoted by deg v, is the number of squares that the knight can move to. We
may say that the degree of a vertex v of the m × n knight’s graph is the degree
of the corresponding square v on the m× n chessboard. A closed knight’s tour is
a Hamiltonian cycle in G and the knight’s tour problem on the m× n chessboard
in the sense of a graph is to determine a Hamiltonian cycle of the m× n knight’s
graph. For the m× n chessboard, we color square (i, j) with black if i+ j is even,
and white if i + j is odd. If the m × n chessboard admits a closed (a, b)-knight’s
tour, then, by Theorem 1.3, a + b is odd. If the knight stands at a black square
(i, j), then squares (i ± a, j ± b) and (i ± b, j ± a), if exist, are colored by white.
Also, if the knight stands at a white square (i, j), then squares (i ± a, j ± b) and
(i ± b, j ± a), if exist, are colored by black. Thus, the knight only moves from
a black square to a white square or a white square to a black square. We can
conclude this remark in the following lemma.

Lemma 2.1. If the m×n chessboard admits a closed (a, b)-knight’s tour, then the
m× n knight’s graph is a bipartite graph.

Now, we consider the m × n chessboard where m = a + b. In the case that
n = 2b, we posted the following result in [4].

Theorem 2.2 ([4]). Suppose that m = a + b and n = 2b. Then, the m × n
chessboard admits no closed (a, b)-knight’s tours.

For the case that m = a + b and n ≥ 2b + 1, the m × n chessboard can be
devided into 11 parts depending on the degree of each vertex of the m×n knight’s
graph.

Lemma 2.3. Let 1 ≤ a < b, n ≥ 2b + 1 and B denote the (a + b)× n chessboard.
Suppose that the knight moves with an (a, b)-knight’s move. Then, B can be
partition into 11 parts,namely B2

1 , B
2
2 , B

2
3 , B

2
4 , B

2
5 , B

2
6 , B

3
1 , B

3
2 , B

3
3 , B

3
4 and B4

1 , such
that (i) if v belongs to B2

i for some i ∈ {1, 2, 3, 4, 5, 6}, then deg v = 2,
(ii) if v belongs to B3

i for some i ∈ {1, 2, 3, 4}, then deg v = 3, and
(iii) if v belongs to B4

1 , then deg v = 4.

The 11 parts of B are shown in Figure 1. Then, we obtain the following remark
in order to know which part of the m× n chessboard contains square (x, y).

Remark 2.1. Let 1 ≤ a < b, n ≥ 2b + 1 and (x, y) be a square of the (a + b)× n
chessboard. Then,

1. square (x, y) belongs to B2
1 , if 1 ≤ x ≤ a and 1 ≤ y ≤ a,

2. square (x, y) belongs to B2
2 , if b + 1 ≤ x ≤ a + b and 1 ≤ y ≤ a,

3. square (x, y) belongs to B2
3 , if 1 ≤ x ≤ a and n− a + 1 ≤ y ≤ n,
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4. square (x, y) belongs to B2
4 , if b + 1 ≤ x ≤ a + b and n− a + 1 ≤ y ≤ n,

5. square (x, y) belongs to B2
5 , if a + 1 ≤ x ≤ b and 1 ≤ y ≤ b,

6. square (x, y) belongs to B2
6 , if a + 1 ≤ x ≤ b and n− b + 1 ≤ y ≤ n,

7. square (x, y) belongs to B3
1 , if 1 ≤ x ≤ a and a + 1 ≤ y ≤ b,

8. square (x, y) belongs to B3
2 , if b + 1 ≤ x ≤ a + b and a + 1 ≤ y ≤ b,

9. square (x, y) belongs to B3
3 , if 1 ≤ x ≤ a and n− b + 1 ≤ y ≤ n− a,

10. square (x, y) belongs to B3
4 , if b+1 ≤ x ≤ a+b and n−b+1 ≤ y ≤ n−a, and

11. square (x, y) belongs to B4
1 , if 1 ≤ x ≤ a + b and b + 1 ≤ y ≤ n− b.

Figure 1: The 11 parts, B2
1 , B

2
2 , B

2
3 , B

2
4 , B

2
5 , B

2
6 , B

3
1 , B

3
2 , B

3
3 , B

3
4 and B4

1 , of
the (a + b)× n chessboard in Lemma 2.3.

The following lemma is obtained directly from Theorem 1.3 and Lemma 2.1.

Lemma 2.4. Let a and b be integers such that 1 ≤ a < b. If a + b is even or n is
odd, then the (a + b)× n chessboard admits no closed (a, b)-knight’s tours.

Theorem 2.5. Let a and b be integers such that 1 ≤ a < b. Suppose that 2b+1 ≤
n ≤ 4b−1. Then, the (a+ b)×n chessboard admits no closed (a, b)-knight’s tours.

Proof. By Lemma 2.4, the (a + b)× n chessboard admits no closed (a, b)-knight’s
tours when (i) a+ b is even or (ii) n is odd. We assume that a+ b is odd and n is
even where 2b + 1 ≤ n ≤ 4b− 1.

Let G be an (a+b)×n knight’s graph. We will show that there are two vertices
of degree 2, u and v, such that they are adjacent to the same vertices, x and y.
Step 1: Since a < b, a + b + 1 ≤ 2b and 2a + 2 ≤ a + b + 1. That is, a+b+1

2 ≤ b

and a + 1 ≤ a+b+1
2 , respectively. Since 2b + 1 ≤ n ≤ 4b− 1, b + 1

2 ≤
n
2 ≤ 2b− 1

2 .

That is, 1 ≤ n
2 − b < b. Then, the vertex (a+b+1

2 , n
2 − b) is in B2

5 of Lemma 2.3.

Then, it is a degree-2 vertex adjacent to ( b−a+1
2 , n

2 ) and (3a+b+1
2 , n

2 ).
Step 2: By Step 1, it suffices to show that n − b < n

2 + b ≤ n − 1. Since
1 ≤ n

2 − b < b, −b < −n
2 + b ≤ −1 Then, n− b < n

2 + b ≤ n− 1. Thus, the vertex
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(a+b+1
2 , n

2 + b) is in B2
6 of Lemma 2.3. Then, it is a degree-2 vertex adjacent to

( b−a+1
2 , n

2 ) and (3a+b+1
2 , n

2 ).

If G contains a Hamiltonian cycle C, then two edges incident to (a+b+1
2 , n

2 −b)

and (a+b+1
2 , n

2 +b) are in C. Thus, (a+b+1
2 , n

2−b)(
b−a+1

2 , n
2 )(a+b+1

2 , n
2 +b)( 3a+b+1

2 , n
2 )

forms a 4-cycle (see Figure 2). Since b > a ≥ 1 and n ≥ 2b + 1, the number of
vertices of the (a+b)×n knight’s graph is (a+b)n ≥ 3n ≥ 3(2b+1) ≥ 6b+1 ≥ 13.
Then, such 4-cycle is not a Hamiltonian cycle. It is a contradiction.

Figure 2: The 4-cycle in the proof of Theorem 2.5.

For the case that 4b + 1 ≤ n ≤ 5b and 1 ≤ a < b < 2a, the (a + b) × n
chessboard can be partition into 11 parts as in Lemma 2.3. We see that if the
knight moves with an (a, b)-knight’s move, then, by Remark 2.1,

1. square ( 3a−b+1
2 , b− a + 1) belongs to B2

1 ,

2. squares ( b−a+1
2 , b + 1), ( 3a+b+1

2 , b + 1) and (a+b+1
2 , 2b + 1) belong to B4

1 ,

3. square ( 3b−a+1
2 , b− a + 1) belongs to B2

2 ,

4. square (a+b+1
2 , 1) belong to B2

5 , and

5. square (a+b+1
2 , 4b + 1) belongs to B2

6 .

Theorem 2.6. Let a and b be integers such that 1 ≤ a < b < 2a. Suppose that
4b + 1 ≤ n ≤ 5b. Then, the (a + b)× n chessboard admits no closed (a, b)-knight’s
tours.

Proof. By Lemma 2.4, the (a + b)× n chessboard admits no closed (a, b)-knight’s
tours when a + b is even or n is odd. We assume that a + b is odd and n is even
where 4b + 1 ≤ n ≤ 5b.

Let G be an (a + b)× n knight’s graph. We prove by contradiction. Suppose
that G contains a Hamiltonian cycle C. If edges (a+b+1

2 , 2b + 1)( b−a+1
2 , 3b +

1), (a+b+1
2 , 2b+ 1)( 3a+b+1

2 , 3b+ 1), (a+b+1
2 , 4b+ 1)( b−a+1

2 , 3b+ 1) and (a+b+1
2 , 4b+

1)( 3a+b+1
2 , 3b+ 1) are in C, then those edges form a 4-cycle. It is a contradiction.



Some Forbidden Rectangular Chessboards with Generalized Knight’s Moves 139

Step 1: Since the square (a+b+1
2 , 1) belongs to B2

5 of Lemma 2.3, it is a degree-2

vertex and edges (a+b+1
2 , 1)( b−a+1

2 , b + 1) and (a+b+1
2 , 1)( 3a+b+1

2 , b + 1) must be
included in C.
Step 2: Since the square ( 3b−a+1

2 , b− a + 1) belongs to B2
2 of Lemma 2.3, it is a

degree-2 vertex and an edge ( 3b−a+1
2 , b− a + 1)( b−a+1

2 , b + 1) must be included in
C.
Step 3: Since ( b−a+1

2 , b + 1) belongs to B4
1 of Lemma 2.3, it is a degree-4 vertex.

By Steps 1 and 2, edges ( b−a+1
2 , b+1)(a+b+1

2 , 1) and ( b−a+1
2 , b+1)( 3b−a+1

2 , b−a+1)

belong to C. Then, ( b−a+1
2 , b + 1)(a+b+1

2 , 2b + 1) cannot be included in C.

Step 4: Since the square ( 3a−b+1
2 , b− a + 1) belongs to B2

1 of Lemma 2.3, it is a

degree-2 vertex. Then, an edge ( 3a−b+1
2 , b−a+1)( 3a+b+1

2 , b+1) must be included
in C.
Step 5: Since the square ( 3a+b+1

2 , b+1) belongs to B4
1 of Lemma 2.3, it is a degree-

4 vertex. By Steps 1 and 4, the edges (a+b+1
2 , 1)( 3a+b+1

2 , b + 1) and ( 3a−b+1
2 , b −

a + 1)( 3a+b+1
2 , b + 1) belong to C. Then, ( 3a+b+1

2 , b + 1)(a+b+1
2 , 2b + 1) cannot be

included in C.
Step 6: Since the square (a+b+1

2 , 2b + 1) belongs to B4
1 of Lemma 2.3, it is a

degree-4 vertex. By Steps 3 and 5, the edges (a+b+1
2 , 2b + 1)( b−a+1

2 , b + 1) and

(a+b+1
2 , 2b + 1)( 3a+b+1

2 , b + 1) cannot be included in C. Then, edges (a+b+1
2 , 2b +

1)( b−a+1
2 , 3b + 1) and (a+b+1

2 , 2b + 1)( 3a+b+1
2 , 3b + 1) must be included in C.

Step 7: Since the square (a+b+1
2 , 4b + 1) belongs to B2

6 of Lemma 2.3, it is a

degree-2 vertex. Then, edges (a+b+1
2 , 4b + 1)( b−a+1

2 , 3b + 1) and (a+b+1
2 , 4b +

1)( 3a+b+1
2 , 3b + 1) must be included in C.

By Steps 6 and 7, we see that edges (a+b+1
2 , 2b+1)( b−a+1

2 , 3b+1), (a+b+1
2 , 2b+

1)( 3a+b+1
2 , 3b+1), (a+b+1

2 , 4b+1)( b−a+1
2 , 3b+1) and (a+b+1

2 , 4b+1)(3a+b+1
2 , 3b+1)

form a 4-cycle (see Figure 3), which is a contradiction.

Figure 3: The 4-cycle in the proof of Theorem 2.6.
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3 The (2a + 1) × n Chessboards where n = 4a+ 4,
6a+ 6 or 6a+ 8

In this section, an (a, a + 1)-knight’s move on the (2a + 1) × n chessboard
where n = 4a + 4, 6a + 6 or 6a + 8 is considered. Then, in Figure 1, B3

1 and B3
2

of B belong to the (a + 1)th column and B3
3 and B3

4 of B belong to the (n− a)th

column.

The certain (2a + 1)× n chessboards admit no closed (a, a + 1)-knight’s tours
where n = 4a+ 4, n = 6a+ 6 and n = 6a+ 8 which are obtained in Theorems 3.1,
3.2 and 3.3, respectively.

Theorem 3.1. Suppose that a is a positive integer. Then, the (2a+ 1)× (4a+ 4)
chessboard admits no closed (a, a + 1)-knight’s tours.

Proof. If a = 1, then the 3×8 chessboard contains no closed (1, 2)-knight’s tours by
Theorem 1.1. If a = 2, then the 5×12 chessboard contains no closed (2, 3)-knight’s
tours by Proposition 1.2.

Let a ≥ 3 and G be a (2a + 1) × (4a + 4) knight’s graph. We prove by
contradiction. Assume that G contains a Hamiltonian cycle C. Then, we will
show that there is a vertex that has only one edge of C incident to it. Consider
the following steps.

Step 1: Since vertex (a + 1, a + 1) belongs to B2
5 of Lemma 2.3, it is a degree-2

vertex adjacent to vertices (1, 2a + 2) and (2a + 1, 2a + 2). Then, edge (a + 1, a +
1)(1, 2a + 2) must be included in C.

Step 2: Since vertices (1, 2) and (2, 1) belong to B2
1 of Lemma 2.3, they are

degree-2 vertices adjacent to vertex (a + 2, a + 2). Then, edges (2, 1)(a + 2, a + 2)
and (1, 2)(a + 2, a + 2) must be included in C. Since vertex (a + 2, a + 2) belongs
to B4

1 , edge (a + 2, a + 2)(1, 2a + 2) cannot be included in C.

Step 3: Since vertices (1, 4a + 2) and (2, 4a + 3) belong to B2
3 of Lemma 2.3,

they are degree-2 vertices adjacent to vertex (a + 2, 3a + 2). Then, edges (1, 4a +
2)(a+ 2, 3a+ 2) and (2, 4a+ 3)(a+ 2, 3a+ 2) must be included in C. Since vertex
(a+ 2, 3a+ 2) belongs to B4

1 , edge (1, 2a+ 2)(a+ 2, 3a+ 2) cannot be included in
C.

Step 4: Since vertices (1, 4a+4) and (2a+1, 4a+4) belong to B2
3 and B2

4 of Lemma
2.3, respectively, they are degree-2 vertices adjacent to vertex (a+1, 3a+3). Then,
edges (1, 4a+4)(a+1, 3a+3) and (2a+1, 4a+4)(a+1, 3a+3) must be included in
C. Since vertex (1, 2a+2) is adjacent to (a+1, 3a+3), edge (1, 2a+2)(a+1, 3a+3)
cannot be included in C.

Since vertex (1, 2a + 2) belongs to B4
1 of Lemma 2.3, it is a degree-4 vertex

adjacent to vertices (a+ 1, a+ 1), (a+ 2, a+ 2), (a+ 2, 3a+ 2) and (a+ 1, 3a+ 3).
By Steps 2, 3 and 4, edges (1, 2a + 2)(a + 2, a + 2), (1, 2a + 2)(a + 2, 3a + 2) and
(1, 2a+2)(a+1, 3a+3) are not in C. By Step 1, only one edge (a+1, a+1)(1, 2a+2)
incident to vertex (1, 2a + 2) is in C (see Figure 4), which is a contradiction.
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Figure 4: The only one edge incident to (1, 2a + 2) containing in C in the
proof of Theorem 3.1.

Theorem 3.2. Suppose that a > 3. Then, the (2a + 1) × (6a + 6) chessboard
admits no closed (a, a + 1)-knight’s tours.

Proof. Let G be a (2a + 1) × (6a + 6) knight’s graph where a > 3. We prove
by contradiction. Assume that G contains a Hamiltonian cycle C. Then, we will
show that there are three edges of C incident to a vertex. Consider the following
steps.
Step 1: Since vertex (a + 1, a + 2) belongs to B4

1 of Lemma 2.3, it is a degree-4
vertex adjacent to vertices (1, 1), (2a+ 1, 1), (2a+ 1, 2a+ 3) and (1, 2a+ 3). Since
vertices (1, 1) and (2a+1, 1) belong to B2

1 and B2
2 of Lemma 2.3, respectively, such

two vertices are degree-2 vertices. Then, the path (1, 1)(a+1, a+2)(2a+1, 1) must
be a part of C. Thus, edges (2a+1, 2a+3)(a+1, a+2) and (1, 2a+3)(a+1, a+2)
cannot be included in C.
Step 2: Since vertex (a, a + 3) belongs to B4

1 of Lemma 2.3, it is a degree-4
vertex adjacent to vertices (2a, 2), (2a + 1, 3), (2a, 2a + 4) and (2a + 1, 2a + 3).
Since vertices (2a, 2) and (2a+ 1, 3) belong to B2

2 of Lemma 2.3, they are degree-2
vertices. Then, the path (2a, 2)(a, a + 3)(2a + 1, 3) must be a part of C. Thus,
edges (2a, 2a + 4)(a, a + 3) and (2a + 1, 2a + 3)(a, a + 3) cannot be included in C.
Step 3: Since vertex (2a+ 1, 2a+ 3) belongs to B4

1 of Lemma 2.3, it is a degree-4
vertex adjacent to vertices (a + 1, a + 2), (a, a + 3), (a + 1, 3a + 4) and (a, 3a + 3).
By Steps 1 and 2, edges (2a+ 1, 2a+ 3)(a+ 1, a+ 2) and (2a+ 1, 2a+ 3)(a, a+ 3)
cannot be included in C. Then, edges (2a+ 1, 2a+ 3)(a, 3a+ 3) must be included
in C. Also, edge (2a + 1, 2a + 3)(a + 1, 3a + 4) must be included in C.
Step 4: Since vertex (a, 5a+5) belongs to B4

1 of Lemma 2.3, it is a degree-4 vertex
adjacent to vertices (2a, 6a + 6), (2a + 1, 6a + 5), (2a, 4a + 4) and (2a + 1, 4a + 5).
Since vertices (2a, 6a + 6) and (2a + 1, 6a + 5) belong to B2

4 of Lemma 2.3, they
are vertices of degree 2. Then, the path (2a, 6a+ 6)(a, 5a+ 5)(2a+ 1, 6a+ 5) must
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be a part of C. Thus, edges (2a, 4a + 4)(a, 5a + 5) and (2a + 1, 4a + 5)(a, 5a + 5)
cannot be included in C.
Step 5: Since vertex (a− 1, 5a + 4) belongs to B4

1 of Lemma 2.3, it is a degree-4
vertex adjacent to vertices (2a−1, 6a+5), (2a, 6a+4), (2a−1, 4a+3) and (2a, 4a+4).
Since vertices (2a−1, 6a+5) and (2a, 6a+4) belong to B2

4 of Lemma 2.3, they are
vertices of degree 2. Then, the path (2a−1, 6a+5)(a−1, 5a+4)(2a, 6a+4) must be
a part of C. Thus, edges (a−1, 5a+4)(2a−1, 4a+3) and (a−1, 5a+4)(2a, 4a+4)
cannot be included in C.
Step 6: Since vertex (2a, 4a+4) belongs to B4

1 of Lemma 2.3, it is a degree-4vertex
adjacent to vertices (a− 1, 5a + 4), (a, 5a + 5), (a, 3a + 3) and (a− 1, 3a + 4). By
Steps 4 and 5, edges (2a, 4a + 4)(a, 5a + 5) and (2a, 4a + 4)(a− 1, 5a + 4) cannot
be included in C. Thus, edge (2a, 4a + 4)(a, 3a + 3) must be included in C. Also,
edge (2a, 4a + 4)(a− 1, 3a + 4) must be included in C.
Step 7: Since vertex (a + 1, 5a + 4) belongs to B4

1 of Lemma 2.3, it is a degree-4
vertex adjacent to vertices (2a+1, 6a+5), (1, 6a+5), (2a+1, 4a+3) and (1, 4a+3).
Since vertices (2a + 1, 6a + 5) and (1, 6a + 5) belong to B2

4 and B2
3 of Lemma 2.3,

respectively, they are vertices of degree 2. Then, the path (2a + 1, 6a + 5)(a +
1, 5a+ 4)(1, 6a+ 5) must be a part of C. Thus, edges (a+ 1, 5a+ 4)(2a+ 1, 4a+ 3)
and (a + 1, 5a + 4)(1, 4a + 3) cannot be included in C.
Step 8: Since vertex (a, 5a+3) belongs to B4

1 of Lemma 2.3, it is a degree-4 vertex
adjacent to vertices (2a, 6a + 4), (2a + 1, 6a + 3), (2a, 4a + 2) and (2a + 1, 4a + 3).
Since vertices (2a, 6a + 4) and (2a + 1, 6a + 3) belong to B2

4 of Lemma 2.3, they
are vertices of degree 2. Then, the path (2a, 6a+ 4)(a, 5a+ 3)(2a+ 1, 6a+ 3) must
be a part of C. Thus, edges (a, 5a + 3)(2a, 4a + 2) and (a, 5a + 3)(2a + 1, 4a + 3)
cannot be included in C.
Step 9: Since vertex (2a+ 1, 4a+ 3) belongs to B4

1 of Lemma 2.3, it is a degree-4
vertex adjacent to vertices (a, 5a+ 3), (a+ 1, 5a+ 4), (a, 3a+ 3) and (a+ 1, 3a+ 2).
By Steps 7 and 8, edges (a+1, 5a+4)(2a+1, 4a+3) and (a, 5a+3)(2a+1, 4a+3)
cannot be included in C. Thus, edge (2a + 1, 4a + 3)(a, 3a + 3) must be included
in C. Also, edge (2a + 1, 4a + 3)(a + 1, 3a + 2) must be included in C.

By Steps 3, 6 and 9, respectively, edges (2a + 1, 2a + 3)(a, 3a + 3), (2a, 4a +
4)(a, 3a + 3) and (2a + 1, 4a + 3)(a, 3a + 3) must be in the Hamiltonian cycle C.
Those three edges are incident to vertex (a, 3a + 3) (see Figure 5), which is a
contradiction.

Theorem 3.3. Suppose that a > 3. Then, the (2a + 1) × (6a + 8) chessboard
admits no closed (a, a + 1)-knight’s tours.

Proof. Let G be a (2a + 1)× (6a + 8) knight’s graph. We prove by contradiction.
Suppose that G contains a Hamiltonian cycle C. Then, we will show that there
are three edges of C incident to a vertex. Consider the following steps.
Step 1: Since vertex (2a+1, 2) belongs to B2

2 of Lemma 2.3, it is a degree-2 vertex
adjacent to vertices (a+ 1, a+ 3) and (a, a+ 2). Thus, edge (2a+ 1, 2)(a+ 1, a+ 3)
must be included in C.
Step 2: Since vertex (1, 2) belongs to B2

1 of Lemma 2.3, it is a degree-2 vertex
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Figure 5: The three edges incident to (a, 3a + 3) containing in C in the
proof of Theorem 3.2.

adjacent to vertices (a+ 1, a+ 3) and (a+ 2, a+ 2). Thus, edge (1, 2)(a+ 1, a+ 3)
must be included in C.
Step 3: Since vertex (a + 1, a + 3) belongs to B4

1 of Lemma 2.3, it is a degree-4
vertex adjacent to vertices (1, 2), (2a + 1, 2), (2a + 1, 2a + 4) and (1, 2a + 4). By
Steps 1 and 2, edges (2a+1, 2)(a+1, a+3) and (1, 2)(a+1, a+3) must be included
in C. Thus, edge (a + 1, a + 3)(2a + 1, 2a + 4) cannot be included in C.
Step 4: Since vertex (2a, 3) belongs to B2

2 of Lemma 2.3, it is a degree-2 vertex
adjacent to vertices (a, a + 4) and (a− 1, a + 3). Thus, edge (2a, 3)(a, a + 4) must
be included in C.
Step 5: Since vertex (2a+1, 4) belongs to B2

2 of Lemma 2.3, it is a degree-2 vertex
adjacent to vertices (a, a + 4) and (a + 1, a + 5). Thus, edge (2a + 1, 4)(a, a + 4)
must be included in C.
Step 6: Since vertex (a, a+4) belongs to B4

1 of Lemma 2.3, it is a degree-4 vertex
adjacent to vertices (2a, 3), (2a + 1, 4), (2a + 1, 2a + 4) and (2a, 2a + 5). By Steps
4 and 5, edges (2a, 3)(a, a + 4) and (2a + 1, 4)(a, a + 4) must be included in C.
Thus, edge (a, a + 4)(2a + 1, 2a + 4) cannot be included in C.
Step 7: Since vertex (2a+ 1, 2a+ 4) belongs to B4

1 of Lemma 2.3, it is a degree-4
vertex adjacent to vertices (a + 1, a + 3), (a, a + 4), (a, 3a + 4) and (a + 1, 3a + 5).
By Steps 3 and 6, edges (a+ 1, a+ 3)(2a+ 1, 2a+ 4) and (a, a+ 4)(2a+ 1, 2a+ 4)
cannot be included in C. Thus, edge (2a+1, 2a+4)(a+1, 3a+5) must be included
in C.
Step 8: Since vertex (2a+ 1, 6a+ 8) belongs to B2

4 of Lemma 2.3, it is a degree-2
vertex adjacent to vertices (a+ 1, 5a+ 7) and (a, 5a+ 8). Thus, edge (2a+ 1, 6a+
8)(a + 1, 5a + 7) must be included in C.
Step 9: Since vertex (1, 6a + 8) belongs to B2

3 of Lemma 2.3, it is a degree-
2 vertex adjacent to vertices (a + 1, 5a + 7) and (a + 2, 5a + 8). Thus, edge
(1, 6a + 8)(a + 1, 5a + 7) must be included in C.
Step 10: Since vertex (a+ 1, 5a+ 7) belongs to B4

1 of Lemma 2.3, it is a degree-4
vertex adjacent to vertices (1, 6a+8), (2a+1, 6a+8), (2a+1, 4a+6) and (1, 4a+6).
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By Steps 8 and 9, edges (2a+1, 6a+8)(a+1, 5a+7) and (1, 6a+8)(a+1, 5a+7) must
be included in C. Thus, edges (a+1, 5a+7)(2a+1, 4a+6) and (a+1, 5a+7)(1, 4a+6)
cannot be included in C.
Step 11: Since vertex (2a+1, 6a+6) belongs to B2

4 of Lemma 2.3, it is a degree-2
vertex adjacent to vertices (a, 5a+ 6) and (a+ 1, 5a+ 5). Thus, edge (2a+ 1, 6a+
6)(a, 5a + 6)) must be included in C.
Step 12: Since the vertex (2a, 6a+7) belongs to B2

4 of Lemma 2.3, it is a degree-2
vertex adjacent to vertices (a, 5a + 6) and (a − 1, 5a + 7). Thus, edge (2a, 6a +
7)(a, 5a + 6) must be included in C.
Step 13: Since vertex (a, 5a+6) belongs to B4

1 of Lemma 2.3, it is a degree-4 vertex
adjacent to vertices (2a + 1, 6a + 6), (2a, 6a + 7), (2a + 1, 4a + 6) and (2a, 4a + 5).
By Steps 11 and 12, edges (2a + 1, 6a + 6)(a, 5a + 6) and (2a, 6a + 7)(a, 5a + 6)
must be included in C. Thus, edge (a, 5a + 6)(2a + 1, 4a + 6) cannot be included
in C.
Step 14: Since vertex (2a+1, 4a+6) belongs to B4

1 of Lemma 2.3, it is a degree-4
vertex adjacent to vertices (a+ 1, 5a+ 7), (a, 5a+ 6), (a, 3a+ 6) and (a+ 1, 3a+ 5).
By Steps 10 and 13, edges (a+1, 5a+7)(2a+1, 4a+6) and (a, 5a+6)(2a+1, 4a+6)
cannot be included in C. Thus, edge (2a+1, 4a+6)(a+1, 3a+5) must be included
in C.
Step 15: Since vertex (1, 6a + 6) belongs to B2

3 of Lemma 2.3, it is a degree-
2 vertex adjacent to vertices (a + 1, 5a + 5) and (a + 2, 5a + 6). Thus, edge
(1, 6a + 6)(a + 2, 5a + 6) must be included in C.

Figure 6: The three edges incident to (a+ 1, 3a+ 5) containing in C in the
proof of Theorem 3.3.

Step 16: Since vertex (2, 6a + 7) belongs to B2
3 of Lemma 2.3, it is a degree-

2 vertex adjacent to vertices (a + 3, 5a + 7) and (a + 2, 5a + 6). Thus, edge
(2, 6a + 7)(a + 2, 5a + 6) must be included in C.
Step 17: Since vertex (1, 4a + 6) belongs to B4

1 of Lemma 2.3, it is a degree-
4 vertex adjacent to vertices (a + 1, 5a + 7), (a + 2, 5a + 6), (a + 2, 3a + 6) and
(a + 1, 3a + 5). By Step 10, edge (1, 4a + 6)(a + 1, 5a + 7) cannot be included in
C. By Steps 15 and 16, the edge (1, 4a + 6)(a + 2, 5a + 6) cannot be included in
C. Thus, edge (1, 4a + 6)(a + 1, 3a + 5) must be included in C.
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By Steps 7, 14 and 17, we see that edges (2a + 1, 2a + 4)(a + 1, 3a + 5), (2a +
1, 4a+ 6)(a+ 1, 3a+ 5) and (1, 4a+ 6)(a+ 1, 3a+ 5) must be in C and those edges
are incident to vertex (a + 1, 3a + 5) (see Figure 6), which is a contradiction.

4 Conclusion

In this paper, we consider m = a + b which is the smallest value of m for the
m × n chessboard admitting a closed (a, b)-knight’s tour. We show that (i) the
(a + b)× n chessboard admits no closed (a, b)-knight’s tours if n ∈ [2b + 1, 4b− 1]
where 1 ≤ a < b in Theorem 2.5, or if n ∈ [4b + 1, 5b] where 1 ≤ a < b < 2a
in Theorem 2.6, and (ii) the (2a + 1)× n chessboard admits no closed (a, a + 1)-
knight’s tours if n = 4a + 4 where a ≥ 1 in Theorem 3.1, or if n = 6a + 6 where
a > 3 in Theorem 3.2, or if n = 6a + 8 where a > 3 in Theorem 3.3. Moreover,
we see that Theorem 3.1 is the special case of n = 4b where b = a + 1. Then, the
remaining cases are still for other researchers to explore.

Acknowledgements : I would like to thank the referees for their comments and
suggestions on the manuscript.

References

[1] J.J. Watkins, Across the boards: The mathematics of the chessboard prob-
lems, Princeton University, New Jersey, 2004.

[2] A.L. Schwenk, Which rectangular chessboards have a knight’s tour, Math.
Magazine 64 (1991), 325–332.

[3] G.L. Chia, Siew-Hui Ong, Generalized knight’s tours on rectangular chess-
boards, Discrete Applied Math. 150 (2005), 80–89.

[4] K. Karudilok, S. Singhun, R. Boonklurb, Some forbidden rectangular chess-
boards with an (a, b)-Knight’s move, The Proceeding of the 22nd Annual
Meeting in Mathematics (AMM2017), Chiang Mai University, Chiang Mai,
Thailand (2017), GRA-01-1–GRA-01-6.

(Received 10 June 2019)
(Accepted 24 December 2019)

Thai J. Math. Online @ http://thaijmath.in.cmu.ac.th

http://thaijmath.in.cmu.ac.th

	Introduction and Preliminaries
	The (a+b)n Chessboards where n[2b,4b-1][4b+1,5b]
	The (2a+1)n Chessboards where n=4a+4, 6a+6 or 6a+8
	Conclusion

