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1 Introduction

The finite integration method (FIM) is one of the recently developed numerical
techniques for finding approximate solutions to boundary value problems for linear
differential equations. Similar to the idea of the finite difference method (FDM),
we replace the solution domain with a finite number of points, known as grid points
and obtain the solution at these points. The grids are generally spaced along the
independent coordinates.

The important tool in FIM is an integration matrix. Traditionally, the inte-
gration matrix can be obtained by the directly numerical integration, provided
by Wen et al. [1], using both of the trapezoidal rule and radial basis functions
which have demonstrated that an approximate solution derived from these meth-
ods gave the higher accuracy than the FDM. Next, Li et al. [2] used the FIM
to solve multi-dimensional problems. After that, Li et al. [3] developed the FIM
for solving multi-dimensional partial differential equations (PDEs) by using the
Simpson’s rule, Newton-Cotes and Lagrange interpolation. They illustrate that
their FIM give a lot better result comparing to the FDM. In 2018, Boonklurb
et al. [4] modified the traditional FIM by using Chebyshev polynomial to ap-
proximate the solution of linear differential equations and the steady state PDEs.
Their modification gave a significant better results comparing to the traditional
FIM. However, their modified method cannot be applied directly to the prob-
lems depending on time and problems involving linear fractional order derivatives.
Recently, Saengsiritongchai and Boonklurb [5] developed the algorithm for solv-
ing one-dimensional linear time-dependent differential equations via FIM using
Chebyshev polynomial.

In this paper, we consider the two-dimensional linear time-dependent PDEs
with prescribed initial and boundary conditions. We construct our numerical
algorithm for seeking approximate solutions which is combining the modified FIM
using Chebyshev polynomial proposed by Boonklurb et al. [4] together with a
difference quotient formula to estimate the time derivative and a technique of
the Crank-Nicolson method [6]. Moreover, we also construct an algorithm for
finding numerical results of linear fractional differential equations (FDEs) based
on the FIM via shifted Chebyshev polynomials. For each nodal point, we use the
zeros of the shifted Chebyshev polynomial of some degree. We test our algorithms
throughout several examples by using the MatLab program to compare our results
with the results obtained by other methods and their analytical solutions.

2 Preliminaries

In this section, background knowledge on the definition and properties of the
Chebyshev polynomials and shifted Chebyshev polynomials are provided in order
to construct the integration matrices which are the main materials for the modified
FIM proposed by Boonklurb et al. [4]. Moreover, The defnitions for fractional order
derivatives and the form of linear FDEs are presented.
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2.1 Chebyshev Polynomials

First, let us introduce the definition and some important properties of the
Chebyshev polynomial for constructing the first and higher order integration ma-
trices for solving differential equations.

Definition 2.1. ([7]) The Chebyshev polynomial of degree n ≥ 0 is defined as

Tn(x) = cos(n arccosx), where x ∈ [−1, 1].

Lemma 2.2. (i) For n ∈ N, the zeros of Chebyshev polynomial Tn(x) are

xk = cos
(2k − 1

2n

)
π, where k ∈ {1, 2, 3, ..., n}. (2.1)

(ii) The single layer integrations of Chebyshev polynomial Tn(x) are

T 0(x) =

∫ x

−1

T0(ξ)dξ = x+ 1,

T 1(x) =

∫ x

−1

T1(ξ)dξ =
x2 − 1

2
,

Tn(x) =

∫ x

−1

Tn(ξ)dξ =
Tn+1(x)

2(n+ 1)
− Tn−1(x)

2(n− 1)
− (−1)n

n2 − 1
, where n ≥ 2.

(iii) The Chebyshev matrix T at each node {xk}nk=1 defined by (2.1) be

T =


T0(x1) T1(x1) . . . Tn−1(x1)
T0(x2) T1(x2) . . . Tn−1(x2)

...
...

. . .
...

T0(xM ) T1(xn) . . . Tn−1(xn)

 .
Then, it has the multiplicative inverse as T−1 = 1

ndiag(1, 2, 2, ..., 2)T>.

2.2 Shifted Chebyshev Polynomials

In some applications, the interval [0, 1] is more convenient to use than [−1, 1].
Thus, we transform the independent variable of Tn(x) into [0, 1] which is denoted
by T ∗n(x) and called a shifted Chebyshev polynomial of degree n for x ∈ [0, 1]. It
has the definition and properties as follows.

Definition 2.3. The shifted Chebyshev polynomial of degree n ≥ 0 is defined as

T ∗n(x) = Tn(2x− 1), where x ∈ [0, 1].

Lemma 2.4. (i) For n ∈ N, the zeros of shifted Chebyshev polynomial T ∗n(x) are

xk =
1

2

[
cos
(2k − 1

2n

)
π + 1

]
, where k ∈ {1, 2, 3, ..., n}. (2.2)



106 Thai J. Math. (Special Issue, 2020)/ R. Boonklurb et al.

(ii) The single layer integrations of shifted Chebyshev polynomial T ∗n(x) are

T
∗
0(x) =

∫ x

0

T0(ξ)dξ = x,

T
∗
1(x) =

∫ x

0

T0(ξ)dξ = x2 − x,

T
∗
n(x) =

∫ x

0

T0(ξ)dξ =
T ∗n+1(x)

4(n+ 1)
−
T ∗n−1(x)

4(n− 1)
− (−1)n

2(n2 − 1)
, where n ≥ 2.

(iii) The shifted Chebyshev matrix T∗ at each node {xk}nk=1 defined by (2.2) be

T∗ =


T ∗0 (x1) T ∗1 (x1) . . . T ∗n−1(x1)
T ∗0 (x2) T ∗1 (x2) . . . T ∗n−1(x2)

...
...

. . .
...

T ∗0 (xn) T ∗1 (xn) . . . T ∗n−1(xn)

 .
Then, it has the multiplicative inverse given by (T∗)−1 = 1

ndiag(1, 2, 2, ..., 2)(T∗)>.

2.3 Modified FIM Using Chebyshev Polynomial

In this section, for ease of reference, we brief a construction of integration ma-
trices from the modified FIM using Chebyshev expansion proposed by Boonklurb
et al. [4]. First, let M ∈ Z+ and u(x) be a linear combination of the Chebyshev
polynomials at node xk as defined by (2.1), which is

u(xk) =

M−1∑
n=0

cnTn(xk).

For k ∈ {1, 2, 3, ...,M}, it can be written in a matrix form: u = Tc or c = T−1u,
where T and T−1 are defined by Lemma 2.2 (iii), u = [u(x1), u(x2), u(x3), ..., u(xM )]>

and c = [c0, c1, c2, ..., cM−1]>. Next, we consider a single layer integration of u from
−1 to xk as

U (1)(xk) =

∫ xk

−1

u(ξ)dξ =

M−1∑
n=0

cn

∫ xk

−1

Tn(ξ)dξ =

M−1∑
n=0

cnTn(xk),

where each Tn(x) is defined by Lemma 2.2 (ii). For k ∈ {1, 2, 3, ...,M}, the above
equation can be written in the matrix form as U(1) = Tc = TT−1u := Au, where
U(1) = [U (1)(x1), U (1)(x2), ..., U (1)(xM )]> and

T =


T 0(x1) T 1(x1) . . . TM−1(x1)
T 0(x2) T 1(x2) . . . TM−1(x2)

...
...

. . .
...

T 0(xM ) T 1(xM ) . . . TM−1(xM )

 .
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This A = TT−1 := [aki]M×M is called the first order integration matrix. Next,
for k ∈ {1, 2, 3, ...,M}, let us consider a double layer integration of u from −1 to
xk as

U (2)(xk) =

∫ xk

−1

∫ ξ2

−1

u(ξ1)dξ1dξ2 =

M∑
i=1

aki

∫ xi

−1

u(ξ1)dξ1 =

M∑
i=1

M∑
j=1

akiaiju(xj),

which can write in matrix form: U(2) = A2u, where A2 is called the second order
integration matrix. Similarly, for the multi-layer integration of u from −1 to xk as

U (m)(xk) =

∫ xk

−1

· · ·
∫ ξ2

−1

u(ξ1)dξ1 . . . dξm =

M∑
im=1

· · ·
M∑
j=1

akim . . . ai1ju(xj).

It can write in matrix form: U(m) = Amu, where Am is called the mth order
integration matrix.

Next, we consider a two-dimensional domain Ω = [a, b]×[c, d], where a, b, c, d ∈
R and we transform it into Ω = [−1, 1] × [−1, 1] which can be discretized by the
zeros of the Chebyshev polynomial with the number of total nodes M = N1×N2,
where N1 and N2 are the number of horizontal and vertical discretized nodes,
respectively. For computational convenience, we index numbering of grid points
along the x-direction by the global numbering system (Figure 1a) and grid points
along y-direction by the local numbering system (Figure 1b).

1 2 3 . . . N1

N1+1 N1+2 N1+3 . . . 2N1

...
...

(N2-1)N1+1 (N2-1)N1+2 . . . N1N2

(a) Global numbering system

1 N2+1 2N2+1 . . . (N1-1)N2+1

2 N2+2 2N2+2 . . . (N1-1)N2+2

...
...

N2 2N2 3N2 . . . N1N2

(b) Local numbering system

Figure 1: The indices of the grid points globally and locally

Let −1 < x1 < x2 < x3 < ... < xN1
< 1 and −1 < y1 < y2 < y3 < ... <

yN2
< 1 be grid points that are generated by the zeros of Chebyshev polynomials.

Let Ux(x, y) and Uy(x, y) be the single layer integrations with respect to variables
x and y, respectively. Consider Ux(xk, ys) in the global system when ys is fixed.
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Then, by the idea in FIM in one dimension, we have

Ux(xk, ys) =

∫ xk

−1

u(ξ, ys)dξ =

N1∑
i=1

akiu(xi, ys)

for k ∈ {1, 2, 3, ..., N1}, then Ux(·, ys) = Au(·, ys), where
u(·, ys) = [u(x1, ys), u(x2, ys), ..., u(xN1 , ys)]

> and
Ux(·, ys) = [Ux(x1, ys), Ux(x2, ys), ..., Ux(xN1

, ys)]
>.

For s ∈ {1, 2, 3, ..., N2}, it can be expressed as
Ux(·, y1)
Ux(·, y2)

...
Ux(·, yN2)

 =


A 0 . . . 0

0 A
. . .

...
...

. . .
. . . 0

0 . . . 0 A


︸ ︷︷ ︸

N2 blocks


u(·, y1)
u(·, y2)

...
u(·, yN2)

 , (2.3)

where A = TT−1 is the N1 ×N1 matrix. We denote (2.3) by Ux = Axu. Next,
we consider Uy(xk, ys) in the local system when xk is fixed. Then, by the idea in
FIM in one dimension, we have

Uy(xk, ys) =

∫ yk

−1

u(xk, η)dη =

N2∑
j=1

asju(xk, yj)

for s ∈ {1, 2, 3, ..., N2}, then Ũy(xk, ·) = Aũ(xk, ·), where
ũ(xk, ·) = [u(xk, y1), u(xk, y2), ..., u(xk, yN2)]> and

Ũy(xk, ·) = [Uy(xk, y1), Uy(xk, y2), ..., Uk(xk, yN2)]>.
For k ∈ {1, 2, 3, ..., N1}, it can be written as

Ũy(x1, ·)
Ũy(x2, ·)

...

Ũy(xN1
, ·)

 =


A 0 . . . 0

0 A
. . .

...
...

. . .
. . . 0

0 . . . 0 A


︸ ︷︷ ︸

N1 blocks


ũ(x1, ·)
ũ(x2, ·)

...
ũ(xN1

, ·)

 , (2.4)

where A = TT−1 is the N2 × N2 matrix and denote (2.4) by Ũy = Ãyũ. The
integration and integrand vectors in the local numbering system can be trans-
formed to the global numbering system by using the transformation matrix P,
i.e., Uy = PŨy and u = Pũ. The transformation matrix P is defined by

Pmn =

1 ;

{
m = N1 × (j − 1) + i,

n = N2 × (i− 1) + j,

0 ; otherwise,



Finite Integration Method via Chebyshev Polynomial Expansion ... 109

for all i ∈ {1, 2, 3, ..., N1} and j ∈ {1, 2, 3, ..., N2}. Therefore, we have the inte-
gration matrix with respect to y in the global numbering system as Uy = Ayu,

where Ay = PÃyP
−1 = PÃyP

>.

Remark 2.5 ([4]). For m,n ∈ N, the multi-layer integrations in the global num-
bering system can be represented in the matrix form as follows:

• the mth layer integration with respect to only x is U
(m)
x = Am

x u,

• the nth layer integration with respect to only y is U
(n)
y = An

yu,

• the multi-layer integration with respect to both x and y is U
(m,n)
xy = Am

x An
yu =

An
yAm

x u.

2.4 Riemann-Liouville Definition of Fractional Order Deriva-
tive

The fractional order derivative is a derivative which has order as a frac-
tion instead of an integer. Many researchers gave definitions for fractional deriva-
tives. Each definition involves both local and global properties. For examples,
the Riemann-Liouville and Caputo definitions involve the local property but the
Grunwald-Letnikov definition involves the global property, see [8] and [9] for fur-
ther details. In this work, we use the Riemann-Liouville definition of fractional
derivative as follow.

Definition 2.6. ([8]) Let α ∈ (m − 1,m) for m ∈ Z+ and x ∈ [0, b] for b ∈ R+.
The Riemann-Liouville fractional derivative of order α of a function u is

Dαu(x) =
1

Γ(m− α)

dm

dxm

∫ x

0

u(s)

(x− s)α−m+1
ds, (2.5)

where Γ(·) is the gamma function and u ∈ L1(0, b).

3 Numerical Solution of 2-D Linear Time-Dependent
PDEs

In this section, we create a numerical algorithm for finding approximate so-
lutions of linear time-dependent differential equation in two-dimensional space.
First of all, we let a, b, c, d and T to be real numbers such that a < b, c < d and
T > 0. We consider the problem over (a, b)×(c, d)×(0, T ) with the time-dependent
variables in two dimensions as follows.

∂u

∂t
= α1

∂2u

∂x2
+ α2

∂2u

∂y2
+ α3

∂2u

∂x∂y
+ α4

∂u

∂x
+ α5

∂u

∂y
+ α6u+ f (3.1)

subject to the initial condition u(x, y, 0) = F (x, y) and the Dirichlet boundary
conditions for t ∈ [0, T ],
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u(a, y, t) = h1(y, t), u(b, y, t) = h2(y, t), y ∈ (c, d),
u(x, c, t) = h3(x, t), u(x, d, t) = h4(x, t), x ∈ (a, b),

where α1, α2, α3, α4, α5, α6, f and u are the given functions of x, y and t. First, we
approximate ∂u

∂t by using the forward difference quotient as

∂u

∂t
=
uj+1(x, y)− uj(x, y)

τ
, (3.2)

where τ is a time step and uj = uj(x, y) = u(x, y, tj). Next, we let G be the right-
hand-side of (3.1), that is G(t, u) = α1uxx+α2uyy+α3uxy+α4ux+α5uy+α6u+f
and then we approximate G(t, u) by using the Crank-Nicolson method [6], i.e.,

G(t, u) =
1

2

[
G(tj , u

j) +G(tj+1, u
j+1)

]
. (3.3)

Thus, from (3.1), we see that (3.2) and (3.3) are equals, then we have

uj+1(x, y) = uj(x, y) +
τ

2

[
G(tj , u

j) +G(tj+1, u
j+1)

]
. (3.4)

For convenience, let f j = f(x, y, tj) and αji = αi(x, y, tj) for i ∈ {1, 2, 3, 4, 5, 6},
then we substitute the definition of G in (3.4) and group the terms of u at (j+1)th

and jth time steps together. Thus, we obtain

− (αj+1
1 uj+1

xx + αj+1
2 uj+1

yy + αj+1
3 uj+1

xy + αj+1
4 uj+1

x + αj+1
5 uj+1

y + αj+1
6 uj+1) +

2

τ
uj+1

= (αj1u
j
xx + αj2u

j
yy + αj3u

j
xy + αj4u

j
x + αj5u

j
y + αj6u

j) +
2

τ
uj + f j + f j+1. (3.5)

3.1 Numerical Algorithm for 2-D Linear Time-Dependent
PDEs

We are now ready to apply the modified FIM using Chebyshev polynomial to
devise an algorithm for calculating the approximate solution of (3.1).

Step 1: Transform the spatial domain Ω = [a, b]× [c, d] into Ω = [−1, 1]× [−1, 1]
by using the linear transformations x̄ = 2x−a−b

b−a and ȳ = 2y−c−d
d−c . Then, (3.5)

becomes

− (p2ᾱj+1
1 ūj+1

x̄x̄ + q2ᾱj+1
2 ūj+1

ȳȳ + pqᾱj+1
3 ūj+1

x̄ȳ + pᾱj+1
4 ūj+1

x̄ + qᾱj+1
5 ūj+1

ȳ

+ ᾱj+1
6 ūj+1) +

2

τ
ūj+1

= (p2ᾱj1ū
j
x̄x̄ + q2ᾱj2ū

j
ȳȳ + pqᾱj3ū

j
x̄ȳ + pᾱj4ū

j
x̄ + qᾱj5ū

j
ȳ + ᾱj6ū

j) +
2

τ
ūj + f̄ j+1 + f̄ j ,
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where p = 2
b−a , q = 2

d−c , f̄
j(x̄, ȳ) = f(x, y, tj), ū

j(x̄, ȳ) = u(x, y, tj) and ᾱji (x̄, ȳ) =

αi(x, y, tj). Next, we let Zj = p2ᾱj1ū
j
x̄x̄+q2ᾱj2ū

j
ȳȳ+pqᾱj3ū

j
x̄ȳ+pᾱj4ū

j
x̄+qᾱj5ū

j
ȳ+ᾱj6ū

j ,
then the above equation becomes

− Zj+1 +
2

τ
ūj+1 = Zj +

2

τ
ūj + f̄ j+1 + f̄ j . (3.6)

Note that for x and y in the functions f , u and αi are x = 1
2 [(b− a)x̄+ a+ b] and

y = 1
2 [(d− c)ȳ + c+ d].

Step 2: We discretize the domain Ω = [−1, 1] × [−1, 1] into N1 and N2 nodes
along x and y directions, which are generated by zeros of Chebyshev polynomials
TN1

and TN2
as follows:

x̄k = cos
(2k − 1

2N1

)
π, for k ∈ {1, 2, 3, ..., N1},

ȳs = cos
(2s− 1

2N2

)
π, for s ∈ {1, 2, 3, ..., N2}.

Then, the number of total grid points in the global system is M = N1 ×N2.

Step 3: Eliminate the derivatives out of (3.6) by taking four-layer integration and
use the technique of integration by parts. Thus, we have

∫ ȳs

−1

∫ η2

−1

∫ x̄k

−1

∫ ξ2

−1

(
− Zj+1 +

2

τ
ūj+1

)
dξ1dξ2dη1dη2

=

∫ ȳs

−1

∫ η2

−1

∫ x̄k

−1

∫ ξ2

−1

(
Zj +

2

τ
ūj + f̄ j+1 + f̄ j

)
dξ1dξ2dη1dη2.

Now, we consider the integration of Zj only. As a result, the integration of
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Zj+1 in the same way. Then,∫ ȳs

−1

∫ η2

−1

∫ x̄k

−1

∫ ξ2

−1

Zj dξ1dξ2dη1dη2

=

∫ ȳs

−1

∫ η2

−1

p2
(
ᾱj1ū

j − 2

∫ x̄k

−1

∂ᾱj1
∂ξ1

ūjdξ2 +

∫ x̄k

−1

∫ ξ2

−1

∂2ᾱj1
∂ξ2

1

ūjdξ1dξ2

)
dη1dη2

+

∫ x̄k

−1

∫ ξ2

−1

q2
(
ᾱj2ū

j − 2

∫ ȳs

−1

∂ᾱj2
∂η1

ūjdη2 +

∫ ȳs

−1

∫ η2

−1

∂2ᾱj2
∂η2

1

ūjdη1dη2

)
dξ1dξ2

+

∫ ȳs

−1

∫ x̄k

−1

pq
(
ᾱj3ū

j −
∫ ξ2

−1

∂ᾱj3
∂ξ1

ūjdξ1 −
∫ η2

−1

∂ᾱj3
∂η1

ūjdη1

+

∫ η2

−1

∫ ξ2

−1

∂2ᾱj3
∂ξ1∂η1

ūjdξ1dη1

)
dξ2dη2

+

∫ ȳs

−1

∫ η2

−1

∫ x̄k

−1

p
(
ᾱj4ū

j −
∫ ξ2

−1

∂ᾱj4
∂ξ1

ūjdξ1

)
dξ2dη1η2

+

∫ ȳs

−1

∫ x̄k

−1

∫ ξ2

−1

q
(
ᾱj5ū

j −
∫ η2

−1

∂ᾱj5
∂η1

ūjdη1

)
dξ1dξ2η2

+

∫ ȳs

−1

∫ η2

−1

∫ x̄k

−1

∫ ξ2

−1

ᾱj6ū
jdξ1dξ2dη1dη2 + x̄kf0(ȳs) + f1(ȳs) + ȳsg0(x̄k) + g1(x̄k),

where f0(ȳs), f1(ȳs), g0(x̄k) and g1(x̄k) are arbitrary functions emerged from the
process of integration that are approximated by Chebyshev interpolating polyno-
mials,

gl(x̄k) =

N1−1∑
i=0

gliTi(x̄k) and fl(ȳs) =

N2−1∑
j=0

f ljTj(ȳs) (3.7)

for l ∈ {0, 1}, where gl0, g
l
1, g

l
2, ..., g

l
N1−1 and f l0, f

l
1, f

l
2, ..., f

l
N2−1 are the unknown

values of those interpolated points which are determined from the given boundary
conditions and we define the vectors of these nodes in each coordinates x and y
by giving

x̂ = [x0,x0,x0, ...,x0]︸ ︷︷ ︸
N2 blocks

>
, where x0 = [x̄1, x̄2, x̄3, ..., x̄N1 ],

ŷ = [y1,y2,y3, ...,yN2 ]>, where ys = [ȳs, ȳs, ȳs, ..., ȳs]︸ ︷︷ ︸
N1 terms

,

with s ∈ {1, 2, 3, ..., N2}. Hence, x̂, ŷ ∈ RM and let x̂i and ŷi be the ith element
in x̂ and ŷ, respectively.
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Step 4: Use the idea in Section 2.3 to transform the equation in Step 3 into the
matrix form as(2

τ
A2
xA

2
y − Zj+1

)
uj+1 + XΦyf0 + Φyf1 + YΦxg0 + Φxg1

=
(2

τ
A2
xA

2
y + Zj

)
uj + A2

xA
2
y(Fj+1 + Fj), (3.8)

where X = diag(x̂), Y = diag(ŷ), Zj = p2A2
y(ᾱj1 − 2Axᾱ

j
1,x̄ + A2

xᾱ
j
1,x̄x̄) +

q2A2
x(ᾱj2−2Ayᾱ

j
2,ȳ+A2

yᾱ
j
2,ȳȳ)+pqAxAy(ᾱj3−Axᾱ

j
3,x̄−Ayᾱ

j
3,ȳ+AxAyᾱ

j
3,x̄ȳ)+

pAxA
2
y(ᾱj4 −Axᾱ

j
4,x̄) + qA2

xAy(ᾱj5 −Ayᾱ
j
5,ȳu

j) + A2
xA

2
yᾱ

j
6,

uj = [ūj(x̂1, ŷ1), ūj(x̂2, ŷ2), ..., ūj(x̂M , ŷM )]>,
Fj = [f̄ j(x̂1, ŷ1), f̄ j(x̂2, ŷ2), ..., f̄ j(x̂M , ŷM )]>,
ᾱji,· = diag(ᾱji,·(x̂1, ŷ1), ᾱji,·(x̂2, ŷ2), ..., ᾱji,·(x̂M , ŷM )), gl = [gl0, g

l
1, ..., g

l
N1−1]> and

fl = [f l0, f
l
1, ..., f

l
N2−1]>. From (3.7), we obtain Φx and Φy, which their elements

can be found by (2.1), as follow:

Φx =


T0(x̂1) T1(x̂1) . . . TN1−1(x̂1)
T0(x̂2) T1(x̂2) . . . TN1−1(x̂2)

...
...

. . .
...

T0(x̂M ) T1(x̂M ) . . . TN1−1(x̂M )


and

Φy =


T0(ŷ1) T1(ŷ1) . . . TN2−1(ŷ1)
T0(ŷ2) T1(ŷ2) . . . TN2−1(ŷ2)

...
...

. . .
...

T0(ŷM ) T1(ŷM ) . . . TN2−1(ŷM )

 .

Step 5: We consider the given boundary conditions in four cases:

• Left boundary condition:
ūj+1(−1, ȳ) =

∑N1−1
n=0 cnTn(−1) := tlc = tlT

−1
N1×N1

uj+1(·, ȳ) = h̄j+1
1 (ȳ)

for each ȳ ∈ {ȳ1, ȳ2, ȳ3, ..., ȳN2
}, then we have

tlT
−1
N1×N1

0 . . . 0

0 tlT
−1
N1×N1

. . .
...

...
. . .

. . . 0
0 . . . 0 tlT

−1
N1×N1


︸ ︷︷ ︸

N2 blocks


uj+1(·, ȳ1)
uj+1(·, ȳ2)

...
uj+1(·, ȳN2)

 =


h̄j+1

1 (ȳ1)

h̄j+1
1 (ȳ2)

...

h̄j+1
1 (ȳN2

)

 ,

which we denote it by Tlu
j+1 = Hj+1

1 , where tl = [1,−1, 1, ..., (−1)N1−1].

• Right boundary condition:
ūj+1(1, ȳ) =

∑N1−1
n=0 cnTn(1) := trc = trT

−1
N1×N1

uj+1(·, ȳ) = h̄j+1
2 (ȳ)
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for each ȳ ∈ {ȳ1, ȳ2, ȳ3, ..., ȳN2}, then we have
trT

−1
N1×N1

0 . . . 0

0 trT
−1
N1×N1

. . .
...

...
. . .

. . . 0
0 . . . 0 trT

−1
N1×N1


︸ ︷︷ ︸

N2 blocks


uj+1(·, ȳ1)
uj+1(·, ȳ2)

...
uj+1(·, ȳN2

)

 =


h̄j+1

2 (ȳ1)

h̄j+1
2 (ȳ2)

...

h̄j+1
2 (ȳN2

)

 ,

which we denote it by Tru
j+1 = Hj+1

2 , where tr = [1, 1, 1, ..., 1N1−1].

• Bottom boundary condition:
ūj+1(x̄,−1)=

∑N2−1
n=0 cnTn(−1) :=tbc=tbT

−1
N2×N2

ũj+1(x̄, ·)= h̄j+1
3 (x̄)

for each x̄ ∈ {x̄1, x̄2, x̄3, ..., x̄N1}, then we have
tbT

−1
N2×N2

0 . . . 0

0 tbT
−1
N2×N2

. . .
...

...
. . .

. . . 0
0 . . . 0 tbT

−1
N2×N2


︸ ︷︷ ︸

N1 blocks


ũj+1(x̄1, ·)
ũj+1(x̄2, ·)

...
ũj+1(x̄N1

, ·)

 =


h̄j+1

3 (x̄1)

h̄j+1
3 (x̄2)

...

h̄j+1
3 (x̄N1

)

 ,

which we denote it by Tbũ
j+1 = Hj+1

3 or TbP
−1uj+1 = Hj+1

3 , where
tb = [1,−1, 1, ..., (−1)N2−1].

• Upper boundary condition:
ūj+1(x̄, 1) =

∑N2−1
n=0 cnTn(1) := tuc = tuT

−1
N2×N2

ũj+1(x̄, ·) = h̄j+1
4 (x̄)

for each x̄ ∈ {x̄1, x̄2, x̄3, ..., x̄N1
}, then we have

tuT
−1
N2×N2

0 . . . 0

0 tuT
−1
N2×N2

. . .
...

...
. . .

. . . 0
0 . . . 0 tuT

−1
N2×N2


︸ ︷︷ ︸

N1 blocks


ũj+1(x̄1, ·)
ũj+1(x̄2, ·)

...
ũj+1(x̄N1

, ·)

 =


h̄j+1

4 (x̄1)

h̄j+1
4 (x̄2)

...

h̄j+1
4 (x̄N1)

 ,

which we denote it by Tuũ
j+1 = Hj+1

4 or TuP
−1uj+1 = Hj+1

4 , where
tb = [1, 1, 1, ..., 1N2−1].

Thus, all boundary conditions can be represented in matrix forms as

Tlu
j+1 = Hj+1

1 , Tru
j+1 = Hj+1

2 , TbP
−1uj+1 = Hj+1

3 , TuP
−1uj+1 = Hj+1

4 .
(3.9)
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Step 6: Construct the system of linear equations from (3.8) and (3.9). Then, we
obtain

2
τA2

xA
2
y − Zj+1 XΦy Φy YΦx Φx

Tl 0 0 . . . 0
Tr 0 0 . . . 0

TbP
−1

...
...

. . .
...

TuP
−1 0 0 . . . 0




uj+1

f0
f1
g0

g1

 =


B

Hj+1
1

Hj+1
2

Hj+1
3

Hj+1
4

 , (3.10)

where B = ( 2
τA2

xA
2
y+Zj)uj +A2

xA
2
y(Fj+1 +Fj). Finally, we can find the approx-

imate solutions ūj+1(x̄, ȳ) by solving above linear system (3.10). Note that the
numerical solution uj+1(x, y) for (x, y) ∈ [a, b] × [c, d] is equivalent to ūj+1(x̄, ȳ)
for (x̄, ȳ) ∈ [−1, 1]× [−1, 1].

3.2 Numerical Examples for 2-D Linear Time-Dependent
PDEs

In this subsection, we use our proposed numerical algorithm to find the ap-
proximate solutions of some linear time-dependent PDEs in two-dimensional space.
To demonstrate the efficiency of this procedure by comparing an error of their so-
lutions. In this work, we consume the average relative error defined by ARE =
1
M

∑M
i=1

∣∣u∗
i−ui
u∗
i

∣∣, where u∗ and u are the analytical and numerical solutions, re-

spectively. Moreover, we demonstrate the computational cost in terms of CPU
times(s). All calculations are implemented by MatLab R2016 and run on the In-
tel(R) Core(TM) i7-6700 CPU @ 3.40 GHz. Finally, we also depict the surface
plot and the grid points of our solutions throughout the following examples.

Example 3.1. Consider a time-dependent linear PDE in which the coefficients
do not depend on time.

∂u

∂t
=(x2 + y2 + 1)

∂2u

∂x2
+ (x2 + y2 + 1)

∂2u

∂y2

+ 2x
∂u

∂x
+ 2y

∂u

∂y
− 2u+ [1− 2(x2 + y2 + x+ y)]ex+y+t

over (x, y) ∈ (0, 1)× (0, 1) and t ∈ (0, 1), with the initial and boundary conditions:

u(x, y, 0) = ex+y, (x, y) ∈ [0, 1]× [0, 1],

u(x, 0, t) = ex+t, u(x, 1, t) = ex+1+t, x ∈ [0, 1], t ∈ [0, 1],

u(0, y, t) = ey+t, u(1, y, t) = e1+y+t, y ∈ [0, 1], t ∈ [0, 1].

The exact solution for this problem is u∗(x, y, t) = ex+y+t. We first transform our
domain Ω = [0, 1]×[0, 1] by using the transformations x̄ = 2x−1 and ȳ = 2y−1. By
our numerical algorithm, we choose the numbers of nodes along x and y directions
that are equal, i.e., N1 = N2 = N for N ∈ {6, 8, 10, 12}. Thus, we can solve this
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problem by using the linear system (3.10) and we compare the average relative
errors obtained by our proposed method (CBS) with the original FIMs, consisting
the trapezoidal and Simpson’s rules (TPZ and SIM), at different nodal points N
for τ ∈ {0.1, 0.01} as shown in Table 1. The graphical solutions of this problem at
final time t = 1 are illustrated in Figure 2 both the three-dimensional surface of
our numerical solution and the two-dimensional graph that horizontal axis is the
orders of nodes in global numbering system versus vertical axis is the exact and
approximate solutions.

N
FIM-TPZ

τ = 0.1

FIM-SIM

τ = 0.1

Our proposed method

τ = 0.1 τ = 0.01

6 2.9684× 10−2 2.6237× 10−2 1.1486× 10−5 2.3278× 10−6

8 3.1323× 10−2 2.9074× 10−2 9.9216× 10−6 1.0197× 10−7

10 3.2534× 10−2 3.0984× 10−2 9.9158× 10−6 9.9978× 10−8

12 3.3434× 10−2 3.2308× 10−2 9.9158× 10−6 9.9981× 10−8

Table 1: The average relative errors of FIMs with TPZ, SIM and CBS in Example
3.1

Figure 2: The surface and the grid points of the solutions at t = 1 in Example
3.1
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Example 3.2. Consider a time-dependent linear PDE in which coefficients are
the given functions in terms of x, y and t over domain (x, y) ∈ (0, 2) × (0, 2) and
t ∈ (0, 1).

∂u

∂t
= x2et

∂2u

∂x2
+ y2et

∂2u

∂y2
+ xet

∂u

∂x
+ yet

∂u

∂y
+ u− (4x2e2t + 4y2e2t)

with the initial and boundary conditions:

u(x, y, 0) = x2 + y2 + 1, (x, y) ∈ [0, 2]× [0, 2],

u(x, 0, t) = et(x2 + 1), u(x, 1, t) = et(x2 + 5), x ∈ [0, 2], t ∈ [0, 1],

u(0, y, t) = et(y2 + 1), u(1, y, t) = et(y2 + 5), y ∈ [0, 2], t ∈ [0, 1].

The analytical solution for this problem is u∗(x, y, t) = et(x2 + y2 + 1). First,
we transform our domain Ω = [0, 2] × [0, 2] into Ω = [−1, 1] × [−1, 1] by using
the transformations x̄ = x − 1 and ȳ = y − 1. From our numerical algorithm, we
select the numbers of nodal points with respect to x- and y-axes which are the same
numbers, i.e., N1 = N2 = N for N ∈ {6, 8, 10, 12}. Thus, we can solve this problem
by employing the linear system (3.10). Table 2 shows the average relative errors
when τ ∈ {0.1, 0.01} comparing between our method and the traditional FIMs
via SIM and SIM. We can see that the proposed method give higher accuracy
than other method under the same τ = 0.1. Finally, we also plot the graphs of
numerical solutions at t = 1 in a surface and grid points forms as shown in Figure
3.

N
FIM-TPZ

τ = 0.1

FIM-SIM

τ = 0.1

Our proposed method

τ = 0.1 τ = 0.01

6 5.7281× 10−2 2.5104× 10−2 7.8415× 10−5 7.8566× 10−7

8 2.6256× 10−2 7.6268× 10−2 9.8155× 10−5 9.8348× 10−7

10 8.4489× 10−3 1.3237× 10−2 1.1148× 10−4 1.1170× 10−6

12 5.7623× 10−3 2.0794× 10−2 1.2101× 10−4 1.2122× 10−6

Table 2: The average relative errors of FIMs with TPZ, SIM and CBS in Example
3.2

Example 3.3. Consider a time-dependent differential equation in which coeffi-
cients are functions in terms of x, y and t. The forcing term involves trigonometric
functions.

∂u

∂t
= (x2 + t2)

∂2u

∂x2
+ (y2 + t2)

∂2u

∂y2
+ (2x+ t)

∂u

∂x
+ (2y + t)

∂u

∂y

− (2x+ 2y + 2t)t2 cos(x+ y + 1) + [(x2 + y2 + 2t2)t2 + 2t] sin(x+ y + 1)

over the domain (x, y) ∈ (0, 1)×(0, 1) and t ∈ (0, 1), with the initial and boundary
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Figure 3: The surface and the grid points of the solutions at t = 1 in Example
3.2

conditions:

u(x, y, 0) = 0, x ∈ [0, 1]× [0, 1],

u(x, 0, t) = t2 sin(x+ 1), u(x, 1, t) = t2 sin(x+ 2), x ∈ [0, 1], t ∈ [0, 1],

u(0, y, t) = t2 sin(y + 1), u(1, y, t) = t2 sin(y + 2), y ∈ [0, 1], t ∈ [0, 1].

The analytical solution for this problem is u∗(x, y, t) = t2 sin(x+ y + 1). We first
transform our domain Ω = [0, 1] × [0, 1] by using the transformations x̄ = 2x − 1
and ȳ = 2y − 1. By our numerical algorithm, we choose the nodal numbers along
x and y directions to be the same, that is N1 = N2 = N for N ∈ {6, 8, 10, 12}.
Hence, we can find the approximate solution at time t = 1 by solving the linear
system (3.10). Moreover, we present the average relative errors of the approximate
solution obtained by our modified method and the traditional FIMs with TPZ and
SIM for τ ∈ {0.1, 0.01} in Table 3, together with display the graphically numerical
solution at time t = 1 in Figure 4.
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N
FIM-TPZ

τ = 0.1

FIM-SIM

τ = 0.1

Our proposed method

τ = 0.1 τ = 0.01

6 1.1343× 10−2 9.6989× 10−3 1.3795× 10−6 1.3795× 10−6

8 1.1191× 10−2 1.0837× 10−2 2.1107× 10−9 2.1092× 10−9

10 1.2355× 10−2 1.1652× 10−2 1.9190× 10−12 8.6832× 10−12

12 1.2684× 10−2 1.3024× 10−2 2.7685× 10−12 6.0370× 10−12

Table 3: The average relative errors of FIMs with TPZ, SIM and CBS in Example
3.3

Figure 4: The surface and the grid points of the solutions at t = 1 in Example
3.3

From Examples 3.1-3.3, we can see that our proposed algorithm gives a lot
better accurate results comparing to other traditional FIMs when using the same
number of nodes. In addition, if we increase the time step, then we still obtain the
better approximate solutions. We demonstrate the computational cost in terms of
the CPU times(s) in Table 4. Also, we consider the use of memory storages for the
implemented algorithm on MatLab software via determining the same accuracy,
we can see that our proposed method uses smaller calculated matrix dimension
than other traditional FIMs as shown in Table 5.
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Example
N = 8 N = 10 N = 12

τ = 0.1 τ = 0.01 τ = 0.1 τ = 0.01 τ = 0.1 τ = 0.01

3.1 0.056208 0.39353 0.086397 0.74078 0.15016 1.29235

3.2 0.057747 0.41505 0.091488 0.80091 0.14925 1.28501

3.3 0.050478 0.39359 0.078153 0.70575 0.13508 1.28016

Table 4: The CPU times(s) of our proposed method for Examples 3.1-3.3

Example ARE
τ = 0.05 N = 0.025

FIM-TPZ FIM-SIM FIM-CBS FIM-TPZ FIM-SIM FIM-CBS

3.1 1.0× 10−3 9 6 4 9 6 4

3.2 5.0× 10−3 22 24 4 25 11 4

3.3 1.4× 10−3 15 8 4 8 8 4

Table 5: Dimension of matrix involved when considering the same accuracy

4 Numerical Solution of Linear Space-Fractional
PDEs

Recently, the fractional differential equations can be found in various problems
such as time delay problem, tautochrone problem, viscoelastic materials, fluid flow,
diffusive transport, etc, see [10] and [9] for further details. In this section, we con-
struct an algorithm based on the modified FIM applying shifted Chebyshev poly-
nomials for finding approximate solutions of linear FDEs with Riemann-Liouville
definition (2.5) for the fractional order derivative. To simplify our construction,
let us consider the following linear FDE in one-dimensional space as

Dαu(x) + a2(x)u′′(x) + a1(x)u′(x) + a0(x)u(x) = f(x) for x ∈ (0, L), (4.1)

where m ∈ {1, 2} and α ∈ (m − 1,m) with boundary conditions u(0) = 0 and
u(L) = b ∈ R. Throughout this section, let us assume that the solution of (4.1)
exists and unique. Moreover, for applying the FIM, we have to assume further
that limx→0+ u′(x)(−x)m−α exists.

First of all, we let β = α − m + 1 for m ∈ {1, 2}, ω ∈ [0, 1] and F (x) :=∫ x
0

u(s)
(x−s)β ds for x ∈ (0, 1). Next, we approximate the function F (x) at each com-

putational node xk ∈ [0, 1] for k ∈ {1, 2, 3, ...,M}, where we let the initial point
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x0 = 0. Then, we have

F (xk) =

∫ xk

0

(xk − s)−βu(s) ds =

k−1∑
i=0

∫ xi+1

xi

(xk − s)−βu(s) ds

≈
k−1∑
i=0

∫ xi+1

xi

(xk − s)−β(ωu(xi) + (1− ω)u(xi+1)) ds

=

k−1∑
i=0

(ωu(xi) + (1− ω)u(xi+1))

[
(xk − xi)1−β

1− β
− (xk − xi+1)1−β

1− β

]
.

By letting qi,i+1(xk) = (xk − xi)1−β − (xk − xi+1)1−β , we have from the fact that
1− β = m− α. Thus,

F (xk) =
1

m− α

k−1∑
i=0

(ωu(xi) + (1− ω)u(xi+1))qi,i+1(xk). (4.2)

We note that to obtain (4.2), we have used the approximation

k−1∑
i=0

∫ xi+1

xi

(xk − s)−βu(s) ds ≈
k−1∑
i=0

∫ xi+1

xi

(xk − s)−β(ωu(xi) + (1− ω)u(xi+1)) ds.

This approximation is suggested from the integration over [xi, xi+1] using trape-
zoidal rule and the term should be 1

2u(xi) + 1
2u(xi+1). However, it will be shown

later in Section 4.2 via numerical experiments as our conjecture that there are an
optimal weights of u(xi) and u(xi+1) rather than 1

2 , that our numerical algorithm
obtain more accuracy.

4.1 Numerical Algorithm for Linear Space-Fractional PDEs

We are now ready to apply the FIM using the shifted Chebyshev polynomials
to devise an algorithm for computing the approximate solution of (4.1) as the fol-
lowing procedures:

Step 1. Transform x ∈ [0, L] into x̄ ∈ [0, 1] by the transformation x̄ = x
L and

η = s
L , then (4.1) becomes

pα

Γ(m− α)

dm

dx̄m

∫ x̄

0

ū(η)

(x̄− η)β
dη + p2ā2(x̄)ū′′(x̄) + pā1(x̄)ū′(x̄) + ā0(x̄)ū(x̄) = f̄(x̄),

(4.3)
where p = 1

L , f̄(x̄) = f(Lx̄), āi(x̄) = ai(Lx̄) for i ∈ {0, 1, 2}, ū(x̄) = u(Lx̄) and
ū(0) = 0 by assumption.
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Step 2. Discretize the domain [0, 1] into M nodes by using zeros of T ∗M (x̄) as
defined in (2.2), i.e.,

x̄k =
1

2

[
cos
(2k − 1

2M

)
π + 1

]
, where k ∈ {1, 2, 3, ...,M}.

Step 3. Eliminate all derivatives with respect to x̄ by taking the double layer
integration on both sides of (4.3) and using the integration by parts with integer
order terms. Then, (4.3) becomes

pα

Γ(m− α)

∫ x̄k

0

∫ ξ2

0

dm

dξm1

∫ ξ1

0

ū(η)

(ξ1 − η)β
dη dξ1dξ2

+ p2ā2(x̄k)ū(x̄k)− 2p2

∫ x̄k

0

ā′2(ξ2)ū(ξ2) dξ2 + p2

∫ x̄k

0

∫ ξ2

0

ā′′2(ξ1)ū(ξ1) dξ1dξ2

+ p

∫ x̄k

0

ā1(ξ2)ū(ξ2) dξ2 − p
∫ x̄k

0

∫ ξ2

0

ā′1(ξ1)ū(ξ1) dξ1dξ2

+

∫ x̄k

0

∫ ξ2

0

ā0(ξ2)ū(ξ2) dξ1dξ2 + c1x̄k + c0 =

∫ x̄k

0

∫ ξ2

0

f̄(ξ2) dξ1dξ2, (4.4)

where c0 and c1 are arbitrary constants of integration. Next, we can divide (4.4)
into 2 cases as follows:

Case 1: For m = 1, we can get rid of the first order derivative of the
first term of (4.4) by integrating once with respect to ξ1 from 0 to ξ2.
By using the assumption that limx→0+ u′(x)(−x)m−α exists, then we have
limη→0+ ū′(η)(−η)1−β exists and also substituting (4.2) into (4.4). Then,
we get

pα

Γ(1− α)

∫ x̄k

0

1

1− α

k−1∑
i=0

(ωū(x̄i) + (1− ω)ū(x̄i+1))qi,i+1(ξ2) dξ2

+ p2ā2(x̄k)ū(x̄k)− 2p2

∫ x̄k

0

ā′2(ξ2)ū(ξ2) dξ2 + p2

∫ x̄k

0

∫ ξ2

0

ā′′2(ξ1)ū(ξ1) dξ1dξ2

+ p

∫ x̄k

0

ā1(ξ2)ū(ξ2) dξ2 − p
∫ x̄k

0

∫ ξ2

0

ā′1(ξ1)ū(ξ1) dξ1dξ2

+

∫ x̄k

0

∫ ξ2

0

ā0(ξ2)ū(ξ2) dξ1dξ2 + c1x̄k + c0 =

∫ x̄k

0

∫ ξ2

0

f̄(ξ2) dξ1dξ2. (4.5)

Case 2: For m = 2, we can get rid of the second order derivative of the
first term of (4.4) by integrating twice with respect to ξ1 and ξ2 from 0 to
ξ2 and 0 to x̄k, respectively. Then, we also substitute (4.2) into (4.4). Thus,
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we obtain

pα

Γ(2− α)

1

2− α

k−1∑
i=0

(ωū(x̄i) + (1− ω)ū(x̄i+1))qi,i+1(x̄k)

+ p2ā2(x̄k)ū(x̄k)− 2p2

∫ x̄k

0

ā′2(ξ2)ū(ξ2) dξ2 + p2

∫ x̄k

0

∫ ξ2

0

ā′′2(ξ1)ū(ξ1) dξ1dξ2

+ p

∫ x̄k

0

ā1(ξ2)ū(ξ2) dξ2 − p
∫ x̄k

0

∫ ξ2

0

ā′1(ξ1)ū(ξ1) dξ1dξ2

+

∫ x̄k

0

∫ ξ2

0

ā0(ξ2)ū(ξ2) dξ1dξ2 + c1x̄k + c0 =

∫ x̄k

0

∫ ξ2

0

f̄(ξ2) dξ1dξ2. (4.6)

Step 4. Transform (4.5) or (4.6) into the matrix form by using the idea in Section

2.4. First, we consider the summation term
∑k−1
i=0 (ωū(x̄i)+(1−ω)ū(x̄i+1))qi,i+1(x̄k).

For k ∈ {1, 2, 3, ...,M}, we can transform them into the matrix form as Qu, where
Q = [Qij ]M×M with

Qij =


(1− ω)qi−1,i(x̄i) if i = j,

(1− ω)qi−1,j(x̄i) + ωqj,i(x̄i) if i > j,

0 if i < j,

(4.7)

and u = [ū(x̄1), ū(x̄2), ū(x̄3), ..., ū(x̄M )]>. By the first and second order integration
matrices using the shifted Chebyshev polynomial described in Section 2.4 and (4.7),
then (4.5) or (4.6) can be expressed as

pα

Γ(m+ 1− α)
(A∗)2−mQu + p2B

(0)
2 u− 2p2A∗B

(1)
2 u + p2(A∗)2B

(2)
2 u

+ pA∗B
(0)
1 u− p(A∗)2B

(1)
1 u + (A∗)2B

(0)
0 u + c1x + c0e = (A∗)2f .

where A∗ is the integration matrix which uses the zeros of T ∗M , x = [x̄1, x̄2, x̄3, ..., x̄M ]>,

e = [1, 1, 1, .., 1]>, f = [f̄(x̄1), f̄(x̄2), ..., f̄(x̄M )]> and B
(j)
i = diag(ā

(j)
i (x̄1), ā

(j)
i (x̄2), ..., ā

(j)
i (x̄M ))

for i, j ∈ {0, 1, 2}. Next, let K = pα(A∗)2−mQ
Γ(m+1−α) +p2B

(0)
2 −2p2A∗B

(1)
2 +p2(A∗)2B

(2)
2 +

pA∗B
(0)
1 − p(A∗)2B

(1)
1 + (A∗)2B

(0)
0 , then above equation of matrix for m ∈ {1, 2}

and α ∈ (m− 1,m) can be simplified in the form:

Ku + c1x + c0e = (A∗)2f , (4.8)

Step 5. Consider the given boundary conditions which are ū(0) = 0 and ū(1) = b.
Then, we have

ū(0) =

M−1∑
n=0

cnT
∗
n(0) := tlc = tl(T

∗)−1u, (4.9)

ū(1) =

M−1∑
n=0

cnT
∗
n(1) := trc = tr(T

∗)−1u, (4.10)
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where tl = [1,−1, 1, ..., (−1)M−1] and tr = [1, 1, 1, ..., 1].

Step 6. Construct the system of linear equation from (4.8), (4.9) and (4.10) as
follows 

K x e

tl(T
∗)−1 0 0

tr(T
∗)−1 0 0




u

c1

c0




(A∗)2f

0

b

 . (4.11)

Then, the approximate solution can be found by solving the linear system (4.11).
To obtain the numerical solution u(x) for x ∈ [0, b], we use transformation x = bx̄.

4.2 Numerical Examples for Linear Space-Fractional PDEs

We use our proposed method to find the approximate solutions of some linear
FDEs. In each example, we use different errors based on the results from each
corresponding paper that we would like to compare with. Furthermore, we employ

the error E = 1
M

∑M
i=1

∣∣ui−u∗
i

u∗
max

∣∣, where u∗ and u are the analytical and numerical

solutions, respectively. Also, we show the consuming of CPU times(s) in each
example.

Example 4.1. Consider a linear FDE with α ∈ (0, 1).

Dα(u) +
d2u

dx2
+ u =

6x3−α

Γ(4− α)
+ x3 + 6x, x ∈ (0, 1),

with the boundary conditions u(0) = 0 and u(1) = 1. The analytical solution is
u∗(x) = x3. By using our numerical algorithm, this problem can be written in the
matrix form as Ku+ c1x+ c0e = (A∗)2f , where K = 1

Γ(2−α)A
∗Q+ I+ (A∗)2. For

the boundary conditions, we have tl(T
∗)−1u = 0 and tr(T

∗)−1u = 1. Hence, we
can solve this problem by solving the linear system (4.11). Finally, we obtain the
approximate solutions u(x). Table 6 shows the errors E and the CPU times(s) for
our modified FIM using the shifted Chebyshev polynomials when M = 10 with
several values of α. For each values of α, we give the optimal ω that achieve
the highest accuracy. Moreover, we also plot the graphs of the analytical and
numerical solutions as shown in Figure 5a. Note that Table 6 demonstrates the
optimal ω that give the best accuracy for each value of α.

Example 4.2. Consider a linear FDE with α ∈ (0, 1).

Dα(u) +
d2u

dx2
+

6

5

du

dx
+

1

5
u =

3.5x
5
2−α

Γ(3.5− α)
+

2x2−α

Γ(3− α)
+

1

5
x

5
2 +

1

5
x2

+ 3x
3
2 +

15

4
x

1
2 +

12

5
x+ 2, x ∈ (0, 1),
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α The optimal ω The error E CPU time(s)

0.001 0.54 3.4276× 10−5 0.016188

0.100 0.53 3.3185× 10−5 0.018178

0.300 0.49 3.4051× 10−5 0.017099

0.500 0.43 1.3316× 10−4 0.016407

0.700 0.32 2.1657× 10−4 0.017680

0.900 0.14 1.8333× 10−4 0.016136

0.990 0.02 7.4989× 10−5 0.017969

0.999 0.00 3.4180× 10−5 0.017662

Table 6: The errors E and CPU times of our method for M = 10 in Example 4.1

with the boundary conditions u(0) = 0 and u(1) = 2. The exact solution is

u∗(x) = x
5
2 + x2. By using our numerical algorithm, this problem can be written

in the matrix form as Ku + c1x + c0e = (A∗)2f , where K = 1
Γ(2−α)A

∗Q +

I + 6
5A∗ + 1

5 (A∗)2. For the boundary conditions, we have tl(T
∗)−1u = 0 and

tr(T
∗)−1u = 2. Consequently, we can solve this problem by solving the linear

system (4.11). Finally, we obtain the approximate solutions u(x). Table 7 shows
the errors E and the computational time(s) for our presented FIM using the shifted
Chebyshev polynomials for M = 10 with the different values of α and ω. The
graphs of the analytical and approximate solutions are shown in Figure 5b. We
note here that Table 7 shows the optimal ω that give the best accuracy for each
values of α.

α The optimal ω The error E CPU time(s)

0.001 0.53 3.5582× 10−5 0.019852

0.100 0.52 4.0456× 10−5 0.017335

0.300 0.48 8.0875× 10−5 0.017734

0.500 0.43 1.6888× 10−4 0.019479

0.700 0.33 2.9007× 10−4 0.016535

0.900 0.15 2.4695× 10−4 0.019813

0.990 0.02 5.0977× 10−5 0.016576

0.999 0.00 2.3218× 10−5 0.019966

Table 7: The errors E and CPU times of our method for M = 10 in Example 4.2

Example 4.3. Consider a linear FDE with α ∈ (1, 2).

Dα(u) +
d2u

dx2
+ u =

2x2−α

Γ(3− α)
+ x2 + 2, x ∈ (0, 1),

with the boundary conditions u(0) = 0 and u(1) = 1. The analytical solution is
u∗(x) = x2. By using our numerical algorithm, this problem can be written in
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the matrix form as Ku + c1x + c0e = (A∗)2f , where K = 1
Γ(3−α)Q + I + (A∗)2.

For the given boundary conditions, we have tl(T
∗)−1u = 0 and tr(T

∗)−1u = 1.
Therefore, we can solve this problem by solving the linear system (4.11). Finally,
we obtain the approximate solutions u(x). For each α, we give the optimal ω that
achieves the highest accuracy. Table 8 demonstrates the error E and the time
consuming for our FIM using the shifted Chebyshev polynomials when M = 10
with different α and its optimal ω. Also, the graph of analytical and approximate
solutions are shown in Figure 5c.

α The optimal ω The error E CPU time(s)

1.001 0.50 1.5150× 10−4 0.018116

1.100 0.51 1.2287× 10−4 0.016660

1.300 0.52 1.3863× 10−3 0.016202

1.500 0.25 1.8318× 10−3 0.017471

1.700 0.14 1.5271× 10−3 0.017206

1.900 0.05 6.5496× 10−4 0.017990

1.990 0.00 1.4920× 10−4 0.018570

1.999 0.00 2.2748× 10−4 0.017631

Table 8: The errors E and CPU times of our method for M = 10 in Example 4.3

Example 4.4. Consider a linear FDE with α ∈ (1, 2).

Dα(u) +
d2u

dx2
+ 2

du

dx
− u =

6x3−α

Γ(4− α)
+

2x2−α

Γ(3− α)

− x3 + 5x2 + 10x+ 2, x ∈ (0, 1),

with the boundary conditions u(0) = 0 and u(1) = 2. The exact solution is
u∗(x) = x3 + x2. By using our numerical algorithm, this problem can be written
in the matrix form as Ku + c1x + c0e = (A∗)2f , where K = 1

Γ(3−α) (A∗)Q +

I + 2(A∗) − (A∗)2. For the boundary conditions, we have tl(T
∗)−1u = 0 and

tr(T
∗)−1u = 2. Therefore, we can solve this problem by solving the linear system

(4.11). Table 9 shows the errors E and the calculating times(s) for our FIM using
the shifted Chebyshev polynomials when M = 10 with different α and ω. Also,
the graph of analytical and approximate solutions are shown in Figure 5d. Note
that Table 9 are the optimal ω that give the best accuracy.

4.3 Further Observation

From Examples 4.1 and 4.2, for 0 < α < 1, we can see a relationship between
α and the optimal ω that gives the best accuracy as shown in Figure 6a. Similarly,
for 1 < α < 2, Figure 6b shows the relationship between α and the optimal ω
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α The optimal ω The error E CPU time(s)

1.001 0.51 1.5010× 10−4 0.020451

1.100 0.52 9.5674× 10−5 0.017865

1.300 0.54 1.2643× 10−3 0.018648

1.500 0.25 2.1052× 10−3 0.018468

1.700 0.14 1.9663× 10−3 0.016513

1.900 0.04 9.3191× 10−3 0.018311

1.990 0.00 1.4630× 10−4 0.019721

1.999 0.00 1.4758× 10−5 0.017167

Table 9: The errors E and CPU times of our method for M = 10 in Example 4.4

(a) Example 4.1 with α =
0.5

(b) Example 4.2 with α =
0.5

(c) Example 4.3 with α = 1.5
(d) Example 4.4 with α =
1.5

Figure 5: The graphs of the exact and numerical solutions for Examples 4.1-4.4

for Examples 4.3 and 4.4. Therefore, we automatically choose ω according to the
polynomial interpolation that interpolates the average of ω from each to examples
with respect to the values of α. Thus, we add Step 0 for choosing the value ω in
our numerical algorithm from Section 4.1 as follow:

Step 0. Choose the value ω which divides into 2 cases for α ∈ (0, 1) or α ∈ (1, 2)
as the following.
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• For α ∈ (0, 1),

ω = −0.6238α3 + 0.3120α2 − 0.2175α+ 0.5397.

• For α ∈ (1, 2),

ω =

{
0.0775α+ 0.4298 if 1 ≤ α ≤ 1.31,

−0.5643α+ 1.1080 if 1.31 < α ≤ 2.

However, if the value ω obtained from these formulas is less than 0, then we take
ω = 0. The next two examples verify our suggestion about the optimal ω.

(a) Examples 4.1 and 4.2 (b) Examples 4.3 and 4.4

Figure 6: The optimal ω versus α for M = 10 in Examples 4.1-4.4
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Example 4.5. Consider a linear FDE with α ∈ (0, 1).

Dα(u) +
d2u

dx2
+
du

dx
− u =

24x4−α

Γ(5− α)
+

2x2−α

Γ(3− α)

+ 4x3 + 11x2 + 2x− x4 + 2, x ∈ (0, 1),

with boundary conditions u(0) = 0 and u(1) = 2. The exact solution is u∗(x) =
x4 + x2. By using our numerical algorithm with Step 0, we can see that our
suggested ω is a good approximation for the optimal ω of this problem as shown
in Table 10 and Figure 7a.

α
The optimal ω The suggested ω

ω E ω E

0.001 0.54 3.4169× 10−5 0.5395 3.0160× 10−5

0.010 0.53 3.8895× 10−5 0.5376 2.4006× 10−5

0.100 0.52 3.9675× 10−5 0.5204 3.3041× 10−5

0.300 0.49 4.2996× 10−5 0.4857 5.6484× 10−5

0.500 0.43 1.2478× 10−4 0.4310 1.2458× 10−4

0.700 0.33 2.1812× 10−4 0.3264 2.1634× 10−4

0.900 0.14 1.9063× 10−4 0.1419 1.8140× 10−4

0.990 0.02 5.1359× 10−5 0.0249 1.1259× 10−4

0.999 0.00 2.6051× 10−5 0.0119 1.4497× 10−4

Table 10: The errors E of our proposed method for M = 10 in Example 4.5

Example 4.6. Consider a linear FDE with α ∈ (1, 2).

Dα(u) +
d2u

dx2
+ 2u =

6x3−α

Γ(4− α)
+

2x2−α

Γ(3− α)
+

x1−α

Γ(2− α)

+ 2x3 + 2x2 + 8x+ 2, x ∈ (0, 1),

with boundary conditions u(0) = 0 and u(1) = 3. The exact solution is u∗(x) =
x3 + x2 + x. By using our numerical algorithm with Step 0, we can see that our
suggested ω is a good approximation for the optimal ω of this problem as shown
in Table 11 and Figure 7b.

5 Conclusion and Discussion

In this paper, we propose an numerical algorithm for solving two-dimensional
linear time-dependent differential equations based on the FIM using Chebyshev
polynomials. As we know that all traditional FIMs using trapezoidal and Simp-
son’s rules gave a better result than those solved by the FDM. Hence, each example
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α
The optimal ω The suggested ω

ω E ω E

1.001 0.51 9.6872× 10−5 0.50738 1.0872× 10−5

1.010 0.51 8.6439× 10−5 0.50808 9.5303× 10−5

1.100 0.53 1.6900× 10−4 0.48727 4.6312× 10−4

1.300 0.26 1.5695× 10−3 0.37441 1.5738× 10−3

1.500 0.24 1.6789× 10−3 0.26155 1.7960× 10−3

1.700 0.12 1.1829× 10−3 0.14869 1.2926× 10−3

1.900 0.04 4.2573× 10−4 0.03538 4.4215× 10−4

1.990 0.00 1.1761× 10−4 0.00000 1.1761× 10−4

1.999 0.00 1.1957× 10−5 0.00000 1.1957× 10−5

Table 11: The errors E of our proposed method for M = 10 in Example 4.6

(a) Example 4.5 (b) Example 4.6

Figure 7: The optimal ω and suggested ω for M = 10 in Examples 4.5 and 4.6

in this paper, we compare our result with the traditional FIMs only. It turns out
that our proposed method give a better accuracy for a large time step and give a
lot better accuracy for a small time step. We can see that to obtain the same ac-
curacy, the traditional FIMs need to calculate on a larger matrix dimension, thus,
consuming more computational times than our proposed algorithm. However, the
same idea can be extended to the n-dimensional linear time-dependent PDEs of
higher order as well.

For the linear space-fractional differential equations, we obtain a preliminary
result in terms of having an algorithm to find the numerical solutions for second
order linear FDEs. The results demonstrate that for α ∈ (0, 1) and α ∈ (1, 2),
then our method works very well. We also notice that in terms of the procedure,
our numerical algorithm can be extended to solve FDEs of higher order.

For our future research, we try to prove that there is the optimal ω that makes
good accuracy when we find approximate solutions of second order linear FDEs
in the algorithm of Section 4.1. We also hope to propose algorithms based on
our modified FIM using Chebyshev polynomial expansion to overcome nonlinear
differential equations and the time-space fractional multi-order derivatives of dif-
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ferential equations in Riemann-Liouville sense.
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