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1 Introduction and Preliminaries

In 1922, Banach [1] proved a fixed point theorem for metric spaces, which later
on came to be known as the famous “Banach contraction principle”.

Stefan Banach

Let (X, d) be a metric space. Then a map T : X → X is called a contraction
mapping on X, if there exists q ∈ [0, 1) such that

d(T (x), T (y)) ≤ qd(x, y)

for all x, y in X. If (X, d) is a complete metric space with a contraction mapping
T : X → X, then T admits a unique fixed-point x∗ in X. Furthermore, We can to
find x∗ as follows: We start x0 in X and define a sequence xn by xn = T (xn−1),
then xn → x∗. After that, we well-known to Banach Fixed Point Theorem.

Now, we recall definition of metric spaces was introduced by Frechet [2] as
follows :

Definition 1.1. Let X be a non-empty set. Suppose that the mapping
d : X ×X → [0,∞) satisfies :

(MS1) d(x, y) = 0 if and only if x = y,
(MS2) d(x, y) = d(y, x) for all x, y ∈ X,
(MS3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

If d satisfying (MS1)-(MS3), then d is called a metric on X and (X, d) is called a
metric space.

Example 1.2. Let X = R and defined d : X ×X −→ R by

d(x, y) = |x− y|

for all x, y ∈ R. Then (X, d) is metric spaces.

In 1931, Wilson [3] introduced quasi-metric spaces as follows :

Definition 1.3. Let X be a nonempty set. Suppose that the mapping
d : X ×X −→ [0,∞) satisfies the following conditions:

(QS1) d(x, y) = 0 if and only if x = y;
(QS2) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X. If d satisfies condi-

tions (QS1) and (QS2), then d is called a quasi-metric on X and (X, d) is called a
quasi-metric space.
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Example 1.4. Let X = A ∪ B, where A = { 12 ,
1
3} and B = [1, 5]. Define the

generalized metric d on X as follows :
d( 1

2 ,
1
3 ) = 0.3, d( 1

3 ,
1
2 ) = 0.2, d( 1

2 ,
1
2 ) = d( 1

3 ,
1
3 ) = 0, and d(x, y) = |x− y|.

If x, y ∈ B or x ∈ A, y ∈ B or x ∈ B, y ∈ A,
then (X, d) is a quasi-metric space, but it is not metric space.

In 2000, Branciari [4] introduced rectangular metric spaces as follows :

Definition 1.5. Let X be a none-mpty set and Suppose that the mapping d :
X ×X → [0,∞) satisfies:

(RMS1) d(x, y) = 0 if and only if x = y for all x, y ∈ X;
(RMS2) d(x, y) = d(y, x) for all x, y ∈ X;
(RMS3) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) for all x, y, z ∈ X

and all distinct point u, v ∈ X\{x, y}.
Then d is called a rectangular metric on X and (X, d) is called a rectangular

metric space.

Example 1.6 ([5]). Let X = A∪B, where A = { 12 ,
1
3 ,

1
4 ,

1
5} and B = [1, 2]. Define

the generalized metric d on X as follows :

d(
1

2
,

1

3
) = d(

1

4
,

1

5
) = 0.3, d(

1

2
,

1

5
) = d(

1

3
,

1

4
) = 0.2,

d(
1

2
,

1

4
) = d(

1

5
,

1

3
) = 0.6, d(

1

2
,

1

2
) = d(

1

3
,

1

3
) = d(

1

4
,

1

4
) = d(

1

5
,

1

5
) = 0

and d(x, y) = |x− y| if x, y ∈ B or x ∈ A, y ∈ B or x ∈ B, y ∈ A.
It is clear that d does not satisfy the triangle inequality in metric space,

0.6 = d(
1

2
,

1

4
) ≥ d(

1

2
,

1

3
) + d(

1

3
,

1

4
) = 0.5.

Then d is a rectangular metric, but it is not a metric.

In this work, we extend and improve rectangular metric spaces to rectangular
quasi-metric spaces by using the concept of quasi-metric spaces. Next, we obtain
fixed point theorems in rectangular quasi-metric spaces. Moreover, we present
some examples to illustrate and support our results.i.e,
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2 Main Results

In this section, we introduce rectangular quasi-metric spaces and prove fixed
point theorems. Likewise, we present some examples to illustrate and support our
results.

Definition 2.1. Let X be a non-empty set and Suppose that the mappings d :
X ×X −→ [0,∞) satisfies :

(RQMS1) d(x, y) = 0 if and only if x = y;
(RQMS2) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) for all x, y ∈ X

and all distinct points u, v ∈ X\{x, y}.
Then d is called a rectangular quasi-metric on X and (X, d) is called a rectangular
quasi-metric space.

Example 2.2. Let X = A∪B, where A = { 12 ,
1
3 ,

1
4 ,

1
5} and B = [1, 2]. Define the

generalized metric d on X as follows :

d(
1

2
,

1

3
) = d(

1

4
,

1

5
) = 0.3, d(

1

3
,

1

2
) = d(

1

5
,

1

4
) = 0.1,

d(
1

2
,

1

4
) = d(

1

5
,

1

3
) = 0.6, d(

1

4
,

1

2
) = d(

1

3
,

1

5
) = 0.4,

d(
1

2
,

1

5
) = d(

1

3
,

1

4
) = 0.2, d(

1

5
,

1

2
) = d(

1

4
,

1

3
) = 0.5,

d(
1

2
,

1

2
) = d(

1

3
,

1

3
) = d(

1

4
,

1

4
) = d(

1

5
,

1

5
) = 0,

and

d(x, y) = |x− y| if x, y ∈ B or x ∈ A, y ∈ B or x ∈ B, y ∈ A .

It is clear that d does not satisfy the triangle inequality A

0.6 = d(
1

2
,

1

4
) ≥ d(

1

2
,

1

3
) + d(

1

3
,

1

4
) = 0.5.

We see that d is not a rectangular metrics, because d( 1
2 ,

1
4 ) 6= d( 1

4 ,
1
2 ). So d is a

rectangular quasi-metric. Indeed,
(RMQ1)
(⇒) Suppose that d(x, y) = 0.
Case(I) If x, y ∈ A, then x = y.
Case(II) If x, y ∈ B or x ∈ A, y ∈ B or x ∈ B, y ∈ A then d(x, y) = |x − y| = 0,
so x = y.
(⇐) Suppose that x = y.
To show that d(x, y) = 0. we prove by two case.
Case(I) If x, y ∈ A then d( 1

2 ,
1
2 ) = d( 1

3 ,
1
3 ) = d( 1

4 ,
1
4 ) = d( 1

5 ,
1
5 ) = 0.

Case(II) If x, y ∈ B or x ∈ A, y ∈ B or x ∈ B, y ∈ A then x− y = 0.
Thus d(x, y) = |x− y| = 0.
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This is a proof of (RQM1)
(RQM2)
Case (I) If x, y ∈ A then
d(x, y) = d( 1

2 ,
1
3 ) = 0.3 ≤ d( 1

2 , u) + d(u, v)+ d(v, 13 ) when u, v ∈ { 14 ,
1
5}

d(x, y) = d( 1
3 ,

1
2 ) = 0.1 ≤ d( 1

3 , u) + d(u, v) + d(v, 12 ) when u, v ∈ { 14 ,
1
5}

d(x, y) = d( 1
3 ,

1
4 ) = 0.2 ≤ d( 1

3 , u) + d(u, v) + d(v, 14 ) when u, v ∈ { 12 ,
1
5}

d(x, y) = d( 1
4 ,

1
3 ) = 0.2 ≤ d( 1

4 , u) + d(u, v) + d(v, 13 ) when u, v ∈ { 12 ,
1
5}

d(x, y) = d( 1
4 ,

1
5 ) = 0.3 ≤ d( 1

4 , u) + d(u, v) + d(v, 15 ) when u, v ∈ { 12 ,
1
3}

d(x, y) = d( 1
5 ,

1
4 ) = 0.1 ≤ d( 1

5 , u) + d(u, v) + d(v, 14 ) when u, v ∈ { 12 ,
1
3}.

Case (II) If x, y ∈ B or x ∈ A, y ∈ B or x ∈ B, y ∈ A, then

d(x, y) = |x− y|
≤ |x− u|+ |u− y|
≤ |x− u|+ |u− v|+ |v − y|,

for all distinct points u, v ∈ X\{x, y}.
Now, we introduce a definition of a convergent, cauchy, complete rectangular

quasi-metric space as follows : For any x ∈ X, we define the open ball with centre
x and radius r > 0 by

Br(x); = {y ∈ X|max{d(x, y), d(y, x)} < r}.

Definition 2.3. Let (X, d) be a rectangular quasi-metric space and let {xn} be
a sequence in X and x ∈ X. Then

(a) The sequence {xn} in X is called convergence to x ∈ X if
limn→∞ d(xn, x) = 0 = limn→∞ d(x, xn) and this fact is represented by limn→∞ xn =
x or xn −→ x as n −→∞.

(b)The sequence {xn} in X is called cauchy sequence in (X, d) if
limn→∞ d(xn, xn+p) = 0 = limn→∞ d(xn+p, xn), for all p > 0.

(c) (X, d) is called complete rectangular quasi metric space if every Cauchy
sequence in X convergence to some x ∈ X.

Next, we present main theorems as follows :

Theorem 2.4. Let (X, d) be a complete rectangular quasi-metric space. A map-
ping g : X → X satisfies:

d(g(x), g(y)) ≤ ψ(d(x, y)), (2.1)

for all x, y ∈ X, where
(i) ψ : [0,∞)→ [0,∞) is non-decreasing and continuous functions,

(ii)
∞∑
i=n

ψi(t) + ψm(t∗) <∞ for t, t∗ > 0 and for m,n ∈ N,

(iii) ψ(0) = 0 and ψ(t) < t for 0 < t.
Then g has a unique fixed point.
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Proof. Let x0 ∈ X be arbitraty. We define a sequence {xn} by xn+1 = gxn for all
n = 0, 1, 2, ... ,. We will show that {xn} is Cauchy sequence, i.e., limn→∞ d(xn, xn+p) =
0 = limn→∞ d(xn+p, xn) for all p > 0. If xn = xn+1 then xn is fixed point of g,
i.e., xn = gxn. So, suppose that xn 6= xn+1 for all n = 0, 1, 2, ... .
We consider

en := d(xn, xn+1) = d(gxn−1, gxn)

≤ ψ(d(xn−1, xn))

= ψ(d(gxn−2, gxn−1))

≤ ψ2(d(xn−2, xn−1))

= ψ2(d(gxn−3, gxn−2))

...

≤ ψn(d(x0, x1))

= ψn(e0), (2.2)

and,

ln := d(xn+1, xn) = d(gxn, gxn−1)

≤ ψ(d(xn, xn−1))

= ψ(d(gxn−1, gxn−2))

≤ ψ2(d(xn−1, xn−2))

= ψ2(d(gxn−2, gxn−3))

...

≤ ψn(d(x1, x0))

= ψn(l0). (2.3)

Since (2.2) and (2.3), we have d(xn, xn+1) ≤ ψn(d(x0, x1)) and d(xn+1, xn) ≤
ψn(d(x1, x0)).
We consider

e∗n := d(x, xn+2) = d(gxn−1, gxn+1)

≤ ψ(d(xn−1, xn+1))

= ψ(d(gxn−2, gxn))

≤ ψ2(d(xn−2, xn))

...

≤ ψn(d(x0, x2))

= ψn(e∗0), (2.4)
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and,

l∗n := d(xn+2, xn) = d(gxn+1, gxn−1)

≤ ψ(d(xn+1, xn−1))

= ψ(d(gxn, gxn−2))

≤ ψ2(d(xn, xn−2))

...

≤ ψn(d(x2, x0))

= ψn(l∗0). (2.5)

Now, if p is odd say 2m+ 1 then we obtain that

d(xn, xn+2m+1) ≤ d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2m+1)

≤ en + en+1 + [d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, xn+2m+1)]

≤ en + en+1 + en+2 + ...+ en+2m

≤ ψn(e0) + ψn+1(e0) + ψn+2(e0) + ...+ ψn+2m(e0)

=

n+2m∑
i=n

ψi(e0) ≤
∞∑
i=n

ψi(e0) <∞. (2.6)

If p is even say 2m then we obtain that

d(xn, xn+2m) ≤ d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2m)

≤ en + en+1 + [d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, xn+2m)]

≤ en + en+1 + en+2 + ...+ d(xn+2m−2, xn+2m)

= en + en+1 + ...+ e∗n+2m−2

≤ ψn(e0) + ψn+1(e0) + ...+ ψn+2m−2(e∗0)

=

n+2m−2∑
i=n

ψi(e0) + ψn+2m−n(e∗0)

≤
∞∑
i=n

ψi(e0) + ψn+2m−n(e∗0) <∞. (2.7)
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Similarly, if p is odd say 2m+ 1 then we get that

d(xn+2m+1, xn) ≤d(xn+2m+1, xn+2m) + d(xn+2m, xn+2m−1) + d(xn+2m−1, xn)

≤ln+2m+1 + ln+2m + [d(xn+2m−1, xn+2m−2)

+ d(xn+2m−2, xn+2m−3) + d(xn+2m−3, xn)]

≤ψn+2m+1(l0) + ψn+2m(l0) + ...+ ψn−1(l0)

=

n+2m+1∑
i=n−1

ψi(l0) ≤
∞∑

i=n−1
ψi(l0) <∞. (2.8)

Similarly, if p is even say 2m then we get that

d(xn+2m, xn) ≤d(xn+2m, xn+2m−1) + d(xn+2m−1, xn+2m−2) + d(xn+2m−2, xn)

≤ln+2m + ln+2m−1 + [d(xn+2m−2, xn+2m−3)

+ d(xn+2m−3, xn+2m−4) + d(xn+2m−4, d(xn)]

≤ψn+2m(l0) + ψn+2m−2(l0) + ...+ ψn−2(l∗0)

=

n+2m∑
i=n−2

ψi(l0) + ψn−2(l∗0)

≤
∞∑

i=n−2
ψi(l0) + ψn−2(l∗0) <∞ (2.9)

It follows from (2.6), (2.7), (2.8) and (2.9) that limn→∞ d(xn, xn+p) = 0 =
limn→∞ d(xn+p, xn) for all p > 0. Thus {xn} is a Cauchy sequence in (X, d).
By completeness of (X, d) there exists a u ∈ X such that limn→∞ xn = u. We will
show that u is a fixed point of g. Again, for any n ∈ N we have

d(u, gu) ≤ d(u, xn) + d(xn, xn+1) + d(xn+1, gu)

= d(u, xn) + en + d(gxn, gu)

≤ d(u, xn) + en + ψ(d(xn, u)). (2.10)

And, we get that

d(gu, u) ≤ d(gu, xn+1) + d(xn+1, xn) + d(xn, u)

= d(gu, gxn) + ln + d(xn, u)

≤ ψ(d(u, xn)) + ln + d(xn, u). (2.11)

Using (2.10) and (2.11) it follows that d(u, gu) = 0 = d(gu, u). So gu = u.
Thus u is a fixed point of g. For uniqueness, let v be another a fixed point of
g. Then it follows that d(u, v) = d(gu, gv) ≤ ψ(d(u, v)) < d(u, v) and d(v, u) =
d(gv, gu) ≤ ψ(d(v, u)) < d(v, u), which is a contradiction. Therefore, we must
have d(u, v) = 0 = d(v, u). So u = v . Thus u is a fixed point of g.

Next, we obtain corollary by set ψ(t) = ∃r(t),∀t ∈ [0,∞), r ∈ [0, 1).
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Corollary 2.1. Let (X, d) be a complete rectangular quasi-metric space.Suppose
that T : X −→ X x, y ∈ X

d(gx, gy) ≤ rd(x, y)

for all x, y ∈ X where r ∈ [0, 1). Then g has a unique fixed point in X.

Example 2.5. Let X = A∪B, where A = { 12 ,
1
3 ,

1
4 ,

1
5} and B = [1, 2]. Define the

generalized metric d on X as follows :
d( 1

2 ,
1
3 ) = d( 1

4 ,
1
5 ) = 0.3, d( 1

3 ,
1
2 ) = d( 1

5 ,
1
4 ) = 0.1,

d( 1
2 ,

1
4 ) = d( 1

5 ,
1
3 ) = 0.6, d( 1

4 ,
1
2 ) = d( 1

3 ,
1
5 ) = 0.4,

d( 1
2 ,

1
5 ) = d( 1

3 ,
1
4 ) = 0.2, d( 1

5 ,
1
2 ) = d( 1

4 ,
1
3 ) = 0.5,

d( 1
2 ,

1
2 ) = d( 1

3 ,
1
3 ) = d( 1

4 ,
1
4 ) = d( 1

5 ,
1
5 ) = 0,

and

d(x, y) = |x− y| if x, y ∈ B or x ∈ A, y ∈ B or x ∈ B, y ∈ A .

Then (X, d) is a complete rectangular quasi-metric space.

Next, let g : X −→ X by

gx =

{
1
5 x ∈ A,
x
6 x ∈ B,

where ψ(t) = t
2 ; ∀t ∈ [0,∞). Then g satisfy Theorem 2.4, and we see that 1

5
is a fixed point of g. Indeed,

Case(I) If x, y ∈ A , then d(gx, gy) = d( 1
5 ,

1
5 ) = 0 ≤ d(x,y)

2 = ψ(d(x, y)).
Case (II) If x, y ∈ B or x ∈ A, y ∈ B or x ∈ B, y ∈ A , then

d(gx, gy) = |gx− gy|

= |x
6
− y|; (set x ∈ B)

≤ 1

2
|x− y|

=
d(x, y)

2
= ψ(d(x, y)). (2.12)

In 1982, Sessa [6] introduced a common fixed point theorem for a selfmapping
of a complete metric space as follows :

Definition 2.6. Two self-mappings S and T of metric space (X, d) are said to be
weakly commuting if

d(STx, TSx) ≤ d(Sx, Tx), ∀x ∈ X.

It is clear that two commuting mappings are weakly commuting
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In 1986, Jungck [7] introduced a compatible mappings and common fixed
points as follows :

Definition 2.7. Let T and S be two self-mappings of a metric space (X, d). S
and T are said to be compatible if

limn→∞ d(STxn, TSxn) = 0

whenever {xn} is a sequence in X such that

limn→∞ Sxn = limn→∞ Txn = t

for some t ∈ X.
It is easy to see that two compatible maps are weakly compatible.

In 2002, Aamri and El Moutawakil [8] defined a new property called the (E.A)
property which generalizes the concept of non-compatible mappings and proved
some common fixed point theorems.

Definition 2.8. Let S and T be two self-mappings of a rectangular quasi-metric
space (X, d). We say that T and S satisfy the property (E.A) if there exists a
sequence {xn} such that

limn→∞ Txn = limn→∞ Sxn = t
for some t ∈ X.

Example 2.9. (1) Let X = [0,+∞].Define T, S : X −→ X by

Tx = x2

4 and Sx = 3x2

4 , ∀x ∈ X.
Consider the sequence xn = 1/n. Clearly limn→∞ Txn = limn→∞ Sxn = 0.
Then T and S satisfy (E.A).

(2) Let X = [2,+∞]. Define T, S : X −→ X by
Tx = x+ 1 and Sx = 2x+ 1 , ∀x ∈ X.

Suppose that property (E.A) hold,Then there exists a {xn} in X sequence
satisfying

limn→∞ Tx = limn→∞ Sx = t, for some t ∈ X.
Therefore

limn→∞ xn = t− 1 and limn→∞ xn = t−1
2 .

then t = 1, which is a contradiction 1 6∈ X. Hence T and S do not satisfy (E.A).

Theorem 2.2. Let S and T be two weakly compatible self-mappings of a rectan-
gular quasi-metric spaces (X, d) such that

(i) T and S satisfy the property (E.A),

(ii) d(Tx, Ty) < max{d(Sx, Sy) [d(Tx,Sx)+d(Ty,Sy)]
2 , [d(Ty,Sx)+d(Tx,Sy)]

2 },
∀x 6= y ∈ X,

(iii) TX ⊂ SX,
(iv) SX or TX is complete subspace of X.

Then T and S have a unique common fixed point.
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Proof. Since T and S satisfy the property (E.A), there exists a sequence {xn} in
X satifying

limn→∞ Txn = limn→∞ Sxn = t, for some t ∈ X.
Suppose that SX is complete. Then limn→∞ Sxn = Sa for some a ∈ X. Also
limn→∞ Txn = Sa. We show that Ta = Sa. Suppose that Ta 6= Sa. Condition
(ii) implies

d(Ta, Txn) < max{d(Sa, Sxn), [d(Ta, Sa) + d(Txn, Sxn)]/2.

[d(Txn, Sa) + d(Ta, Sxn)]/2}. (2.13)

Letting n→ +∞ yields

d(Ta, Sa) ≤ max{d(Sa, Sa), [d(Ta, Sa) + d(Sa, Sa)]/2,

[d(Sa, Sa) + d(Ta, Sa)]/2}
≤ d(Ta, Sa)/2; (2.14)

a contradiction. Hence Ta = Sa.

Since T and S are a weakly compatible, STa = TSa and TTa = TSa =
STa = SSa.

Finally, we show that Ta is a common fixed point of T and S. Suppose that
Ta 6= TTa. Then

d(Ta, TTa) < max{d(Sa, STa), [d(Ta, Sa) + d(TTa, STa)]/2,

[d(TTa, Sa) + d(Ta, STa)]/2}
< max{d(Ta, TTa), [d(TTa, Ta) + d(Ta, TTa)]/2} (2.15)

and

d(TTa, Ta) < max{d(STa, Sa), [d(TTa, STa) + d(Ta, Sa)]/2,

[d(Ta, STa) + d(TTa, Sa)]/2}
< max{d(TTa, Ta), [d(Ta, TTa) + d(TTa, Ta)]/2}. (2.16)

Since (2.15) and (2.16) we have
d(Ta, TTa) + d(TTa, Ta) < max{d(Ta, TTa), [d(TTa, Ta) + d(Ta, TTa)]/2} +
max{d(TTa, Ta), [d(Ta, TTa)+d(TTa, Ta)]/2} = d(Ta, TTa)+d(TTa, Ta), where
max{d(Ta, TTa), [d(TTa, Ta)+d(Ta, TTa)]/2} 6= d(Ta, TTa) and< max{d(TTa, Ta),
[d(Ta, TTa) + d(TTa, Ta)]/2} 6= d(TTa, Ta);
which is a contradiction. Hence TTa = Ta and STa = TTa = Ta. The proof
is similar when TX is assumed to be a complete subspace of X since TX ⊂ SX.
Uniquness of the common fixed point, suppose that a, b are distinct common fixed
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point of S and T .

d(a, b) = d(Ta, Tb) < max{d(Sa, Sb),
[d(Ta, Sa) + d(Tb, Sb)]

2
,

[d(Tb, Sa) + d(Ta, Sb)]

2
},

=
d(Tb, Sa) + d(Ta, Sb)

2
=
d(b, a) + d(a, b)

2
(2.17)

and

d(b, a) = d(Tb, Ta) < max{d(Sb, Sa),
[d(Tb, Sb) + d(Ta, Sa)]

2
,

[d(Ta, Sb) + d(Tb, Sa)]

2
},

=
d(Ta, Sb) + d(Tb, Sa)

2
=
d(a, b) + d(b, a)

2
. (2.18)

Since (2.17) and (2.18) we get that d(a, b)+d(b, a) < d(b,a)+d(a,b)
2 + d(a,b)+d(b,a)

2

Example 2.3. Let X = A∪B, where A = { 12 ,
1
3 ,

1
4 ,

1
5} and B = [1, 2]. Define the

generalized metric d on X as follows :
d( 1

2 ,
1
3 ) = d( 1

4 ,
1
5 ) = 0.3, d( 1

2 ,
1
5 ) = d( 1

3 ,
1
4 ) = 0.2,

d( 1
2 ,

1
4 ) = d( 1

5 ,
1
3 ) = 0.6, d( 1

2 ,
1
2 ) = d( 1

3 ,
1
3 ) = d( 1

4 ,
1
4 ) = d( 1

5 ,
1
5 ) = 0,

such that d(x, y) = d(y, x) and
d(x, y) = |x−y| if x, y ∈ B or x ∈ A, y ∈ B or x ∈ B, y ∈ A. Define T, S : X −→ X
by

Tx = 3x
4 and Sx = x2

2 , ∀x ∈ X.
Then

(1) T and S satisfy the property (E.A) for the sequence xn = 1 + 1/n, n =
1, 2, ...,

(2) S and T are weakly compatible,
(3) T and S satisfy for all x 6= y ,
(4) T1 = S1 = 1.
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