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1 Introduction

As a generalization of rings, Γ-rings were introduced by N. Nobusawa [1] in
1964. Also, as a generalization of semirings and Γ-rings, the notion of Γ-semirings
was introduced by M. K. Rao [2] in 1995. Some properties of ideals and k-ideals
in a Γ-semiring were also discussed by M. K. Rao [2] in 1995 and T. K. Dutta
and S. K. Sardar [3] in 2000. T. K. Dutta and S. K. Sardar [4] in 2001 gave the
definition of prime ideals in Γ-semirings and studied some of their properties. In
2017, M. K. Rao and B. Venkateswarlu [5] initiated the definition of primary ideals
in Γ-semirings which is a generalization of prime ideals in Γ-semirings.

The concept of 2-absorbing ideals in commutative rings was introduced by A.
Badawi [6] in 2007 which is a generalization of prime ideals in commutative rings.
Recently, A. Badawi [7] in 2014 introduced the concept of 2- absorbing primary
ideals in commutative rings and gave some characterizations related to it. The
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notion of 2-absorbing primary ideals in semirings was introduced by P. Kumar, M.
K. Dubey and P. Sarohe [8] in 2016.

Our main goal is to provide the notion of 2-absorbing primary ideals in com-
mutative Γ-semirings which are extended from those in Γ-rings. Also, we study
these properties and present some of their characterizations.

2 Preliminaries

In this section, we recall some of fundamental concepts and definitions which
are necessary for this paper.

Definition 2.1 ([2]). For any commutative semigroups (R,+) and (Γ,+), R is
called a Γ-semiring if there exists a function · from R × Γ × R into R, where
·(x, γ, y) is denoted by xγy for all x, y ∈ R and γ ∈ Γ, satisfying the following
properties: for all x, y, z ∈ R and γ, β ∈ Γ,
1. xγ(y + z) = xγy + xγz and (x+ y)γz = xγz + yγz;
2. x(γ + β)y = xγy + xβy; and
3. (xγy)βz = xγ(yβz).

Throughout this paper, let Z+
0 be the set of non-negative integers. Then Z+

0

is a semigroup under the usual addition. For a Γ-semiring R, ∅ 6= A,B ⊆ R and
β ∈ Γ, let AΓB = { aγb | a ∈ A, γ ∈ Γ and b ∈ B } and AβB = { aβb | a ∈ A and
b ∈ B }.

Example 2.2. (1) Let R be the commutative semigroup containing all m × n
matrices over Z+

0 under the usual addition and Γ be the commutative semigroup
containing all n × m matrices over Z+

0 under the usual addition. Then R is a
Γ-semiring where aγb is the usual matrix product for any a, b ∈ R and γ ∈ Γ.
(2) For each n ∈ N, recall that nZ+

0 = { na | a ∈ Z+
0 } is a commutative semigroup

under the usual addition of integers. Then nZ+
0 is an mZ+

0 -semiring for all m,n ∈
N where xγy is the usual multiplication of integers for all x, y ∈ nZ+

0 and γ ∈ mZ+
0 .

Definition 2.3 ([2]). A Γ-semiring R is said to have a zero element if there exists
an element 0 ∈ R such that x+0 = x and 0αx = xα0 = 0 for all x ∈ R and α ∈ Γ.

Definition 2.4 ([9]). A Γ-semiring R is said to have a unity element if there
exists an element 1 ∈ R such that for all x ∈ R, there exists α ∈ Γ such that
1αx = x = xα1.

Definition 2.5 ([2]). A Γ-semiring R is said to be commutative if xαy = yαx
for all x, y ∈ R and α ∈ Γ.

Definition 2.6 ([2]). Let R be a Γ-semiring and A be a subset of R. Then A is
called a Γ-subsemiring of R if A is a subsemigroup of (R,+) and AΓA ⊆ A.
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Proposition 2.7 ([2]). Let Ri be a Γi-semiring for all i ∈ {1, 2, . . . , n}. Then
R1 ×R2 × · · · ×Rn is a (Γ1 × Γ2 × · · · × Γn)-semiring where

(x1, x1, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn) and

(x1, x1, . . . , xn)(γ1, γ2, . . . , γn)(y1, y2, . . . , yn) = (x1γ1y1, x2γ2y2, . . . , xnγnyn)

for all xi, yi ∈ Ri, γi ∈ Γi and i ∈ {1, 2, . . . , n}.
Moreover, if Ri is commutative for all i ∈ {1, 2, . . . , n}, then the (Γ1 × Γ2 ×

· · · × Γn)-semiring R1 ×R2 × · · · ×Rn is also commutative.

Definition 2.8 ([2]). A subset I of a Γ-semiring R is called an ideal in R if I is
a subsemigroup of (R,+), IΓR ⊆ I and RΓI ⊆ I.

It is clear that a Γ-semiring R is an ideal in R. Moreover, if R is a Γ-semiring
with zero 0, then 0 ∈ I for all ideal I in R.

Definition 2.9 ([2]). An ideal I in a Γ-semiring R is called a k-ideal in R if for
all x, y ∈ R, x+ y ∈ I and x ∈ I implies y ∈ I.

Example 2.10. From Example 2.2 (2), Z+
0 is a 5Z+

0 -semiring. Moreover, 3Z+
0 is

a k-ideal in Z+
0 . However, 3Z+

0 − {3} is an ideal in Z+
0 but it is not a k-ideal in

Z+
0 because 6 + 3 ∈ 3Z+

0 − {3}, 6 ∈ 3Z+
0 − {3} but 3 /∈ 3Z+

0 − {3}.

Proposition 2.11 ([4]). Let R be a Γ-semiring with zero and a ∈ R. Define

〈a〉 = { na+

p∑
j=1

aηjtj +

q∑
k=1

ukδka+

s∑
l=1

vlµlaλlwl |

n ∈ Z+
0 , p, q, s ∈ Z+, all tj , uk, vl, wl ∈ R and all ηj , δk, µl, λl ∈ Γ }.

Then 〈a〉 is an ideal in R containing a.

Definition 2.12 ([4]). Let ρ be an equivalence relation on a commutative Γ-
semiring R. Then ρ is called a Γ-congruence on R if xρx′ and yρy′ implies
(x+ y)ρ(x′ + y′) and (xγy)ρ(x′γy′) for all x, y, x′, y′ ∈ R and γ ∈ Γ.

Definition 2.13 ([4]). Let I be a proper ideal in a commutative Γ-semiring R
and ρI be a Γ-congruence on R. Then ρI is called the Bourne Γ-congruence
on R if for all x, y ∈ R, xρIy if and only if x+ i1 = y + i2 for some i1, i2 ∈ I.

The Bourne Γ-congruence class of an element r of R is denoted by r/ρI or
simply by r/I and the set of all such Γ-congruence classes of the elements of R is
denoted by R/ρI or simply by R/I.

For any proper ideal I of R, R/I is a commutative Γ-semiring where

r/I + r′/I = (r + r′)/I and (r/I)α(r′/I) = (rαr′)/I for all r, r′ ∈ R and α ∈ Γ.
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Proposition 2.14 ([10]). If I and J are ideals in R and I $ J , then

(i) I is also an ideal in the Γ-subsemiring J ; and

(ii) J/I is an ideal in the Γ-semiring R/I.

Lemma 2.15. Let I be a proper ideal in R and P be a k-ideal in R such that
I $ P . Then, for all a ∈ R, a/I ∈ P/I if and only if a ∈ P .

Proof. If a ∈ P , then it is obvious that a/I ∈ P/I.
Next, let a/I ∈ P/I. Then, a/I = p/I for some p ∈ P . Thus, there exist

i1, i2 ∈ I such that a + i1 = p + i2. Since i1, i2 ∈ I ⊆ P and P is a k-ideal, we
have a ∈ P .

3 Radical Ideals

Throughout this section, properties of radical ideals in commutative Γ-semirings
are investigated. However, we focus on those which are involving with 2-absorbing
primary ideals which will be applied in the fourth section. In this section, let R
be a commutative Γ-semiring.

Proposition 3.1 ([5]). Let I be an ideal in R. Then
√
I := {x ∈ R | there exists n ∈ N such that (xγ)n−1x ∈ I for all γ ∈ Γ}

is an ideal in R containing I where (xγ)0x = x and (xγ)nx = (xγ)n−1xγx for all
x ∈ R, γ ∈ Γ and n ∈ N. The ideal

√
I is called the radical ideal of I.

Proposition 3.2. Let I and J be ideals in R. If I ⊆ J , then
√
I ⊆
√
J .

Proof. The proof is straightforward.

Proposition 3.3. Let Ri be a commutative Γi-semiring for all i ∈ {1, 2}. If I1
and I2 are ideals in R1 and R2, respectively, then

√
I1 ×

√
I2 =

√
I1 × I2.

Proof. Let I1 and I2 be ideals in R1 and R2, respectively.
First, let a ∈

√
I1 and b ∈

√
I2. Then there exist n,m ∈ N such that

(aα1)n−1a ∈ I1 and (bα2)m−1b ∈ I2 for all α1 ∈ Γ1 and α2 ∈ Γ2. So,

((a, b)(α1, α2))n+m−1(a, b) ∈ I1 × I2 for all α1 ∈ Γ1 and α2 ∈ Γ2.

Thus, (a, b) ∈
√
I1 × I2. Hence,

√
I1 ×

√
I2 ⊆

√
I1 × I2.

Next, let (p, q) ∈
√
I1 × I2. Then, there exists m ∈ N such that

((p, q)(α1, α2))m−1(p, q) ∈ I1 × I2 for all α1 ∈ Γ1 and α2 ∈ Γ2.

Hence, (pα1)m−1p ∈ I1 and (qα2)m−1q ∈ I2 for all α1 ∈ Γ1 and α2 ∈ Γ2. So,
(p, q) ∈

√
I1 ×

√
I2. Thus,

√
I1 × I2 ⊆

√
I1 ×

√
I2.

Therefore,
√
I1 ×

√
I2 =

√
I1 × I2.
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Proposition 3.4. Let I be a proper ideal in R and P be a k-ideal in R such that
I $ P . Then

√
P/I ⊆

√
P/I.

Proof. Let r ∈
√
P . Then there exists n ∈ N such that (rα)n−1r ∈ P for any

α ∈ Γ. So, ((r/I)α)n−1(r/I) = ((rα)n−1r)/I ∈ P/I for any α ∈ Γ. Thus,
r/I ∈

√
P/I.

Therefore,
√
P/I ⊆

√
P/I.

Definition 3.5 ([2]). Let R1 and R2 be Γ-semirings (not necessary commutative).
Then g : R1 → R2 is called a homomorphism if g(x + y) = g(x) + g(y) and
g(xγy) = g(x)γg(y) for all x, y ∈ R1 and γ ∈ Γ.

Definition 3.6. Let R1 and R2 be Γ-semirings (not necessary commutative) and
g : R1 → R2 be a homomorphism. Then g is called an epimorphism if g is
surjective.

Example 3.7. Note that 3Z+
0 and Z+

0 /7Z
+
0 are 5Z+

0 -semirings. Define f : 3Z+
0 →

Z+
0 /7Z

+
0 by f(x) = x/7Z+

0 for all x ∈ 3Z+
0 . Then f is an epimorphism.

Proposition 3.8. Let R1 and R2 be commutative Γ-semirings, g : R1 → R2 be a
homomorphism and I be an ideal in R2. Then g−1(

√
I) =

√
g−1(I).

Proof. Clearly, g−1(I) is an ideal in R1.
First, let a ∈ g−1(

√
I).Then, g(a) ∈

√
I. So, there exists n ∈ N such that

(g(a)α)n−1g(a) ∈ I for all α ∈ Γ. Thus, g((aα)n−1a) = (g(a)α)n−1g(a) ∈ I for
all α ∈ Γ. Then, (aα)n−1a ∈ g−1(I) for all α ∈ Γ. So, a ∈

√
g−1(I). Hence,

g−1(
√
I) ⊆

√
g−1(I).

Next, let a ∈
√
g−1(I). Then, there exists n ∈ N such that (aα)n−1a ∈ g−1(I)

for all α ∈ Γ. Thus, (g(a)α)n−1g(a) = g((aα)n−1a) ∈ I for all α ∈ Γ. So,
g(a) ∈

√
I, i.e., a ∈ g−1(

√
I). Then,

√
g−1(I) ⊆ g−1(

√
I).

Therefore, g−1(
√
I) =

√
g−1(I).

Unlike the previous proposition, g(
√
I) =

√
g(I) holds provided that g must

also be surjective and I has to be a k-ideal.

Proposition 3.9. Let R1 and R2 be commutative Γ-semirings, g : R1 → R2 be
an epimorphism and I be a k-ideal in R1 such that { x ∈ R1 | ∃ a, b ∈ R1 such
that x = a+ b and g(a) = g(b) } ⊆ I. Then g(

√
I) =

√
g(I).

Proof. Clearly, g(I) is an ideal in R2.
First, let a ∈ g(

√
I). Then, there exists p ∈

√
I such that g(p) = a. So,

there exists n ∈ N such that (pα)n−1p ∈ I for all α ∈ Γ. Thus, (aα)n−1a =
(g(p)α)n−1g(p) = g((pα)n−1p) for all α ∈ Γ. Since (pα)n−1p ∈ I, we have
(aα)n−1a ∈ g(I) for all α ∈ Γ. So, a ∈

√
g(I). Hence, g(

√
I) ⊆

√
g(I).

Next, let a ∈
√
g(I). Then, there exists n ∈ N such that (aα)n−1a ∈ g(I) for

all α ∈ Γ. Fix α ∈ Γ. So, there exits p ∈ I such that g(p) = (aα)n−1a. Since g
is surjective, there exists q ∈ R1 such that g(q) = a. Thus, g(p) = (aα)n−1a =
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(g(q)α)n−1g(q) = g((qα)n−1q). So, p + (qα)n−1q ∈ { x ∈ R1 | ∃ b, c ∈ R1 such
that x = b+ c and g(b) = g(c) } ⊆ I. Since p ∈ I and I is a k-ideal, (qα)n−1q ∈ I.
Then, q ∈

√
I. Thus, a ∈ g(

√
I). Hence,

√
g(I) ⊆ g(

√
I).

Therefore, g(
√
I) =

√
g(I).

4 2-absorbing Primary Ideals

In this section, we introduce the concept of 2-absorbing primary ideals in a
commutative Γ-semiring and investigate some results related to it. Throughout
this section, let R be a commutative Γ-semiring.

Definition 4.1 ([4]). A proper ideal P in a commutative Γ-semiring R is called
a prime ideal in R if whenever a, b ∈ R, aΓb ⊆ P implies a ∈ P or b ∈ P .

Example 4.2. From Example 2.2 (2), Z+
0 is a commutative 5Z+

0 -semiring. Then
the ideal 2Z+

0 is a prime ideal in Z+
0 .

Proof. Let x, y ∈ Z+
0 be such that xΓy ⊆ 2Z+

0 . So, 2 | x · 5 · y. Hence, 2 | x or
2 | y. Thus, x ∈ 2Z+

0 or y ∈ 2Z+
0 . Therefore, 2Z+

0 is a prime ideal in Z+
0 .

Definition 4.3 ([5]). A proper ideal I in a commutative Γ-semiring R is called a
primary ideal in R if whenever a, b ∈ R, aΓb ⊆ I implies a ∈ I or b ∈

√
I.

The following is the immediate result obtained from the definitions.

Remark 4.4. Every prime ideal in R is a primary ideal in R.

The following definitions that are given in the context of Γ-semirings were
inspired by [11].

Definition 4.5. A proper ideal I in a commutative Γ-semiring R is called a 2-
absorbing ideal in R if whenever x, y, z ∈ R, γ, β ∈ Γ and xγyβz ∈ I implies
xγy ∈ I or xβz ∈ I or yβz ∈ I.

Definition 4.6. A proper ideal I in a commutative Γ-semiring R is called a 2-
absorbing primary ideal in R if whenever x, y, z ∈ R, γ, β ∈ Γ and xγyβz ∈ I,
then xγy ∈ I or xβz ∈

√
I or yβz ∈

√
I.

Definition 4.5 and Definition 4.6 lead to the following remark.

Remark 4.7. Every 2-absorbing ideal in R is a 2-absorbing primary ideal in R.

However, the converse of the above remark does not hold.

Example 4.8. From Example 2.2 (2), Z+
0 is a commutative 5Z+

0 -semiring. Then,
8Z+

0 is a 2-absorbing primary ideal in Z+
0 but it is not a 2-absorbing ideal in Z+

0 .
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Proof. Let x, y, z ∈ Z+
0 and γ, β ∈ 5Z+

0 be such that xγyβz ∈ 8Z+
0 . If 8 | xγy, we

are done. Suppose 8 - xγy. Then, 2 | βz. So, 8 | (xβzα)2xβz for all α ∈ Γ, that

is xβz ∈
√

8Z+
0 . Thus, 8Z+

0 is a 2-absorbing primary ideal in Z+
0 .

Since (2)(5)(2)(5)(2) ∈ 8Z+
0 and (2)(5)(2) /∈ 8Z+

0 , it follows that 8Z+
0 is not a

2-absorbing ideal in Z+
0 .

We can see from the next example that primary ideals need not be 2-absorbing
ideals or prime ideals.

Example 4.9. From Example 2.2 (2), Z+
0 is a commutative 5Z+

0 -semiring. Then,
the ideal 27Z+

0 is a primary ideal in Z+
0 but it is not a 2-absorbing ideal so that it

is not a prime ideal in Z+
0 .

Proof. Let x, y ∈ Z+
0 be such that xΓy ⊆ 27Z+

0 . If 27 | x, then x ∈ 27Z+
0 . Suppose

27 - x. Since xΓy ⊆ 27Z+
0 , 3 | αy for all α ∈ 5Z+

0 . Hence, 27 | (yα)3y for all

α ∈ 5Z+
0 . So, y ∈

√
27Z+

0 . Thus, 27Z+
0 is a primary ideal in Z+

0 .

Since (3)(5)(3)(5)(3) ∈ 27Z+
0 and (3)(5)(3) /∈ 27Z+

0 , it follows that 27Z+
0 is

not a 2-absorbing ideal in Z+
0 .

Next, we present a relationship between prime ideals and 2-absorbing ideals
as well as a relationship between primary ideals and 2-absorbing primary ideals.

Proposition 4.10. Every prime ideal in R is a 2-absorbing ideal in R and then
it is a 2-absorbing primary ideal in R.

Proof. Suppose that I is a prime ideal in R. Let x, y, z ∈ R and γ, β ∈ Γ be such
that xγyβz ∈ I. Then, xγyΓyβz ⊆ I. Since I is a prime ideal, we have xγy ∈ I
or yβz ∈ I.

Therefore, I is a 2-absorbing ideal in R.

Proposition 4.11. Every primary ideal in R is a 2-absorbing primary ideal in
R.

Proof. Suppose that I is a primary ideal in R. Let x, y, z ∈ R and γ, β ∈ Γ be
such that xγyβz ∈ I. Then, xγyΓyβz ⊆ I. Since I is a primary ideal, we have
xγy ∈ I or yβz ∈

√
I. Thus, I is a 2-absorbing primary ideal in R.

We can see from the next example that 2-absorbing ideals and 2-absorbing
primary ideals need not be primary ideals.

Example 4.12. From Example 2.2 (2), Z+
0 is a commutative 5Z+

0 -semiring. Then,
the ideal 10Z+

0 is a 2-absorbing ideal in Z+
0 so that it is a 2-absorbing primary

ideal. However, it is not a primary ideal in Z+
0 .
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Proof. Let x, y, z ∈ Z+
0 and γ, β ∈ 5Z+

0 be such that xγyβz ∈ 10Z+
0 . Then,

10 | xγyβz. So, 2 | x or 2 | γ or 2 | y or 2 | β or 2 | z. If 2 | x or 2 | y, then
10 | xγy. If 2 | z, then 10 | yβz. If 2 | γ or 2 | β, then 10 | xγy or 10 | xβz. Hence,
xγy ∈ 10Z+

0 or xβz ∈ 15Z+
0 or yβz ∈ 10Z+

0 . Thus, 10Z+
0 is a 2-absorbing ideal in

Z+
0 and then it is a 2-absorbing primary ideal.

Since 2(5Z+
0 )1 ⊆ 10Z+

0 , 2 /∈ 10Z+
0 and 1 /∈

√
10Z+

0 , it follows that 10Z+
0 is not

a primary ideal in Z+
0 .

The following results are inspired by results in [7], [11] and [8].

Theorem 4.13. Let R1 and R2 be commutative Γ-semirings and g : R1 → R2 be a
homomorphism. If I is a 2-absorbing primary ideal in R2 such that g−1(I) 6= R1,
then g−1(I) is a 2-absorbing primary in R1.

Proof. Suppose that I is a 2-absorbing primary ideal in R2 such that g−1(I) 6= R1.
Then, g−1(I) is a proper ideal in R1. Let x, y, z ∈ R and β, γ ∈ Γ be such that
xβyγz ∈ g−1(I). Then, g(x)βg(y)γg(z) = g(xβyγz) ∈ I. Since I is a 2-absorbing
primary ideal in R2, we have g(xβy) = g(x)βg(y) ∈ I or g(xγz) = g(x)γg(z) ∈

√
I

or g(yγz) = g(y)γg(z) ∈
√
I. Hence, xβy ∈ g−1(I) or xγz ∈ g−1(

√
I) =

√
g−1(I)

or yγz ∈ g−1(
√
I) =

√
g−1(I).

Therefore, g−1(I) is a 2-absorbing primary ideal in R1.

Theorem 4.14. Let R1 and R2 be commutative Γ-semirings, g : R1 → R2 be
an epimorphism and I be a k-ideal in R1. If I is a 2-absorbing primary ideal in
R1 such that g(I) 6= R2 and { x ∈ R1 | ∃ a, b ∈ R1 such that x = a + b and
g(a) = g(b) } ⊆ I, then g(I) is a 2-absorbing primary ideal in R2.

Proof. Suppose that I is a 2-absorbing primary ideal in R1 such that g(I) 6= R2

and { x ∈ R1 | ∃ a, b ∈ R1 such that x = a+ b and g(a) = g(b) } ⊆ I. Then, g(I)
is a proper ideal in R2. Let x, y, z ∈ R2 and γ, β ∈ Γ be such that xγyβz ∈ g(I).
Then, there exists t ∈ I such that xγyβz = g(t). Since g is surjective, there
exist p, q, r ∈ R such that g(p) = x, g(q) = y and g(r) = z. Hence, g(pγqβr) =
g(p)γg(q)βg(r) = xγyβz = g(t). So, pγqβr + t ∈ { x ∈ R1 | ∃ b, c ∈ R1 such
that x = b + c and g(b) = g(c) } ⊆ I. Since t ∈ I and I is a k-ideal, pγqβr ∈ I.
Since I is a 2-absorbing primary ideal, pγq ∈ I or pβr ∈

√
I or qβr ∈

√
I. Hence,

xγy = g(p)γg(q) = g(pγq) ∈ g(I) or xβz = g(p)βg(r) = g(pβr) ∈ g(
√
I) =

√
g(I)

or yβz = g(p)βg(r) = g(qβr) ∈ g(
√
I) =

√
g(I).

Therefore, g(I) is a 2-absorbing primary ideal in R2.

Theorem 4.15. Let I be a proper ideal in R and P be a k-ideal in R such that
I $ P . Then P is a 2-absorbing primary ideal in R if and only if P/I is a
2-absorbing primary ideal in R/I.

Proof. First, suppose that P is a 2-absorbing primary ideal in R. Then, P/I is a
proper ideal in R/I. Let x, y, z ∈ R and γ, β ∈ Γ be such that (x/I)γ(y/I)β(z/I) ∈
P/I. Hence, (xγyβz)/I ∈ P/I and then by Lemma 2.15, xγyβz ∈ P . Since P
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is a 2-absorbing primary ideal, xγy ∈ P or xβz ∈
√
P or yβz ∈

√
P . Hence,

(x/I)γ(y/I) = (xγy)/I ∈ P/I or (x/I)β(z/I) = (xβz)/I ∈
√
P/I ⊆

√
P/I or

(y/I)β(z/I) = (yβz)/I ∈
√
P/I ⊆

√
P/I. Thus, P/I is a 2-absorbing primary

ideal in R/I.
Next, suppose that P/I is a 2-absorbing primary ideal in R/I. By Lemma 2.15,

P is a proper ideal in R. Let x, y, z ∈ R and γ, β ∈ Γ be such that xγyβz ∈ P .
Hence, (x/I)γ(y/I)β(z/I) = (xγyβz)/I ∈ P/I. Since P/I is a 2-absorbing pri-
mary ideal, (xγy)/I = (x/I)γ(y/I) ∈ P/I or (xβz)/I = (x/I)β(z/I) ∈

√
P/I

or (yβz)/I = (y/I)β(z/I) ∈
√
P/I. If (xγy)/I ∈ P/I, by Lemma 2.15, then

xγy ∈ P . Suppose (xβz)/I ∈
√
P/I. Then there exists n ∈ N such that

((xβzα)n−1xβz)/I = (((xβz)/I)α)n−1((xβz)/I) ∈ P/I for all α ∈ Γ. By Lemma
2.15, (xβzα)n−1xβz ∈ P for all α ∈ Γ. Hence, xβz ∈

√
P . Similarly, if

(yβz)/I ∈
√
P/I, then yβz ∈

√
P .

Therefore, P is a 2-absorbing primary ideal in R.

If I is an ideal in R, then it can be shown that (I : x) = { r ∈ R | rγx ∈ I for
all γ ∈ Γ } is an ideal in R containing I for all x ∈ R.

Theorem 4.16. Let I be a 2-absorbing primary ideal in R and
√
I be a prime

ideal in R. Then (I : x) is a 2-absorbing primary ideal in R for all x ∈ R \
√
I.

Proof. Let x ∈ R\
√
I. Then (I : x) is a proper ideal in R. Moreover, let a, b, c ∈ R

and γ, β ∈ Γ be such that aγbβc ∈ (I : x). Hence, aγ(bβc)βx ∈ I. Since I is a
2-absorbing primary ideal, aγbβc ∈ I or aβx ∈

√
I or bβcβx ∈

√
I.

Case 1. aγbβc ∈ I. Since I is a 2-absorbing primary ideal, aγb ∈ I ⊆ (I : x) or
aβc ⊆

√
I ⊆

√
(I : x) or bβc ⊆

√
I ⊆

√
(I : x).

Case 2. aβx ∈
√
I. Hence, aβcΓx ⊆

√
I. Since x /∈

√
I and

√
I is a prime ideal,

we have aβc ∈
√
I ⊆

√
(I : x).

Case 3. bβcβx ∈
√
I. Hence, bβcβcΓx ⊆

√
I. Since x /∈

√
I and

√
I is a prime

ideal, bβcβc ∈
√
I. Then there exists n ∈ N such that (bβcβcα)n−1bβcβc ∈ I for all

α ∈ Γ. So, (bβcα)2n−1bβc ∈ I for all α ∈ Γ. It follows that bβc ∈
√
I ⊆

√
(I : x).

Therefore, (I : x) is a 2-absorbing primary ideal in R.

Lemma 4.17. Let I be a 2-absorbing primary ideal in R and
√
I be a k-ideal

in R. Suppose that there exist a, b ∈ R, an ideal J in R and γ, β ∈ Γ such that
aγbβJ ⊆ I. If aγb /∈ I, then aβJ ⊆

√
I or bβJ ⊆

√
I.

Proof. Assume aγb /∈ I. Suppose that aβJ 6⊆
√
I and bβJ 6⊆

√
I. Then, there

exist j1, j2 ∈ J such that aβj1 /∈
√
I and bβj2 /∈

√
I. Since aγbβj1 ∈ I, aγb /∈ I

and aβj1 /∈
√
I, we have bβj1 ∈

√
I. Since aγbβj2 ∈ I, aγb /∈ I and bβj2 /∈

√
I, we

have aβj2 ∈
√
I. Since aγbβ(j1 + j2) ∈ I and aγb /∈ I, we have aβ(j1 + j2) ∈

√
I

or bβ(j1 + j2) ∈
√
I.

Case 1. aβ(j1 + j2) ∈
√
I. Since

√
I is a k-ideal in R and aβj2 ∈

√
I, it follows

that aβj1 ∈
√
I, which is a contradiction.

Case 2. bβ(j1 + j2) ∈
√
I. Since

√
I is a k-ideal in R and bβj1 ∈

√
I, it follows
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that bβj2 ∈
√
I, which is a contradiction.

Therefore, aβJ ⊆
√
I or bβJ ⊆

√
I.

Next, we present a characterization of 2-absorbing primary ideals.

Theorem 4.18. Let I be a proper k-ideal in a commutative Γ-semiring R with
zero and

√
I be a k-ideal in R. Then I is a 2-absorbing primary ideal in R if

and only if whenever ideals I1, I2, I3 in R and γ, β ∈ Γ with I1γI2βI3 ⊆ I, then
I1γI2 ⊆ I or I1βI3 ⊆

√
I or I2βI3 ⊆

√
I.

Proof. First, suppose that I is a 2-absorbing primary ideal in R and let I1, I2 and
I3 be ideals in R and γ, β ∈ Γ be such that I1γI2βI3 ⊆ I. Suppose to the contrary
that I1γI2 6⊆ I and I1βI3 6⊆

√
I and I2βI3 6⊆

√
I. Then, there exist a, q1 ∈ I1 and

b, q2 ∈ I2 such that aγb /∈ I and q1βI3 6⊆
√
I and q2βI3 6⊆

√
I. Since q1γq2βI3 ⊆ I

and q1βI3 6⊆
√
I and q2βI3 6⊆

√
I, by Lemma 4.17, we have q1γq2 ∈ I. Since

aγbβI3 ⊆ I and aγb /∈ I , by Lemma 4.17, we have aβI3 ⊆
√
I or bβI3 ⊆

√
I.

Case 1. aβI3 ⊆
√
I and bβI3 6⊆

√
I. Since q1γbβI3 ⊆ I and bβI3 6⊆

√
I and

q1βI3 6⊆
√
I, by Lemma 4.17, we have q1γb ∈ I. Since

√
I is a k-ideal and aβI3 ⊆√

I and q1βI3 6⊆
√
I, we have (a + q1)βI3 6⊆

√
I. Since (a + q1)γbβI3 ⊆ I,

(a+ q1)βI3 6⊆
√
I and bβI3 6⊆

√
I, by Lemma 4.17, we have (a+ q1)γb ∈ I. Since

I is a k-ideal and q1γb ∈ I, we have aγb ∈ I, which is a contradiction.
Case 2. aβI3 6⊆

√
I and bβI3 ⊆

√
I. This case is not possible similarly to Case 1.

Case 3. aβI3 ⊆
√
I and bβI3 ⊆

√
I. Since

√
I is a k-ideal, bβI3 ⊆

√
I and

q2βI3 6⊆
√
I, we have (b + q2)βI3 6⊆

√
I. Since

√
I is a k-ideal, aβI3 ⊆

√
I and

q1βI3 6⊆
√
I, we have (a+q1)βI3 6⊆

√
I. Since q1γ(b+q2)βI3 ⊆ I, q1βI3 6⊆

√
I and

(b + q2)βI3 6⊆
√
I, by Lemma 4.17, we have q1γ(b + q2) ∈ I. Since I is a k-ideal

and q1γq2 ∈ I, we have q1γb ∈ I. Since (a + q1)γq2βI3 ⊆ I, q2βI3 6⊆
√
I and

(a + q1)βI3 6⊆
√
I, by Lemma 4.17, we have (a + q1)γq2 ∈ I. Since I is a k-ideal

and q1γq2 ∈ I, we have aγq2 ∈ I. Since (a+q1)γ(b+q2)βI3 ⊆ I, (a+q1)βI3 6⊆
√
I

and (b + q2)βI3 6⊆
√
I, by Lemma 4.17, we have (a + q1)γ(b + q2) ∈ I. Since

I is a k-ideal, q1γq2 ∈ I, aγq2 ∈ I and q1γb ∈ I, we have aγb ∈ I, which is a
contradiction.
Hence, I1γI2 ⊆ I or I1βI3 ⊆

√
I or I2βI3 ⊆

√
I.

On the other hand, suppose that whenever ideals I1, I2, I3 in R and γ, β ∈ Γ
with I1γI2βI3 ⊆ I, then I1γI2 ⊆ I or I1βI3 ⊆

√
I or I2βI3 ⊆

√
I. Let x, y, z ∈ I

and γ, β ∈ Γ be such that xγyβz ∈ I. Then, 〈x〉γ〈y〉β〈z〉 ∈ I. By assumption,
xγy ∈ 〈x〉γ〈y〉 ∈ I or xβz ∈ 〈x〉β〈z〉 ∈

√
I or yβz ∈ 〈y〉β〈z〉 ∈

√
I. So, I is a

2-absorbing primary ideal in R.

Finally, 2-absorbing primary ideals in a commutative (Γ1×Γ2)-semiring R1×
R2 are provided.

Theorem 4.19. Let Ri be a commutative Γi-semiring for all i ∈ {1, 2}.

(i) If I1 is a 2-absorbing primary ideal in R1, then I1 × R2 is a 2-absorbing
primary ideal in R1 ×R2.
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(ii) If I2 is a 2-absorbing primary ideal in R2, then R1 × I2 is a 2-absorbing
primary ideal in R1 ×R2.

Proof. Note that R1 ×R2 is a commutative (Γ1 × Γ2)-semiring.
(i) Suppose that I1 is a 2-absorbing primary ideal in R1. Then, I1 × R2 is

a proper ideal in R1 × R2. Let x1, y1, z1 ∈ R1, x2, y2, z2 ∈ R2, γ1, β1 ∈ Γ1 and
γ2, β2 ∈ Γ2 be such that (x1, x2)(γ1, γ2)(y1, y2)(β1, β2)(z1, z2) ∈ I1 × R2. Hence,
x1γ1y1β1z1 ∈ I1. Since I1 is a 2-absorbing primary ideal, x1γ1y1 ∈ I1 or x1β1z1 ∈√
I1 or y1β1z1 ∈

√
I1. If x1γ1y1 ∈ I1, then (x1, x2)(γ1, γ2)(y1, y2) ∈ I1 × R2. If

x1β1z1 ∈
√
I1, then (x1, x2)(β1, β2)(z1, z2) ∈

√
I1 × R2 ⊆

√
I1 ×R2. Similarly, if

y1β1z1 ∈
√
I1, then (y1, y2)(β1, β2)(z1, z2) ∈

√
I1×R2 ⊆

√
I1 ×R2. Thus, I1×R2

is 2-absorbing primary ideal in R1 ×R2.
The proof of (ii) is similar to the proof of (i).

Theorem 4.20. Let Ri be a commutative Γi-semiring with zero 0Ri
and unity

1Ri such that 0Ri 6= 1Ri for all i ∈ {1, 2}. If I is a 2-absorbing primary ideal in
R1 ×R2, exactly one of these holds:

(i) I = I1 ×R2 for some 2-absorbing primary ideal I1 in R1;

(ii) I = R1 × I2 for some 2-absorbing primary ideal I2 in R2;

(iii) I = I1 × I2 for some primary ideal Ii in Ri for all i ∈ {1, 2}.

Proof. Suppose that I is a 2-absorbing primary ideal in R1×R2. Then, I = I1×I2
for some ideals I1 in R1 and I2 in R2. Assume I2 = R2. Then I1 must be a proper
ideal in R1. Let x, y, z ∈ R1 and γ, β ∈ Γ1 be such that xγyβz ∈ I1. Let
a ∈ R2 and δ ∈ Γ2. So (x, a)(γ, δ)(y, a)(β, δ)(z, a) ∈ I1 ×R2. Since I1 ×R2 is a 2-
absorbing primary ideal, (x, a)(γ, δ)(y, a) ∈ I1×R2 or (x, a)(β, δ)(z, a) ∈

√
I1 ×R2

or (y, a)(β, δ)(z, a) ∈
√
I1 ×R2. If (x, a)(γ, δ)(y, a) ∈ I1 × R2, then xγy ∈ I1.

If (x, a)(β, δ)(z, a) ∈
√
I1 ×R2 =

√
I1 × R2, then xβz ∈

√
I1. Similarly, if

(y, a)(β, δ)(z, a) ∈
√
I1 ×R2, then, yβz ∈

√
I1. Thus, I1 is a 2-absorbing pri-

mary ideal in R1.
By similar argument, if I1 = R1, then I2 is a 2-absorbing primary ideal in R2.
Now, suppose that I1 6= R1 and I2 6= R2. Suppose that I1 is not a pri-

mary ideal in R1. If 1R2
∈
√
I2, then 1R2

∈ I2, so I2 = R2 which is a con-
tradiction. Hence, 1R2 /∈

√
I2. Since I1 is not a primary ideal in R1, there

exist b, c ∈ R1 such that bΓc ⊆ I1 but neither b ∈ I1 nor c ∈
√
I1. Since 1R1

and 1R2
are unities, there exist α, α′ ∈ Γ1 and α′′ ∈ Γ2 such that bα1R1

= b,
1R1

α′c = c and 1R2
α′′1R2

= 1R2
. Since bΓc ⊆ I1, we have bαc ∈ I1. Hence,

(b, 1R2
)(α, α′)(1R1

, 0R2
)(α′, α′′)(c, 1R2

) = (bαc, 0R2
) ∈ I1 × I2 = I. Since I is a

2-absorbing primary ideal, we have

(b, 0R2) = (b, 1R2)(α, α′)(1R1 , 0R2) ∈ I or

(bαc, 1R2
) = (b, 1R2

)(α, α′)(c, 1R2
) ∈
√
I =

√
I1 ×

√
I2 or

(c, 0R2
) = (1R1

, 0R2
)(α′, α′′)(c, 1R2

) ∈
√
I =

√
I1 ×

√
I2.
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Hence b ∈ I1 or 1R2 ∈
√
I2 or c ∈

√
I1, which is a contradiction. So I1 is a primary

ideal in R1. Analogously, I2 is a primary ideal in R2.
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